The present invention relates to solder bonding for electronic components, and more particularly, to solder-pinning metal pads for electronic components and techniques for use thereof to mitigate de-wetting even when solder thickness is small.
Solder pads are ubiquitously used in the micro-electronics industry for electrical and mechanical contacts or connections between integrated circuits (ICs) and/or between printed circuit boards (PCBs). More recently, solder pads are also forming the connections between opto-electronics and integrated photonic circuits and components.
Typically, the surfaces of circuits to be connected are coated with metal pads (called under-bump metallization (UBM) pads). Solder metal is deposited on some of the metal pads. The surfaces of two circuits to be connected are brought into close contact and the temperature is elevated temporarily beyond the melting temperature of the solder. The melted solder then wicks the metal pads and establishes electrical contacts between the two circuits in close contact. Upon cooling, the solder solidifies and keeps the two circuits mechanically and electrically connected.
With recent applications of this technique, alignment between the two soldered parts is provided by the surface-tension of the solder during the bonding operation when the solder is melted. This solder-induced alignment technique offers the advantage to bypass the use of precise and expensive equipment for accurate positioning of parts during assembly. Advantageously, it opens the door to the assembly of opto-electronic components in large volume, which is otherwise very costly.
However, to be effective this alignment technique requires low amounts of solder as compared to traditional solder bumps. For instance, the deposited solder thickness (e.g., from 3 micrometers (μm) to 15 μm) for this technique is preferably an order of magnitude lower than the typical solder thickness on micro-electronic chips (e.g., from 50 μm to 100 μm). As a result, the solder tends to de-wet the solder pads where it had been deposited.
Therefore, techniques for preventing de-wetting of solder on pads even when the solder thickness is small would be desirable.
The present invention provides solder-pinning metal pads for electronic components and techniques for use thereof to mitigate de-wetting even when solder thickness is small. In one aspect of the invention, a structure is provided. The structure includes: a substrate; and a solder pad on the substrate, wherein the solder pad has sidewalls extending up from a surface thereof. For instance, the sidewalls can be present at edges of the solder pad, or inset from the edges of the solder pad. The sidewalls can be vertical or extend up from the solder pad at an angle. The sidewalls can be formed from the same material or a different material as the solder pad.
In another aspect of the invention, a method is provided. The method includes forming a solder pad on a substrate, the solder pad comprising sidewalls extending up from a surface thereof. Further, a solder reservoir pad can be formed on the substrate; a conduit pad can be formed on the substrate connecting the solder reservoir pad to the solder pad; and the sidewalls can be formed in between at least one of i) the solder reservoir pad and the conduit pad, and ii) the conduit pad and the solder pad.
In yet another aspect of the invention, a structure is provided. The structure includes: a first chip having a first solder pad; a second chip having a second solder pad, wherein at least one of the first solder pad and the second solder pad has sidewalls extending up from a surface thereof; and solder forming at least one solder connection between the first solder pad and the second solder pad.
A more complete understanding of the present invention, as well as further features and advantages of the present invention, will be obtained by reference to the following detailed description and drawings.
Provided herein are under-bump metallization (UBM) metal pad designs having unique geometries that pin the solder and thereby reduce de-wetting of solder off of the UBM pads. The present UBM metal pad designs apply favorably to situations when the solder thickness is small, and where the wetting contact angle is otherwise prohibitively low. As highlighted above, small solder thicknesses (e.g., from 3 micrometers (μm) to 10 μm, and ranges therebetween) may be employed in processes where alignment between the two soldered parts is provided by the surface-tension of the solder during the bonding operation when the solder is melted. See, for example, Martin et al., “Toward high-yield 3D self-alignment of flip-chip assemblies via solder surface tension,” Electronic Components and Technology Conference (ECTC), 2016 IEEE 66th, (May/Jun. 2016) (7 pages), the contents of which are incorporated by reference as if fully set forth herein.
As will be described in detail below, de-wetting occurs when the angle θ between the solder surface and the substrate surface, where the solder surface meets the UBM, is less than a minimum angle θm, called the minimum contact angle. The angle θ of a solder bump depends on the amount of solder deposited onto the pads. Namely, solder is first deposited over the solder pads (e.g., using an electroplating process, an injection molded solder (IMS) process, etc.). See, for example,
The deposited solder 104a, 104b and 104c is then melted (e.g., in the presence of a flux that removes the solder oxide) to form solder balls 202a, 202b and 202c on the UBM pads 106a, 106b and 106c, respectively. See
As shown in
However, for a very small amount of solder 308 (e.g., on the order of from 1 micrometer (μm) to 15 μm) deposited on a conventional UBM pad 310 (over a substrate 306), the situation depicted in
However, as highlighted above, use of thin solder is desired in techniques where precise alignment of a chip is obtained via the pull force provided by the surface tension of melted solder, between chips and a substrate. See, for example, U.S. Pat. No. 9,466,590 issued to Barwicz et al., entitled “Optimized Solder Pads for Microelectronic Components” (hereinafter “U.S. Pat. No. 9,466,590”); U.S. Pat. No. 9,543,736 issued to Barwicz et al., entitled “Optimized Solder Pads for Solder Induced Alignment of Opto-Electronic Chips”; and U.S. Pat. No. 9,606,308 issued to Barwicz et al. entitled “Three Dimensional Self-Alignment of Flip Chip Assembly Using Solder Surface Tension During Solder Reflow”, the contents of each of which are incorporated by reference as if fully set forth herein. Namely, referring to
Further, for a given surface curvature there is an associated pressure (P) inside the liquid solder, given as:
P=γ/R,
wherein γ is the surface tension constant associated with the solder material and R is the surface radius of curvature. See
R=d/2 sin θ, and
P=2γ sin θ/d.
For a given pad diameter d, the pressure inside of the solder is directly related to the contact angle θ. Keeping the above-mentioned pressure small (e.g., on the order of 1000 Newton per square meter (N/m2) or less) is important to the above-described method of alignment via the pull force provided by the surface tension of melted solder. See, for example,
Advantageously, the present UBM pad designs have unique geometries that pin the solder onto the edges of the pads. In order to suppress de-wetting, the present pad designs incorporate a change of slope in the pad edge so that the local contact angle θ between the solder surface and the pad remains large, preferably greater than 20 degrees (or substantially greater than the minimum contact angle θm on the order of 10 degrees that a typical material combination, i.e., solder+UBM, can sustain) even for thin solder thickness and for a large-even negative-radius of curvature of the solder surface. As provided above, as a general rule of thumb, for most UBM materials θm is in the range of from 3 degrees to 10 degrees, and ranges therebetween.
For example, according to one exemplary embodiment, a recessed UBM solder pad design is employed having a substantially vertical (e.g., +10 degrees from normal to the substrate) sidewall along the edge of the solder pad. See
As shown in
Standard lithography and etching techniques can be employed to form the cavity 904 in substrate 902. In one embodiment, a directional (anisotropic) etching technique such as reactive ion etching (RIE) or crystallographic wet etching can be employed for the cavity etch. In another embodiment, an isotropic etching technique can be used. According to an exemplary embodiment, the cavity 904 is patterned having a depth D in the substrate 902 of from 1 μm to 15 μm and ranges therebetween, and a width W of from 30 μm to 500 μm and ranges therebetween.
As shown in step 930, the bottom and sidewalls of the cavity 904 are then covered with a first layer of UBM metal 906. The UBM metals that are deposited along the sidewalls of the cavity 904 form the vertical sidewall portions 907 of the present solder pad design. By way of example only, suitable UBM metals 906 include, but are not limited to, metals such as nickel (Ni), copper (Cu), gold (Au), titanium (Ti) chromium (Cr) and/or iron (Fe), as well as noble and non-dissolving materials such as platinum (Pt), palladium (Pd) and/or ruthenium (Ru). For instance, the UBM metals 906 deposited into cavity 904 can be configured as a stack of layers, each layer containing one or more of these foregoing materials. For example, the UBM pads might be formed from a tri-layer of Au/Ni/Cu. This first layer of UBM metal 906 is deposited as a continuous blanket layer (e.g., using a vacuum deposition process) which will act as an electrical conductor for subsequent electroplating processes.
In step 940, a lithographically patterned photoresist 908 is formed on the substrate 902 masking all but the cavity 904. An electroplating process (via the previously deposited first layer of UBM metal 906) is then used to deposit one or more second/additional layers of UBM metal 910 through the openings in the patterned photoresist 908. See step 950. The result is a solder pad having substantially vertical sidewalls 907 extending up from a surface thereof. As provided above, these sidewalls 907 help pin the solder onto the pad.
As shown in step 960, solder 912 is deposited through the patterned photoresist 908. According to an exemplary embodiment, the solder 908 is electroplated onto the UBM metals 910. Alternatively, a process such as injection molded solder (IMS) can be employed to deposit the solder 912 on top of the UBM metals 910. IMS involves use of an injection head that deposits molten solder from a reservoir onto selective regions of a work surface. A vacuum can be used to facilitate the solder flow from the injection head onto the workpiece. See, for example, U.S. patent application Ser. No. 15/719,451 by Nah et al., entitled “Molten Solder Injection Head with Vacuum Filter and Differential Gauge System,” the contents of which are incorporated by reference as if fully set forth herein.
In one exemplary embodiment, the solder 912 is deposited to a small thickness T′, e.g., to enable the small pressures needed for the above-described alignment techniques that leverages the pull force provided by the surface tension of melted solder. By way of example only, T′ is from 3 μm to 15 μm, and ranges therebetween, e.g., from 5 μm to 10 μm.
Following deposition of the solder 912, the patterned photoresist 908 is removed as are portions of the (vacuum deposited) first layer of UBM metal 906 that are not covered by the electroplated metals (i.e., those portions outside the cavity 904). See step 970.
It is notable that the seed layer is not required for some type of depositions. In that case, depositing a preliminary blanket UBM metal layer prior to resist patterning is not needed.
Upon melting, the solder 908 takes on a slightly convex (see
According to an exemplary embodiment, the present UBM solder pad designs are employed in a solder-induced alignment technique. See
According to another exemplary embodiment, the present UBM solder pad designs are employed in a solder pad/solder reservoir configuration. As will be described in detail below, this configuration includes at least one solder pad connected to a larger solder reservoir pad via a narrow conduit (pad), all on a substrate. See, for example, methodology 1300 of
As shown in step 1320, the process begins by forming a shallow cavity 1304 in a substrate 1302, e.g., using standard lithography and etching techniques. Suitable substrate materials were provided above. According to an exemplary embodiment, the cavity 1304 has a depth D′ of from 1 μm to 15 μm and ranges therebetween. It is notable that, when viewed from the top-down, cavity 1304 will form the shape of the solder pad, the conduit, and the solder reservoir pad. Brackets are used in
In the same general manner as described above, the bottom and sidewalls of the cavity 1304 are then covered with UBM metals 1306, e.g., via vacuum deposition and electroplating through a (first) lithographically patterned photoresist 1305. See step 1330. Suitable UBM metals were provided above. It is notable that the techniques described in accordance with the description of
Following deposition of UBM metals 1306, the patterned photoresist 1305 can be removed, and solder 1310 is deposited (e.g., via electrodeposition, IMS, etc.) on top of the UBM metals 1306. See step 1340 (illustrated by way of a top-down view). As shown in step 1340, the sidewalls of the UBM metal 1306 are present along a solder reservoir pad 1312, a conduit 1314, and a solder pad 1316.
In the example depicted in
The notion here is that solder 1310 is deposited onto both the solder reservoir pad 1312 and the solder pad 1316. If during bonding/alignment there is not enough solder 1310 present on solder pad 1316, then solder 1310 will naturally flow from the solder reservoir pad 1312 via the conduit 1314 to the solder pad 1316, or vice versa. The mechanism for this flow is based on hydrostatic forces and the pressure within the (liquid) solder 1310. Namely, the solder 1310 has a greater surface radius of curvature (R) on the solder reservoir pad 1312 than on the solder pad 1316. Thus, the pressure (P) on the solder reservoir pad 1312 does not fluctuate that much. However, a deficit/excess of solder 1310 on the solder pad 1316 will cause an increase/decrease in solder pressure in the conduit 1314, causing solder 1310 to flow from the solder reservoir pad 1312 to the solder pad 1316 or vice versa.
Based on this solder reservoir design,
Owing to the relationship between pressure and radius of curvature of solder (above), the present novel solder pad designs allow fine-tuning of the hydrostatic pressure in the reservoir, and by continuity, the hydrostatic pressure in the solder between substrate 1302 and chip 1502/1602 as well. The pressure can be tuned from slightly positive (pushing the chip 1502/1602 upward) to slightly negative (pulling the chip 1502/1602 down). This is not possible with the conventional solder pads, which only allow medium to high pressure in the solder, corresponding to a force on the chip typically two orders of magnitude (or more) larger than the chip's own weight, and prevent accurate alignment of the chip in the vertical and horizontal directions.
Some alternative embodiments of the present solder pad design are provided in
Embodiments are also contemplated herein where the sidewalls of the solder pads are perfectly vertical. See, e.g.,
An alternate embodiment is shown in
Flipped chip structures after assembly with the above-mentioned recess pad on one side and on both sides of the solder interface are shown in
One may also employ the present solder pad designs on both sides of the solder interface. See, for example,
Although illustrative embodiments of the present invention have been described herein, it is to be understood that the invention is not limited to those precise embodiments, and that various other changes and modifications may be made by one skilled in the art without departing from the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5172852 | Bernardoni et al. | Dec 1992 | A |
6392163 | Rinne et al. | May 2002 | B1 |
7855442 | Magerlein | Dec 2010 | B2 |
8339798 | Minoo et al. | Dec 2012 | B2 |
8466548 | Bayerer et al. | Jun 2013 | B2 |
9312213 | Cho et al. | Apr 2016 | B2 |
9466590 | Barwicz | Oct 2016 | B1 |
9543736 | Barwicz et al. | Jan 2017 | B1 |
9606308 | Barwicz et al. | Mar 2017 | B2 |
10163827 | Tsao | Dec 2018 | B1 |
20090115036 | Shin | May 2009 | A1 |
20090218688 | Ayotte et al. | Sep 2009 | A1 |
20110049705 | Liu | Mar 2011 | A1 |
20120256312 | Tsujimoto | Oct 2012 | A1 |
20160043294 | Palaniswamy et al. | Feb 2016 | A1 |
Entry |
---|
Martin et al., “Toward high-yield 3D self-alignment of flip-chip assemblies via solder surface tension,” Electronic Components and Technology Conference (ECTC), 2016 IEEE 66th, (May/Jun. 2016) (7 pages). |
P.A. Magill et al., “Flip chip overview,” Multi-Chip Module Conference, Feb. 1996, pp. 28-33. |
Number | Date | Country | |
---|---|---|---|
20200100369 A1 | Mar 2020 | US |