Physical vapor deposition (PVD) is commonly used within the semiconductor industry, as well as within solar, glass coating, and other industries, for depositing thin films over a substrate. Sputter deposition is a physical vapor deposition (PVD) method of depositing thin films by sputtering, that is ejecting material from a source target by high-energy particle bombardment, which then deposits onto a substrate such as a silicon wafer.
A sputtered atom can leave the target surface in any available direction of free travel, and following Newton's laws of motion, will travel in a straight line until acted upon by another object or force. As sputtering typically takes place under high vacuum conditions, the mean free path for the sputtered atom can be rather “long”, hence the atoms tend to follow a line of sight trajectory from their originating location. When the sputtered atoms interact with any of the internally bounding surfaces of the apparatus, they can deposit, now leaving a material surface with electrical properties of the parent target material. In the case of a metal target, the sputtered atoms form a thin conducting layer on the surfaces visible from the originating location. As it may be desired to limit the available surfaces exposed to the sputtered atoms, shields may be implemented to intentionally restrict unhindered access to the interior of the apparatus by the sputtered atoms. The shields are used to limit the exposure of the sputtered atoms to the intended deposition region, or onto the limiting shields. As the shields accumulate more and more sputtered atoms, eventually randomly uniform thin films are created. As these thin films increase in thickness, the inherent internal stresses, compressive or tensile, can lead to structural failure of the thin film, where flaking or spalling of the films can occur. These large accumulations of atoms are considered particles, and can contaminate the surface where the intended deposition is occurring. Another failure mechanism that can occur is the buildup of sputtered atoms that can bridge small geometries within the apparatus creating changes in electrical operation of the tool. These could be seen as electrical shorts from energized surfaces to grounded surfaces due to a metal target being used, depositing electrically conductive materials on the surfaces inside the apparatus, or by covering energized surfaces with an insulating film if a target with non-conductive properties is being used. Shields are frequently removed, inspected, and cleaned or replaced as needed to prevent loss of workpiece material or productivity arising from these short comings. The removal, cleaning and inspection of the shields is time consuming and impacts throughput. Tool uptime and availability can be improved directly by extending the capacity to effectively “getter” these stray sputtered atoms, in turn delaying the onset of structural failure of the thin films leading to flaking and spalling of destructive contaminants.
Therefore, there is a need in the art for a solution which overcomes the drawbacks described above.
Sputter guns typically make use of at least one shield, to protect portions of the sputter gun from stray sputtered atoms. A metallic shield or shielding component disclosed herein comprises metal foam, and may allow an increase in mean time between cleanings or replacements of the metallic shield as a result of improved capacity to intercept stray atoms and extend the tool availability by extending the onset of spalling.
In some embodiments, a sputter gun includes a housing and a shielding component. The housing has a region configured to expose a target surface. The shielding component extends around an inward facing periphery of the region. That is, the shielding component is disposed around a perimeter of the target. The shielding component comprises metal foam and is configured to provide a fluid proximate to the target surface.
In some embodiments, a sputter gun includes an annular, metallic shield. The metallic shield provides a barrier to stray sputtering products from a target disposed proximate to the metallic shield. The metallic shield includes metal foam and an annular channel is disposed around an outer periphery of the metallic shield.
In some embodiments a method of operating a sputter gun is disclosed. The method includes flowing a gas through a metal foam portion of a metallic shield that at least partially surrounds a region proximate to a target of the sputter gun. A plasma is created from the gas in the region and sputtered atoms are deposited from the target onto a substrate.
Other aspects and advantages of the embodiments will become apparent from the following detailed description taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the described embodiments.
The described embodiments and the advantages thereof may best be understood by reference to the following description taken in conjunction with the accompanying drawings. These drawings in no way limit any changes in form and detail that may be made to the described embodiments by one skilled in the art without departing from the spirit and scope of the described embodiments.
The embodiments described herein provide a method and apparatus related to sputter deposition processing. It will be obvious, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention.
Semiconductor manufacturing typically includes a series of processing steps such as cleaning, surface preparation, deposition, patterning, etching, thermal annealing, and other related unit processing steps. The precise sequencing and integration of the unit processing steps enables the formation of functional devices meeting desired performance metrics such as efficiency, power production, and reliability.
As part of the discovery, optimization and qualification of each unit process, it is desirable to be able to i) test different materials, ii) test different processing conditions within each unit process module, iii) test different sequencing and integration of processing modules within an integrated processing tool, iv) test different sequencing of processing tools in executing different process sequence integration flows, and combinations thereof in the manufacture of devices such as integrated circuits. In particular, there is a need to be able to test i) more than one material, ii) more than one processing condition, iii) more than one sequence of processing conditions, iv) more than one process sequence integration flow, and combinations thereof, collectively known as “combinatorial process sequence integration”, on a single monolithic substrate without the need of consuming the equivalent number of monolithic substrates per material(s), processing condition(s), sequence(s) of processing conditions, sequence(s) of processes, and combinations thereof. This can greatly improve both the speed and reduce the costs associated with the discovery, implementation, optimization, and qualification of material(s), process(es), and process integration sequence(s) required for manufacturing.
Systems and methods for High Productivity Combinatorial (HPC) processing are described in U.S. Pat. No. 7,544,574 filed on Feb. 10, 2006, U.S. Pat. No. 7,824,935 filed on Jul. 2, 2008, U.S. Pat. No. 7,871,928 filed on May 4, 2009, U.S. Pat. No. 7,902,063 filed on Feb. 10, 2006, and U.S. Pat. No. 7,947,531 filed on Aug. 28, 2009 which are all herein incorporated by reference. Systems and methods for HPC processing are further described in US patent application Ser. No. 11/352,077 filed on Feb. 10, 2006, claiming priority from Oct. 15, 2005, U.S. patent application Ser. No. 11/419,174 filed on May 18, 2006, claiming priority from Oct. 15, 2005, U.S. patent application Ser. No. 11/674,132 filed on Feb. 12, 2007, claiming priority from Oct. 15, 2005, and U.S. patent application Ser. No. 11/674,137 filed on Feb. 12, 2007, claiming priority from Oct. 15, 2005 which are all herein incorporated by reference.
HPC processing techniques have been successfully adapted to wet chemical processing such as etching and cleaning. HPC processing techniques have also been successfully adapted to deposition processes such as physical vapor deposition (PVD), atomic layer deposition (ALD), and chemical vapor deposition (CVD).
For example, thousands of materials are evaluated during a materials discovery stage, 102. Materials discovery stage, 102, is also known as a primary screening stage performed using primary screening techniques. Primary screening techniques may include dividing substrates into coupons and depositing materials using varied processes. The materials are then evaluated, and promising candidates are advanced to the secondary screen, or materials and process development stage, 104. Evaluation of the materials is performed using metrology tools such as electronic testers and imaging tools (i.e., microscopes).
The materials and process development stage, 104, may evaluate hundreds of materials (i.e., a magnitude smaller than the primary stage) and may focus on the processes used to deposit or develop those materials. Promising materials and processes are again selected, and advanced to the tertiary screen or process integration stage, 106, where tens of materials and/or processes and combinations are evaluated. The tertiary screen or process integration stage, 106, may focus on integrating the selected processes and materials with other processes and materials.
The most promising materials and processes from the tertiary screen are advanced to device qualification, 108. In device qualification, the materials and processes selected are evaluated for high volume manufacturing, which normally is conducted on full substrates within production tools, but need not be conducted in such a manner. The results are evaluated to determine the efficacy of the selected materials and processes. If successful, the use of the screened materials and processes can proceed to pilot manufacturing, 110.
The schematic diagram, 100, is an example of various techniques that may be used to evaluate and select materials and processes for the development of new materials and processes. The descriptions of primary, secondary, etc. screening and the various stages, 102-110, are arbitrary and the stages may overlap, occur out of sequence, be described and be performed in many other ways.
This application benefits from High Productivity Combinatorial (HPC) techniques described in U.S. patent application Ser. No. 11/674,137 filed on Feb. 12, 2007 which is hereby incorporated for reference in its entirety. Portions of the '137 application have been reproduced below to enhance the understanding of the present invention. The embodiments described herein enable the application of combinatorial techniques to process sequence integration in order to arrive at a globally optimal sequence of semiconductor manufacturing operations by considering interaction effects between the unit manufacturing operations, the process conditions used to effect such unit manufacturing operations, hardware details used during the processing, as well as materials characteristics of components utilized within the unit manufacturing operations. Rather than only considering a series of local optimums, i.e., where the best conditions and materials for each manufacturing unit operation is considered in isolation, the embodiments described below consider interactions effects introduced due to the multitude of processing operations that are performed and the order in which such multitude of processing operations are performed when fabricating a device. A global optimum sequence order is therefore derived and as part of this derivation, the unit processes, unit process parameters and materials used in the unit process operations of the optimum sequence order are also considered.
The embodiments described further analyze a portion or sub-set of the overall process sequence used to manufacture a semiconductor device. Once the subset of the process sequence is identified for analysis, combinatorial process sequence integration testing is performed to optimize the materials, unit processes, hardware details, and process sequence used to build that portion of the device or structure. During the processing of some embodiments described herein, structures are formed on the processed substrate that are equivalent to the structures formed during actual production of the semiconductor device. For example, such structures may include, but would not be limited to, contact layers, buffer layers, absorber layers, or any other series of layers or unit processes that create an intermediate structure found on semiconductor devices. While the combinatorial processing varies certain materials, unit processes, hardware details, or process sequences, the composition or thickness of the layers or structures or the action of the unit process, such as cleaning, surface preparation, deposition, surface treatment, etc. is substantially uniform through each discrete region. Furthermore, while different materials or unit processes may be used for corresponding layers or steps in the formation of a structure in different regions of the substrate during the combinatorial processing, the application of each layer or use of a given unit process is substantially consistent or uniform throughout the different regions in which it is intentionally applied. Thus, the processing is uniform within a region (inter-region uniformity) and between regions (intra-region uniformity), as desired. It should be noted that the process can be varied between regions, for example, where a thickness of a layer is varied or a material may be varied between the regions, etc., as desired by the design of the experiment.
The result is a series of regions on the substrate that contain structures or unit process sequences that have been uniformly applied within that region and, as applicable, across different regions. This process uniformity allows comparison of the properties within and across the different regions such that the variations in test results are due to the varied parameter (e.g., materials, unit processes, unit process parameters, hardware details, or process sequences) and not the lack of process uniformity. In the embodiments described herein, the positions of the discrete regions on the substrate can be defined as needed, but are preferably systematized for ease of tooling and design of experimentation. In addition, the number, variants and location of structures within each region are designed to enable valid statistical analysis of the test results within each region and across regions to be performed.
It should be appreciated that various other combinations of conventional and combinatorial processes can be included in the processing sequence with regard to
Under combinatorial processing operations the processing conditions at different regions can be controlled independently. Consequently, process material amounts, reactant species, processing temperatures, processing times, processing pressures, processing flow rates, processing powers, processing reagent compositions, the rates at which the reactions are quenched, deposition order of process materials, process sequence steps, hardware details, etc., can be varied from region to region on the substrate. Thus, for example, when exploring materials, a processing material delivered to a first and second region can be the same or different. If the processing material delivered to the first region is the same as the processing material delivered to the second region, this processing material can be offered to the first and second regions on the substrate at different concentrations. In addition, the material can be deposited under different processing parameters. Parameters which can be varied include, but are not limited to, process material amounts, reactant species, processing temperatures, processing times, processing pressures, processing flow rates, processing powers, processing reagent compositions, the rates at which the reactions are quenched, atmospheres in which the processes are conducted, an order in which materials are deposited, hardware details of the gas distribution assembly, etc. It should be appreciated that these process parameters are exemplary and not meant to be an exhaustive list as other process parameters commonly used in semiconductor manufacturing may be varied.
As mentioned above, within a region, the process conditions are substantially uniform, in contrast to gradient processing techniques which rely on the inherent non-uniformity of the material deposition. That is, the embodiments, described herein locally perform the processing in a conventional manner, e.g., substantially consistent and substantially uniform, while globally over the substrate, the materials, processes, and process sequences may vary. Thus, the testing will find optimums without interference from process variation differences between processes that are meant to be the same. It should be appreciated that a region may be adjacent to another region in one embodiment or the regions may be isolated and, therefore, non-overlapping. When the regions are adjacent, there may be a slight overlap wherein the materials or precise process interactions are not known, however, a portion of the regions, normally at least 50% or more of the area, is uniform and all testing occurs within that region. Further, the potential overlap is only allowed with material of processes that will not adversely affect the result of the tests. Both types of regions are referred to herein as regions or discrete regions.
Any type of chamber or combination of chambers may be implemented and the description herein is merely illustrative of one possible combination and not meant to limit the potential chamber or processes that can be supported to combine combinatorial processing or combinatorial plus conventional processing of a substrate or wafer. In some embodiments, a centralized controller, i.e., computing device 316, may control the processes of the HPC system, including the power supplies and synchronization of the duty cycles described in more detail below. Further details of one possible HPC system are described in U.S. application Ser. Nos. 11/672,478 and 11/672,473. With HPC system, a plurality of methods may be employed to deposit material upon a substrate employing combinatorial processes.
Substrate 406 may be a conventional round 200 mm, 300 mm, or any other larger or smaller substrate/wafer size. In other embodiments, substrate 406 may be a square, rectangular, or other shaped substrate. One skilled in the art will appreciate that substrate 406 may be a blanket substrate, a coupon (e.g., partial wafer), or even a patterned substrate having predefined regions. In another embodiment, substrate 406 may have regions defined through the processing described herein. The term region is used herein to refer to a localized area on a substrate which is, was, or is intended to be used for processing or formation of a selected material. The region can include one region and/or a series of regular or periodic regions predefined on the substrate. The region may have any convenient shape, e.g., circular, rectangular, elliptical, wedge-shaped, etc. In the semiconductor field a region may be, for example, a test structure, single die, multiple dies, portion of a die, other defined portion of substrate, or an undefined area of a substrate, e.g., blanket substrate which is defined through the processing.
Top chamber portion 418 of chamber 400 in
The base of process kit shield 412 includes an aperture 414 through which a surface of substrate 406 is exposed for deposition or some other suitable semiconductor processing operations. Aperture shutter 420 which is moveably disposed over the base of process kit shield 412. Aperture shutter 420 may slide across a bottom surface of the base of process kit shield 412 in order to cover or expose aperture 414 in some embodiments. In another embodiment, aperture shutter 420 is controlled through an arm extension which moves the aperture shutter to expose or cover aperture 414. It should be noted that although a single aperture is illustrated, multiple apertures may be included. Each aperture may be associated with a dedicated aperture shutter or an aperture shutter can be configured to cover more than one aperture simultaneously or separately. Alternatively, aperture 414 may be a larger opening and plate 420 may extend with that opening to either completely cover the aperture or place one or more fixed apertures within that opening for processing the defined regions. The dual rotary substrate support 404 is central to the site-isolated mechanism, and allows any location of the substrate or wafer to be placed under the aperture 414. Hence, the site-isolated deposition is possible at any location on the wafer/substrate.
A gun shutter, 422 may be included. Gun shutter 422 functions to seal off a deposition gun when the deposition gun may not be used for the processing in some embodiments. For example, two process guns 416 are illustrated in
Top chamber portion 418 of chamber 400 of
Power source 424 provides power for sputter guns 416 whereas power source 426 provides RF bias power to an electrostatic chuck to bias the substrate when necessary. It should be appreciated that power source 424 may output a direct current (DC) power supply or a radio frequency (RF) power supply. Chamber 400 includes auxiliary magnet 428 disposed around an external periphery of the chamber. The auxiliary magnet 428 is located in a region defined between the bottom surface of sputter guns 416 and a top surface of substrate 406. Magnet 428 may be either a permanent magnet or an electromagnet. It should be appreciated that magnet 428 is utilized to provide more uniform bombardment of Argon ions and electrons to the substrate in some embodiments.
Embodiments of a sputter gun with a metallic shield in accordance with some embodiments are shown in
In a sputter gun, of a type that applies radiofrequency (RF) voltage or high-voltage direct current (DC) to bombard a sputtering target with ions from an excited plasma, a shield extending from the gun body is replaced by a shield made of metal foam in the embodiments described below. The shield extends circumferentially around a sputtering area into which a gas is admitted proximate to a target surface. The gas (e.g. argon) is excited into a plasma by the RF voltage or high-voltage DC, and provides ions that bombard the target surface. Sputtered atoms from the target are deposited onto a substrate within the chamber, and are also deposited onto the shield.
By forming the shield out of metal foam, adhesion of the sputtered atoms onto the shield is improved. The metal foam provides a larger and more textured surface area, with convoluted passageways, as compared to a shield made out of a solid metal (e.g. a cast and/or machined shield). Sputtered atoms adhering to the metal foam shield can then form a film of a much greater thickness, overall volume and mass, and with greater adhesion to the shield than is the case with a solid metal shield. The adhered sputtered film is much less likely to spall, i.e., detach in flakes and contaminate the substrate or electrically short a high-voltage surface of the sputter gun to a grounded surface of the gun body. Mean time to failure and mean time between cleanings or replacements of the metal shield are increased, as the shield can operate for a longer period of time before spalling occurs, thereby increasing the throughput.
In some embodiments, the gas is introduced to the sputtering chamber through the pores of the metal foam shield, from an annular channel or chamber proximate to an outer periphery of the metal foam shield. In these embodiments the metal foam acts as a diffuser of the gas. In some embodiments, a height of the metal foam shield extends outward or upward from a point adjacent to the front surface of the sputtering target. The metal foam shield includes an extension that functions as a base for an annular fluid channel extending around an outer periphery of the metal foam shield. In some embodiments, the metal foam shield is fabricated with metal foam having an open cell structure, which is then compressed in a die to final dimensions and porosity.
In some embodiments shown in
Continuing with
In some embodiments shown in
A gap 640 is maintained between a lower portion 638 of the metallic shield 508 and the front surface 518 of the target 510, so that a voltage potential expressed between the target 510 and the metallic shield 508 can excite the gas into a plasma. It should be appreciated that if this gap is bridged by deposited sputtering atoms or by flakes from spalling, a short results. Through the use of the metal foam in the metallic shield 508, the likelihood of spalling is decreased due to the increased available surface area for stray atoms to adhere. It should be appreciated that the mesh structure defined by the porous cells enhance the ability of the stray atoms to remain adhered to the surface as compared to a smoother surface or even surfaces slightly roughened.
An example of an open cell metal foam 702 is shown in
In
Although the method operations were described in a specific order, it should be understood that other operations may be performed in between described operations, described operations may be adjusted so that they occur at slightly different times or the described operations may be distributed in a system which allows the occurrence of the processing operations at various intervals associated with the processing.
The foregoing description, for the purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the embodiments and its practical applications, to thereby enable others skilled in the art to best utilize the embodiments and various modifications as may be suited to the particular use contemplated. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.