Substrate support with multiple embedded electrodes

Information

  • Patent Grant
  • 12198966
  • Patent Number
    12,198,966
  • Date Filed
    Friday, February 26, 2021
    3 years ago
  • Date Issued
    Tuesday, January 14, 2025
    16 days ago
Abstract
A method and apparatus for biasing regions of a substrate in a plasma assisted processing chamber are provided. Biasing of the substrate, or regions thereof, increases the potential difference between the substrate and a plasma formed in the processing chamber thereby accelerating ions from the plasma towards the active surfaces of the substrate regions. A plurality of bias electrodes herein are spatially arranged across the substrate support in a pattern that is advantageous for managing uniformity of processing results across the substrate.
Description
BACKGROUND
Field

Embodiments described herein generally relate to processing chambers used in semiconductor manufacturing, in particular, to processing chambers having a substrate support assembly configured to bias a substrate and method of biasing the substrate.


Description of the Related Art

Reliably producing high aspect ratio features is one of the key technology challenges for the next generation of very large scale integration (VLSI) and ultra large scale integration (ULSI) of semiconductor devices. One method of forming high aspect ratio features uses a plasma assisted etching process to form high aspect ratio openings in a material layer, such as a dielectric layer, of a substrate. In a typical plasma assisted etching process, a plasma is formed in the processing chamber, and ions from the plasma are accelerated towards the substrate, and openings formed in a mask thereon, to form openings in a material layer beneath the mask surface. Typically, the ions are accelerated towards the substrate by coupling a low frequency RF power in the range of 400 kHz to 2 MHz to the substrate thereby creating a bias voltage thereon. However, coupling an RF power to the substrate does not apply a single voltage to the substrate relative to the plasma. In commonly used configurations, the potential difference between the substrate and the plasma oscillates from a near zero value to a maximum negative value at the frequency of the RF power. The lack of a single potential, accelerating ions from the plasma to the substrate, results in a large range of ion energies at the substrate surface and in the openings (features) being formed in the material layers thereof. In addition, the disparate ion trajectories that result from RF biasing produce large angular distributions of the ions relative to the substrate surface. Large ranges of ion energies are undesirable when etching the openings of high aspect ratio features as the ions do not reach the bottom of the features with sufficiently high energies to maintain desirable etch rates. Large angular distributions of ions relative to the substrate surface are undesirable as they lead to deformations of the feature profiles, such as necking and bowing in the vertical sidewalls thereof.


Accordingly, there is a need in the art for the ability to provide narrow ranges of high energy ions with low angular distributions at the material surface of a substrate during a plasma assisted etching process.


SUMMARY

The present disclosure generally relates to plasma assisted or plasma enhanced processing chambers. More specifically, embodiments herein relate to electrostatic chucking (ESC) substrate supports configured to provide individual pulsed (cyclic) DC voltages to regions of a substrate during plasma assisted or plasma enhanced semiconductor manufacturing processes and methods of biasing regions of the substrate.


In one embodiment, a substrate support assembly is provided that includes a substrate support, comprising a plurality of first electrodes within the substrate support, each electrode of the plurality of first electrodes electrically isolated from, and coplanar with, every other electrode of the plurality of first electrodes, wherein each electrode of the plurality of first electrodes is configured to provide a pulsed DC power to a region of a substrate through capacitive coupling therewith, and a second electrode disposed within the substrate support, and electrically isolated from the plurality of first electrodes, for electrically clamping the substrate to the substrate support.


Other embodiments provide a processing chamber comprising one or more sidewalls and a bottom defining a processing volume and a substrate support. The substrate support comprises a plurality of first electrodes within the substrate support, each electrode of the plurality of first electrodes electrically isolated from, and coplanar with, every other electrode of the plurality of first electrodes, wherein each electrode of the plurality of first electrodes is configured to provide a pulsed DC bias to a region of a substrate through capacitive coupling therewith, and a second electrode disposed within the substrate support, and electrically isolated from the plurality of first electrodes, for electrically clamping the substrate to the substrate support.


In another embodiment, a method of biasing a substrate with a plurality of cyclic DC voltages is provided. The method includes flowing a processing gas into the processing chamber, forming a plasma from the processing gas, electrically clamping the substrate to a substrate support disposed in a processing chamber, and biasing the substrate across a plurality of regions. Biasing the substrate across a plurality of regions comprises capacitively coupling a plurality of cyclic DC voltages, provided to a plurality of bias electrodes disposed in the substrate support through a switching system, to respective regions of the substrate through the capacitance of a first dielectric layer of the substrate support. The plurality of cyclic DC voltages herein includes a range of frequencies and/or multiple polarities.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above-recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.



FIG. 1 is a schematic sectional view of a processing chamber with an electrostatic chucking (ESC) substrate support assembly disposed therein, according to one embodiment.



FIG. 2A is a close-up sectional view of a portion of the substrate support assembly used in the processing chamber of FIG. 1.



FIG. 2B is top-down view of the substrate support assembly shown in FIG. 2A.



FIG. 3 is a flow diagram illustrating a method of biasing regions of a substrate during plasma assisted processing, according to embodiments described herein.





DETAILED DESCRIPTION

Embodiments of the present disclosure generally relate to plasma processing chambers, such as plasma assisted or plasma enhanced processing chambers. More specifically, embodiments herein relate to electrostatic chucking (ESC) substrate supports configured to provide capacitively coupled pulsed DC voltage to a substrate disposed thereon during plasma assisted or plasma enhanced semiconductor manufacturing processing. Capacitive coupling of the substrate to a cyclic DC power source (placing a pulsed DC bias on the substrate) increases the potential difference between the substrate and a plasma formed in the processing chamber thereby accelerating ions from the plasma towards the active surface of the substrate. In contrast to RF biasing, pulsed DC biasing provides a single potential for ions to accelerate from the plasma to the substrate. The substrate supports herein include a plurality of bias electrodes each independently coupled to portions of a pulsed DC power supply switching system and each configured to provide tunable biasing of a region of the substrate by capacitive coupling therewith. The plurality of bias electrodes herein are spatially arranged across the substrate support in patterns that are advantageous for managing uniformity of processing results across the substrate.



FIG. 1 is a schematic sectional view of a processing chamber 100 with an electrostatic chucking (ESC) substrate support assembly 200 disposed therein, according to one embodiment. In this embodiment, the processing chamber 100 is a plasma processing chamber, such as a plasma etch chamber, a plasma-enhanced deposition chamber, for example, a plasma-enhanced chemical vapor deposition (PECVD) chamber or a plasma-enhanced atomic layer deposition (PEALD) chamber, or a plasma based ion implant chamber, for example, a plasma doping (PLAD) chamber.


The processing chamber 100 features a chamber lid 103, one or more sidewalls 102, and a chamber bottom 104, which define a processing volume 120. A showerhead 112, having a plurality of openings 118 disposed therethrough, is disposed in the chamber lid 103 and is used to uniformly distribute processing gases from a gas inlet 114 into the processing volume 120. The showerhead 112 is coupled to an RF power supply 142, or in some embodiments a VHF power supply, which forms a plasma 135 from the processing gases through capacitive coupling therewith. The processing volume 120 is fluidly coupled to a vacuum, such as to one or more dedicated vacuum pumps, through a vacuum outlet 152, which maintains the processing volume 120 at sub-atmospheric conditions and evacuates processing, and other gases, therefrom. A substrate support assembly 200, disposed in the processing volume 120, is disposed on a support shaft 124 sealingly extending through the chamber bottom 104. The support shaft 124 is coupled to a controller 140 that raises and lowers the support shaft 124, and the substrate support assembly 200 disposed thereon, to facilitate processing of the substrate 115 and transfer of the substrate 115 to and from the processing chamber 100. Typically, when the substrate support assembly 200 is in a raised or processing position, the substrate 115 is spaced apart from the showerhead 112 between about 0.75 inches and 1.75 inches, such as about 1.25 inches.


The substrate 115 is loaded into the processing volume 120 through an opening 126 in one of the one or more sidewalls 102, which is conventionally sealed with a door or a valve (not shown) during substrate 115 processing. A plurality of lift pins 136 disposed above a lift pin hoop 134 are movably disposed through the substrate support assembly 200 to facilitate transferring of the substrate 115 thereto and therefrom. The lift pin hoop 134 is coupled to a lift hoop shaft 131 sealingly extending through the chamber bottom 104, which raises and lowers the lift pin hoop 134 by means of an actuator 130. The substrate support assembly 200 has a substrate support 227 on which a substrate is disposed for processing. When the lift pin hoop 134 is in a raised position, the plurality of lift pins 136 extend above the surface of the substrate support 227 lifting the substrate 115 therefrom and enabling access to the substrate 115 by a robot handler (not shown). When the lift pin hoop 134 is in a lowered position, the plurality of lift pins 136 are flush with, or below, the surface of the substrate support 227, and the substrate 115 rests directly thereon for processing.


The substrate support assembly 200 herein includes a cooling base 125. The substrate support 227 is thermally coupled to, and disposed on, the cooling base 125. The cooling base 125 of the substrate support assembly 200 is used to regulate the temperature of the substrate support 227, and thereby the substrate 115 disposed on the substrate support surface 203, during processing. Herein, the cooling base 125 may include one or more fluid conduits 137 disposed therein that are fluidly coupled to, and in fluid communication with, a coolant source 133, such as a refrigerant source or water source. Typically, the cooling base 125 is formed of a corrosion resistant thermally conductive material, such as a corrosion resistant metal, for example, aluminum, an aluminum alloy, or stainless steel, and is thermally coupled to the substrate support 227 with an adhesive or by mechanical means.


During processing, ion bombardment of the substrate 115 will heat the substrate 115 to potentially undesirable high temperatures as the low pressure of the processing volume 120 results in poor thermal conduction between the substrate 115 and the substrate support surface 203. Therefore, in embodiments herein, a backside gas is provided between the substrate 115 and the substrate support surface 203 during processing, where the backside gas thermally couples the substrate 115 to the substrate support surface 203 and increases the heat transfer therebetween. Typically, the substrate support surface 203 includes a plurality of protrusions 228 extending therefrom that enable the backside side gas to flow or occupy space between the substrate 115 and the substrate support surface 203 when the substrate 115 is disposed thereon. The backside gas flows to the substrate support surface 203 through one or more gas conduits 147 disposed through the substrate support 227. Herein, the one or more gas conduits 147 are coupled to thermally conductive inert backside gas source 146, such as a Helium gas source.



FIG. 2A is a close-up sectional view of a portion of the substrate support assembly 200 used in the processing chamber 100 of FIG. 1. FIG. 2B is top-down view of the substrate support assembly 200 shown in FIG. 1. Herein, the substrate support 227 includes a first layer 227A and a second layer 227B where each layer 227AB is formed from a dielectric material comprising a metal oxide or metal nitride, or a dielectric layer comprising a mixture of metal oxides or metal nitrides, such as Al2O3, AlN, Y2O3, or combinations thereof. In some embodiments, the first layer 227A is formed of a dielectric material having a breakdown voltage of between about 20 V/μm and about 200 V/μm, such as between about 100 V/μm and about 200V/μm or between about 20 V/μm and about 100 V/μm. In one embodiment, the first layer 227A is formed of 99.5% alumina having a breakdown voltage of about 9 kV at about 160 μm. In some embodiments, the substrate support 227 is formed by bonding a bulk dielectric material to the second layer 227B and a plurality of electrodes disposed therein or thereon before grinding the bulk dielectric material to a desired thickness D to form the first layer 227A. Typically, the thickness D of the first layer 227A is between about 5 μm and about 300 μm, such as between about 100 μm and about 300 μm, for example, about 160 μm. In other embodiments, the first layer 227A is formed using any suitable coating method, such as CVD, PECVD, ALD, PEALD, evaporation, sputtering, plasma arc coating, aerosol coating, or combinations thereof.


A plurality of electrodes disposed and/or embedded in the substrate support herein includes a plurality of bias electrodes 238A-C and a unitary ESC electrode 222. Each electrode of the plurality of bias electrodes is electrically isolated from every other electrode of the plurality of bias electrodes and from the unitary ESC electrode 222. Each electrode of the plurality of bias electrodes 238A-C herein is configured to provide one or more independent pulsed DC biases to respective regions of the substrate 115 through capacitive coupling therewith. The unitary ESC electrode 222 provides a clamping force between the substrate 115 and the substrate support surface 203 by providing a potential therebetween. Typically, the ESC electrode is coupled to a static DC power supply 158, which, herein, provides a voltage between about −5000 V and about 5000 V, such as between about 100 V and about 4000 V, such as between about 1000 V and about 3000 V, for example about 2000V.


In embodiments herein, the substrate support 227 may be configured to support a 300 mm diameter substrate and may include between 2 and 20 bias electrodes, such as the three bias electrodes 238A-C shown. However, larger substrate supports for processing larger substrates and/or substrates of different shapes may include any number of bias electrodes. The plurality of bias electrodes 238A-C are each formed of one or more electrically conductive material parts, such as a metal mesh, foil, plate, or combinations thereof. In some embodiments, each of the plurality of bias electrodes 238A-C are formed of more than one discontinuous electrically conductive material parts, such as a plurality of metal meshes, foils, plates, or combinations thereof, that are electrically coupled with one or more connectors (not shown) disposed in the substrate support 227 so that the electrically coupled discontinuous material parts comprise a single electrode, such as the center bias electrode 238A, the intermediate bias electrode 238B, or the outer bias electrode 238C.


The plurality of bias electrodes 238A-C are spatially arranged across the substrate support 227 in a pattern that is advantageous for managing uniformity of processing results across the substrate 115. In the embodiment shown in FIG. 2A, the circular plate of the center bias electrode 238A and the discontinuous annuluses of the bias electrodes 238B-C define a plurality of concentric zones. Other spatial arrangements, including spoke patterns, grid patterns, line patterns, spiral patterns, interdigitated patterns, random patterns, or combinations thereof, may be used. Each electrode of the plurality of bias electrodes 238A-C herein is coplanar with every other electrode of the plurality of bias electrodes and with the unitary ESC electrode 222. The unitary ESC electrode 222 is planarly disposed with the substrate support 227 and parallel to the substrate support surface 203. Each electrode of the plurality of bias electrodes 238A-C is electrically isolated from the unitary ESC electrode 222 by openings formed in the unitary ESC electrode 222 and by the dielectric material of the substrate support 227 disposed therebetween. In other embodiments, each electrode of the plurality of bias electrodes-238A-C, or a portion thereof, is coplanar with at least a portion of every other electrode of the plurality of bias electrodes, and the plurality of bias electrodes 238A-C is closer to the substrate support surface 203 than the unitary ESC electrode 222.


Herein, each of the plurality of bias electrodes 238A-C is independently electrically coupled to portions of a DC power supply switching system 150 comprising a plurality of solid state pulser/switchers, herein a plurality of first switches S1, S3, S5 and a plurality of second switches S2, S4, S6, are capable of converting a high voltage (HV) DC power to a cyclic DC voltage having a frequency between about 10 Hz, or lower, and about 100 kHZ. The plurality of first switches S1, S3, S5 and the plurality of second switches S2, S4, S6, are further capable of converting a high voltage (HV) DC power to a cyclic DC voltage having a duty cycle in the range 2% to 98%. The switches S1-S6 are operated cyclically at a frequency or are operated as needed according to any pattern, or no pattern. Each of the plurality of bias electrodes is electrically coupled to one of the plurality of first switches S1, S3, S5, and one of the plurality of second switches S2, S4, S6.


Herein, the plurality of first switches S1, S3, S5 are electrically coupled to a first DC voltage source 1566, which may be, for example, a positive (+ve) voltage source, and the plurality of second switches S2, S4, S6 are electrically coupled to a second DC voltage source 156A, which may be, for example, a negative (−ve) voltage source. In other embodiments, the two voltage sources 156A and 1566 may both be positive, or both be negative, sources of different voltages. The first and second DC voltage sources 1566 and 156A herein provide a DC bias, positive or negative, of between about 0V and about 10 kV in their respective voltage magnitudes.


Each set of switches, such as S1 and S2, S3 and S4, or S5 and S6, operates independently, providing individual frequencies, patterns, or operation of cyclic DC voltages of positive or negative polarity to respective bias electrodes 238A-C of the substrate support 227 and, through capacitive coupling therewith, providing an individual pulsed DC bias to respective regions of the substrate 115 disposed on the substrate support 227. Typically, coupling a negative DC pulse to a substrate region will increase the potential difference between the substrate region and the plasma 135, wherein the substrate region is at a more negative potential than the plasma during the pulse. In this case of negative DC bias, positively charged species in the plasma will accelerate towards the substrate region's surface, affecting a processing of the substrate region. Coupling a positive DC pulse to a substrate region will increase the potential difference between the substrate region and the plasma 135, wherein the substrate region is at a more positive potential than the plasma during the pulse. In this case of positive DC bias, negatively charged species in the plasma will accelerate towards the substrate region's surface, affecting a processing of the substrate region. The ability to adjust the frequency, duty cycle, and/or duration of the cyclic DC voltages, for both positive and negative DC bias conditions, provided to different substrate regions, allow for tuning of across-substrate processing uniformity and improvement thereof. Among other useful attributes, the ability to apply both positive and negative DC bias pulses provides for charge neutralization of the substrate regions, wherein the surface of the substrate region can be periodically brought to a neutral charge state.



FIG. 3 is a flow diagram illustrating a method 300 of biasing regions of a substrate during plasma assisted processing, according to embodiments described herein. At activity 310, the method 300 includes flowing a processing gas into the processing chamber, and at activity 320 the method includes forming a plasma from the processing gas.


At activity 330, the method 300 includes electrically clamping a substrate to a substrate support disposed in a processing chamber using a chucking electrode disposed in the substrate support, the substrate support comprising a first dielectric layer and a second dielectric layer.


At activity 340, the method 300 includes providing a plurality of cyclic DC voltages to a plurality of bias electrodes disposed in the substrate support, wherein each respective cyclic DC voltage provides an individual pulsed DC bias to a region of the substrate through capacitive coupling therewith. In some embodiments, the plurality of cyclic DC voltages comprises more than one polarity, more than one frequency, more than one duty cycle, and/or more than one duration. The pulsed DC bias causes ions in the plasma formed at 330 to accelerate toward the substrate to perform a material process, such as deposition or removal, on the substrate. It should be noted that the plasma may also be formed after activity 320, after activity 330, or after activity 340.


The substrate support assembly and methods described herein enable capacitively coupled pulsed DC biasing of individual substrate regions during plasma assisted processing that is compatible with the use of an electrostatic clamping force. Pulsed DC biasing allows for increased control of ion energy and angular distribution at the substrate surface and/or regions thereof and in feature openings formed therein. This increased control is desirable at least in forming high aspect ratio features and/or features requiring a square etch profile, such as silicon etch for shallow trench isolation (STI) applications or for silicon fins used in FinFET technologies. The ability to apply DC pulses of varying frequency, duty cycle, polarity, and/or duration to different regions of the substrate enables tuning of across-substrate processing uniformity and improvement thereof.


While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A substrate processing system comprising a substrate support assembly, the substrate support assembly comprising: a metal base having a substrate support disposed thereon, the substrate support comprising a plurality of electrodes, whereineach of the plurality of electrodes is spaced apart from a substrate supporting surface of the substrate support by a first layer of dielectric material,the plurality of electrodes are spaced apart from the metal base by a second layer of dielectric material,each of the plurality of electrodes is isolated from a different one of the plurality of electrodes by a portion of the second layer of dielectric material,a first bias electrode of the plurality of electrodes is electrically coupled to a first pulsed DC voltage source,a second bias electrode of the plurality of electrodes is coupled to a second pulsed DC voltage source,the second bias electrode of the plurality of electrodes is disposed radially outward from and at least partially surrounds the first bias electrode, anda third chucking electrode of the plurality of electrodes is coupled to a chucking power supply for electrically clamping a substrate to the substrate supporting surface of the substrate support, wherein each electrode of the first bias electrode and the second bias electrode is electrically isolated from the third chucking electrode by a plurality of openings formed in the third chucking electrode and by the second layer of the dielectric material.
  • 2. The substrate processing system of claim 1, wherein the first layer of dielectric material has a thickness between about 5 μm and about 300 μm.
  • 3. The substrate processing system of claim 1, wherein the one of the plurality of electrodes that is coupled to the chucking power supply comprises a metal mesh.
  • 4. The substrate processing system of claim 1, wherein the first bias electrode and the second bias electrode are concentrically disposed about a center of the substrate supporting surface of the substrate support.
  • 5. The substrate processing system of claim 4, wherein the first bias electrode has a substantially circular shape in a plane parallel to the substrate supporting surface.
  • 6. The substrate processing system of claim 4, wherein the second bias electrode is disposed proximate to a circumferential edge of the substrate support.
  • 7. The substrate processing system of claim 4, wherein the substrate supporting surface comprises a plurality of protrusions, andone or more gas conduits formed through the substrate support are in fluid communication with a space at the substrate supporting surface that is formed between plurality of protrusions.
  • 8. The substrate processing system of claim 7, wherein the one or more gas conduits are fluidly coupled to an inert gas source.
  • 9. The substrate processing system of claim 8, wherein one or more fluid conduits formed in the metal base are fluidly coupled to a coolant source.
  • 10. The substrate processing system of claim 9, wherein the substrate support is thermally coupled to the metal base by an adhesive layer interposed therebetween.
  • 11. The substrate processing system of claim 1, wherein the first pulsed DC voltage source comprises a first high voltage DC power supply and one or more first switches for converting a first static DC voltage from the first high voltage DC power supply to a first pulsed DC voltage.
  • 12. The substrate processing system of claim 11, wherein the second pulsed DC voltage source comprises a second high voltage DC power supply and one or more second switches for converting a second static DC voltage from the second high voltage DC power supply to a second pulsed DC voltage.
  • 13. The substrate processing system of claim 1, wherein the first pulsed DC voltage source comprise a first high voltage DC power supply that is configured to provide a negative DC voltage to the first bias electrode of the plurality of electrodes, andthe second pulsed DC voltage source comprise a second high voltage DC power supply that is configured to provide a negative DC voltage to the second bias electrode of the plurality of electrodes.
  • 14. The substrate processing system of claim 13, further comprising an RF power supply for forming a capacitively coupled plasma in a processing volume of the processing system.
  • 15. The substrate processing system of claim 1, wherein the first bias electrode and the second bias electrode and the third chucking electrode are coplanar.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of co-pending U.S. patent application Ser. No. 16/714,144, filed Dec. 13, 2019, which will issue as U.S. Pat. No. 10,937,678 on Mar. 2, 2021, which is a divisional U.S. patent application Ser. No. 15/710,753, filed Sep. 20, 2017, which issued as U.S. Pat. No. 10,510,575 on Dec. 17, 2019, all of which are herein incorporated by reference in their entireties.

US Referenced Citations (721)
Number Name Date Kind
4070589 Martinkovic Jan 1978 A
4340462 Koch Jul 1982 A
4464223 Gorin Aug 1984 A
4504895 Steigerwald Mar 1985 A
4585516 Corn et al. Apr 1986 A
4683529 Bucher, II Jul 1987 A
4931135 Horiuchi et al. Jun 1990 A
4992919 Lee et al. Feb 1991 A
5099697 Agar Mar 1992 A
5140510 Myers Aug 1992 A
5242561 Sato Sep 1993 A
5449410 Chang et al. Sep 1995 A
5451846 Peterson et al. Sep 1995 A
5464499 Moslehi et al. Nov 1995 A
5554959 Tang Sep 1996 A
5565036 Westendorp et al. Oct 1996 A
5595627 Inazawa et al. Jan 1997 A
5597438 Grewal et al. Jan 1997 A
5610452 Shimer et al. Mar 1997 A
5698062 Sakamoto et al. Dec 1997 A
5716534 Tsuchiya et al. Feb 1998 A
5770023 Sellers Jun 1998 A
5796598 Nowak et al. Aug 1998 A
5810982 Sellers Sep 1998 A
5830330 Lantsman Nov 1998 A
5882424 Taylor et al. Mar 1999 A
5928963 Koshiishi Jul 1999 A
5933314 Lambson et al. Aug 1999 A
5935373 Koshimizu Aug 1999 A
5948704 Benjamin et al. Sep 1999 A
5997687 Koshimizu Dec 1999 A
6043607 Roderick Mar 2000 A
6051114 Yao et al. Apr 2000 A
6055150 Clinton et al. Apr 2000 A
6074518 Imafuku et al. Jun 2000 A
6089181 Suemasa et al. Jul 2000 A
6099697 Hausmann Aug 2000 A
6110287 Arai et al. Aug 2000 A
6117279 Smolanoff et al. Sep 2000 A
6125025 Howald et al. Sep 2000 A
6133557 Kawanabe et al. Oct 2000 A
6136387 Koizumi Oct 2000 A
6187685 Hopkins et al. Feb 2001 B1
6197151 Kaji et al. Mar 2001 B1
6198616 Dahimene et al. Mar 2001 B1
6201208 Wendt et al. Mar 2001 B1
6214162 Koshimizu Apr 2001 B1
6232236 Shan et al. May 2001 B1
6252354 Collins et al. Jun 2001 B1
6253704 Savas Jul 2001 B1
6277506 Okamoto Aug 2001 B1
6309978 Donohoe et al. Oct 2001 B1
6313583 Arita et al. Nov 2001 B1
6355992 Via Mar 2002 B1
6358573 Raoux et al. Mar 2002 B1
6367413 Sill et al. Apr 2002 B1
6392187 Johnson May 2002 B1
6395641 Savas May 2002 B2
6413358 Donohoe Jul 2002 B2
6423192 Wada et al. Jul 2002 B1
6433297 Kojima et al. Aug 2002 B1
6435131 Koizumi Aug 2002 B1
6451389 Amann et al. Sep 2002 B1
6456010 Yamakoshi et al. Sep 2002 B2
6483731 Isurin et al. Nov 2002 B1
6535785 Johnson et al. Mar 2003 B2
6621674 Zahringer et al. Sep 2003 B1
6664739 Kishinevsky et al. Dec 2003 B1
6733624 Koshiishi et al. May 2004 B2
6740842 Johnson et al. May 2004 B2
6741446 Ennis May 2004 B2
6777037 Sumiya et al. Aug 2004 B2
6808607 Christie Oct 2004 B2
6818103 Scholl et al. Nov 2004 B1
6818257 Amann et al. Nov 2004 B2
6830595 Reynolds, III Dec 2004 B2
6830650 Roche et al. Dec 2004 B2
6849154 Nagahata et al. Feb 2005 B2
6861373 Aoki et al. Mar 2005 B2
6863020 Mitrovic et al. Mar 2005 B2
6896775 Chistyakov May 2005 B2
6902646 Mahoney et al. Jun 2005 B2
6917204 Mitrovic et al. Jul 2005 B2
6947300 Pai et al. Sep 2005 B2
6962664 Mitrovic Nov 2005 B2
6970042 Glueck Nov 2005 B2
6972524 Marakhtanov et al. Dec 2005 B1
7016620 Maess et al. Mar 2006 B2
7046088 Ziegler May 2006 B2
7059267 Hedberg et al. Jun 2006 B2
7104217 Himori et al. Sep 2006 B2
7115185 Gonzalez et al. Oct 2006 B1
7126808 Koo et al. Oct 2006 B2
7147759 Chistyakov Dec 2006 B2
7151242 Schuler Dec 2006 B2
7166233 Johnson et al. Jan 2007 B2
7183177 Al-Bayati et al. Feb 2007 B2
7206189 Reynolds, III Apr 2007 B2
7218503 Howald May 2007 B2
7218872 Shimomura May 2007 B2
7226868 Mosden et al. Jun 2007 B2
7265963 Hirose Sep 2007 B2
7274266 Kirchmeier Sep 2007 B2
7305311 van Zyl Dec 2007 B2
7312974 Kuchimachi Dec 2007 B2
7408329 Wiedemuth et al. Aug 2008 B2
7415940 Koshimizu et al. Aug 2008 B2
7440301 Kirchmeier et al. Oct 2008 B2
7452443 Gluck et al. Nov 2008 B2
7479712 Richert Jan 2009 B2
7509105 Ziegler Mar 2009 B2
7512387 Glueck Mar 2009 B2
7535688 Yokouchi et al. May 2009 B2
7586099 Eyhorn et al. Sep 2009 B2
7586210 Wiedemuth et al. Sep 2009 B2
7588667 Cerio, Jr. Sep 2009 B2
7601246 Kim et al. Oct 2009 B2
7609740 Glueck Oct 2009 B2
7618686 Colpo Nov 2009 B2
7633319 Arai Dec 2009 B2
7645341 Kennedy et al. Jan 2010 B2
7651586 Moriya et al. Jan 2010 B2
7652901 Kirchmeier et al. Jan 2010 B2
7692936 Richter Apr 2010 B2
7700474 Cerio, Jr. Apr 2010 B2
7705676 Kirchmeier et al. Apr 2010 B2
7706907 Hiroki Apr 2010 B2
7718538 Kim et al. May 2010 B2
7740704 Strang Jun 2010 B2
7758764 Dhindsa et al. Jul 2010 B2
7761247 van Zyl Jul 2010 B2
7782100 Steuber et al. Aug 2010 B2
7791912 Walde Sep 2010 B2
7795817 Nitschke Sep 2010 B2
7808184 Chistyakov Oct 2010 B2
7821767 Fujii Oct 2010 B2
7825719 Roberg et al. Nov 2010 B2
7858533 Liu et al. Dec 2010 B2
7888240 Hamamjy et al. Feb 2011 B2
7898238 Wiedemuth et al. Mar 2011 B2
7929261 Wiedemuth Apr 2011 B2
RE42362 Schuler May 2011 E
7977256 Liu et al. Jul 2011 B2
7988816 Koshiishi et al. Aug 2011 B2
7995313 Nitschke Aug 2011 B2
8044595 Nitschke Oct 2011 B2
8052798 Moriya et al. Nov 2011 B2
8055203 Choueiry et al. Nov 2011 B2
8083961 Chen et al. Dec 2011 B2
8110992 Nitschke Feb 2012 B2
8128831 Sato et al. Mar 2012 B2
8129653 Kirchmeier et al. Mar 2012 B2
8133347 Gluck et al. Mar 2012 B2
8133359 Nauman et al. Mar 2012 B2
8140292 Wendt Mar 2012 B2
8217299 Ilic et al. Jul 2012 B2
8221582 Patrick et al. Jul 2012 B2
8236109 Moriya et al. Aug 2012 B2
8284580 Wilson Oct 2012 B2
8313612 McMillin et al. Nov 2012 B2
8313664 Chen et al. Nov 2012 B2
8333114 Hayashi Dec 2012 B2
8361906 Lee et al. Jan 2013 B2
8382999 Agarwal et al. Feb 2013 B2
8383001 Mochiki et al. Feb 2013 B2
8384403 Zollner et al. Feb 2013 B2
8391025 Walde et al. Mar 2013 B2
8399366 Takaba Mar 2013 B1
8419959 Bettencourt et al. Apr 2013 B2
8422193 Tao et al. Apr 2013 B2
8441772 Yoshikawa et al. May 2013 B2
8456220 Thome et al. Jun 2013 B2
8460567 Chen Jun 2013 B2
8466622 Knaus Jun 2013 B2
8542076 Maier Sep 2013 B2
8551289 Nishimura et al. Oct 2013 B2
8568606 Ohse et al. Oct 2013 B2
8603293 Koshiishi et al. Dec 2013 B2
8632537 McNall, III et al. Jan 2014 B2
8641916 Yatsuda et al. Feb 2014 B2
8685267 Yatsuda et al. Apr 2014 B2
8704607 Yuzurihara et al. Apr 2014 B2
8716114 Ohmi et al. May 2014 B2
8716984 Mueller et al. May 2014 B2
8735291 Ranjan et al. May 2014 B2
8796933 Hermanns Aug 2014 B2
8809199 Nishizuka Aug 2014 B2
8821684 Ui et al. Sep 2014 B2
8828883 Rueger Sep 2014 B2
8845810 Hwang Sep 2014 B2
8852347 Lee et al. Oct 2014 B2
8884523 Winterhalter et al. Nov 2014 B2
8884525 Hoffman et al. Nov 2014 B2
8889534 Ventzek et al. Nov 2014 B1
8895942 Liu et al. Nov 2014 B2
8907259 Kasai et al. Dec 2014 B2
8916056 Koo et al. Dec 2014 B2
8926850 Singh et al. Jan 2015 B2
8963377 Ziemba et al. Feb 2015 B2
8979842 McNall, III et al. Mar 2015 B2
8993943 Pohl et al. Mar 2015 B2
9011636 Ashida Apr 2015 B2
9039871 Nauman et al. May 2015 B2
9042121 Walde et al. May 2015 B2
9053908 Sriraman et al. Jun 2015 B2
9059178 Matsumoto et al. Jun 2015 B2
9087798 Ohtake et al. Jul 2015 B2
9101038 Singh et al. Aug 2015 B2
9105447 Brouk et al. Aug 2015 B2
9105452 Jeon et al. Aug 2015 B2
9123762 Lin et al. Sep 2015 B2
9129776 Finley et al. Sep 2015 B2
9139910 Lee et al. Sep 2015 B2
9147555 Richter Sep 2015 B2
9150960 Nauman et al. Oct 2015 B2
9159575 Ranjan et al. Oct 2015 B2
9208992 Brouk et al. Dec 2015 B2
9209032 Zhao et al. Dec 2015 B2
9209034 Kitamura et al. Dec 2015 B2
9210790 Hoffman et al. Dec 2015 B2
9224579 Finley et al. Dec 2015 B2
9226380 Finley Dec 2015 B2
9228878 Haw et al. Jan 2016 B2
9254168 Palanker Feb 2016 B2
9263241 Larson et al. Feb 2016 B2
9287086 Brouk et al. Mar 2016 B2
9287092 Brouk et al. Mar 2016 B2
9287098 Finley Mar 2016 B2
9306533 Mavretic Apr 2016 B1
9309594 Hoffman et al. Apr 2016 B2
9313872 Yamazawa Apr 2016 B2
9355822 Yamada et al. May 2016 B2
9362089 Brouk et al. Jun 2016 B2
9373521 Mochiki et al. Jun 2016 B2
9384992 Narishige et al. Jul 2016 B2
9396960 Ogawa et al. Jul 2016 B2
9404176 Parkhe et al. Aug 2016 B2
9412613 Manna et al. Aug 2016 B2
9435029 Brouk et al. Sep 2016 B2
9483066 Finley Nov 2016 B2
9490107 Kim et al. Nov 2016 B2
9495563 Ziemba et al. Nov 2016 B2
9496150 Mochiki et al. Nov 2016 B2
9503006 Pohl et al. Nov 2016 B2
9520269 Finley et al. Dec 2016 B2
9530667 Rastogi et al. Dec 2016 B2
9536713 Van Zyl et al. Jan 2017 B2
9544987 Mueller et al. Jan 2017 B2
9558917 Finley et al. Jan 2017 B2
9564287 Ohse et al. Feb 2017 B2
9570313 Ranjan et al. Feb 2017 B2
9576810 Deshmukh et al. Feb 2017 B2
9576816 Rastogi et al. Feb 2017 B2
9577516 Van Zyl Feb 2017 B1
9583357 Long et al. Feb 2017 B1
9593421 Baek et al. Mar 2017 B2
9601283 Ziemba et al. Mar 2017 B2
9601319 Bravo et al. Mar 2017 B1
9607843 Rastogi et al. Mar 2017 B2
9620340 Finley Apr 2017 B2
9620376 Kamp et al. Apr 2017 B2
9620987 Alexander et al. Apr 2017 B2
9637814 Bugyi et al. May 2017 B2
9644221 Kanamori et al. May 2017 B2
9651957 Finley May 2017 B1
9655221 Ziemba et al. May 2017 B2
9663858 Nagami et al. May 2017 B2
9666446 Tominaga et al. May 2017 B2
9666447 Rastogi et al. May 2017 B2
9673027 Yamamoto et al. Jun 2017 B2
9673059 Raley et al. Jun 2017 B2
9685297 Carter et al. Jun 2017 B2
9706630 Miller et al. Jul 2017 B2
9711331 Mueller et al. Jul 2017 B2
9711335 Christie Jul 2017 B2
9728429 Ricci et al. Aug 2017 B2
9734992 Yamada et al. Aug 2017 B2
9741544 Van Zyl Aug 2017 B2
9754768 Yamada et al. Sep 2017 B2
9761419 Nagami Sep 2017 B2
9761459 Long et al. Sep 2017 B2
9767988 Brouk et al. Sep 2017 B2
9786503 Raley et al. Oct 2017 B2
9799494 Chen et al. Oct 2017 B2
9805916 Konno et al. Oct 2017 B2
9805965 Sadjadi et al. Oct 2017 B2
9812305 Pelleymounter Nov 2017 B2
9831064 Konno et al. Nov 2017 B2
9837285 Tomura et al. Dec 2017 B2
9840770 Klimczak et al. Dec 2017 B2
9852889 Kellogg et al. Dec 2017 B1
9852890 Mueller et al. Dec 2017 B2
9865471 Shimoda et al. Jan 2018 B2
9865893 Esswein et al. Jan 2018 B2
9870898 Urakawa et al. Jan 2018 B2
9872373 Shimizu Jan 2018 B1
9881820 Wong et al. Jan 2018 B2
9922802 Hirano et al. Mar 2018 B2
9922806 Tomura et al. Mar 2018 B2
9929004 Ziemba et al. Mar 2018 B2
9941097 Yamazawa et al. Apr 2018 B2
9941098 Nagami Apr 2018 B2
9960763 Miller et al. May 2018 B2
9972503 Tomura et al. May 2018 B2
9997374 Takeda et al. Jun 2018 B2
10020800 Prager et al. Jul 2018 B2
10026593 Alt et al. Jul 2018 B2
10027314 Prager et al. Jul 2018 B2
10041174 Matsumoto et al. Aug 2018 B2
10042407 Grede et al. Aug 2018 B2
10063062 Voronin et al. Aug 2018 B2
10074518 Van Zyl Sep 2018 B2
10085796 Podany Oct 2018 B2
10090191 Tomura et al. Oct 2018 B2
10102321 Povolny et al. Oct 2018 B2
10109461 Yamada et al. Oct 2018 B2
10115567 Hirano et al. Oct 2018 B2
10115568 Kellogg et al. Oct 2018 B2
10176970 Nitschke Jan 2019 B2
10176971 Nagami Jan 2019 B2
10181392 Leypold et al. Jan 2019 B2
10199246 Koizumi et al. Feb 2019 B2
10217618 Larson et al. Feb 2019 B2
10217933 Nishimura et al. Feb 2019 B2
10224822 Miller et al. Mar 2019 B2
10229819 Hirano et al. Mar 2019 B2
10249498 Ventzek et al. Apr 2019 B2
10268846 Miller et al. Apr 2019 B2
10269540 Carter et al. Apr 2019 B1
10276420 Ito et al. Apr 2019 B2
10282567 Miller et al. May 2019 B2
10283321 Yang et al. May 2019 B2
10290506 Ranjan et al. May 2019 B2
10297431 Zelechowski et al. May 2019 B2
10304661 Ziemba et al. May 2019 B2
10304668 Coppa et al. May 2019 B2
10312048 Dorf et al. Jun 2019 B2
10312056 Collins et al. Jun 2019 B2
10320373 Prager et al. Jun 2019 B2
10332730 Christie Jun 2019 B2
10340123 Ohtake Jul 2019 B2
10348186 Schuler et al. Jul 2019 B2
10354839 Alt et al. Jul 2019 B2
10373755 Prager et al. Aug 2019 B2
10373804 Koh et al. Aug 2019 B2
10373811 Christie et al. Aug 2019 B2
10381237 Takeda et al. Aug 2019 B2
10382022 Prager et al. Aug 2019 B2
10387166 Preston et al. Aug 2019 B2
10388544 Ui et al. Aug 2019 B2
10389345 Ziemba et al. Aug 2019 B2
10410877 Takashima et al. Sep 2019 B2
10431437 Gapi 70nski et al. Oct 2019 B2
10438797 Cottle et al. Oct 2019 B2
10446453 Coppa et al. Oct 2019 B2
10447174 Porter, Jr. et al. Oct 2019 B1
10448494 Dorf et al. Oct 2019 B1
10448495 Dorf et al. Oct 2019 B1
10453656 Carducci et al. Oct 2019 B2
10460910 Ziemba et al. Oct 2019 B2
10460911 Ziemba et al. Oct 2019 B2
10460916 Boyd, Jr. et al. Oct 2019 B2
10483089 Ziemba et al. Nov 2019 B2
10483100 Ishizaka et al. Nov 2019 B2
10510575 Kraus Dec 2019 B2
10522343 Tapily et al. Dec 2019 B2
10535502 Carducci et al. Jan 2020 B2
10546728 Carducci et al. Jan 2020 B2
10553407 Nagami et al. Feb 2020 B2
10555412 Dorf et al. Feb 2020 B2
10580620 Carducci et al. Mar 2020 B2
10593519 Yamada et al. Mar 2020 B2
10607813 Fairbairn et al. Mar 2020 B2
10607814 Ziemba et al. Mar 2020 B2
10658189 Hatazaki et al. May 2020 B2
10659019 Slobodov et al. May 2020 B2
10665434 Matsumoto et al. May 2020 B2
10666198 Prager et al. May 2020 B2
10672589 Koshimizu et al. Jun 2020 B2
10672596 Brcka Jun 2020 B2
10672616 Kubota Jun 2020 B2
10685807 Dorf et al. Jun 2020 B2
10707053 Urakawa et al. Jul 2020 B2
10707054 Kubota Jul 2020 B1
10707055 Shaw et al. Jul 2020 B2
10707086 Yang et al. Jul 2020 B2
10707090 Takayama et al. Jul 2020 B2
10707864 Miller et al. Jul 2020 B2
10714372 Chua Jul 2020 B2
10720305 Van Zyl Jul 2020 B2
10734906 Miller et al. Aug 2020 B2
10748746 Kaneko et al. Aug 2020 B2
10755894 Hirano et al. Aug 2020 B2
10763150 Lindley Sep 2020 B2
10773282 Coppa et al. Sep 2020 B2
10774423 Janakiraman et al. Sep 2020 B2
10777388 Ziemba et al. Sep 2020 B2
10790816 Ziemba et al. Sep 2020 B2
10791617 Dorf et al. Sep 2020 B2
10796887 Prager et al. Oct 2020 B2
10804886 Miller et al. Oct 2020 B2
10811227 Van Zyl et al. Oct 2020 B2
10811228 Van Zyl et al. Oct 2020 B2
10811229 Van Zyl et al. Oct 2020 B2
10811230 Ziemba et al. Oct 2020 B2
10811296 Cho et al. Oct 2020 B2
10847346 Ziemba et al. Nov 2020 B2
10892140 Ziemba et al. Jan 2021 B2
10892141 Ziemba et al. Jan 2021 B2
10896807 Fairbairn et al. Jan 2021 B2
10896809 Ziemba et al. Jan 2021 B2
10903047 Ziemba et al. Jan 2021 B2
10904996 Koh Jan 2021 B2
10916408 Dorf et al. Feb 2021 B2
10923320 Koh et al. Feb 2021 B2
10923321 Dorf et al. Feb 2021 B2
10923367 Lubomirsky et al. Feb 2021 B2
10923379 Liu et al. Feb 2021 B2
10937678 Kraus Mar 2021 B2
10971342 Engelstaedter et al. Apr 2021 B2
10978274 Kubota Apr 2021 B2
10978955 Ziemba et al. Apr 2021 B2
10985740 Prager et al. Apr 2021 B2
10991553 Ziemba et al. Apr 2021 B2
10991554 Zhao et al. Apr 2021 B2
10998169 Ventzek et al. May 2021 B2
11004660 Prager et al. May 2021 B2
11011349 Brouk et al. May 2021 B2
11075058 Ziemba et al. Jul 2021 B2
11095280 Ziemba et al. Aug 2021 B2
11101108 Slobodov et al. Aug 2021 B2
11108384 Prager et al. Aug 2021 B2
20010003298 Shamouilian Jun 2001 A1
20010009139 Shan et al. Jul 2001 A1
20010019472 Kanno Sep 2001 A1
20010033755 Ino et al. Oct 2001 A1
20020069971 Kaji et al. Jun 2002 A1
20020078891 Chu et al. Jun 2002 A1
20030026060 Hiramatsu et al. Feb 2003 A1
20030029859 Knoot et al. Feb 2003 A1
20030049558 Aoki et al. Mar 2003 A1
20030052085 Parsons Mar 2003 A1
20030079983 Long et al. May 2003 A1
20030091355 Jeschonek et al. May 2003 A1
20030137791 Arnet et al. Jul 2003 A1
20030151372 Tsuchiya et al. Aug 2003 A1
20030165044 Yamamoto Sep 2003 A1
20030201069 Johnson Oct 2003 A1
20040040665 Mizuno Mar 2004 A1
20040040931 Koshiishi et al. Mar 2004 A1
20040066601 Larsen Apr 2004 A1
20040112536 Quon Jun 2004 A1
20040223284 Iwami et al. Nov 2004 A1
20050022933 Howard Feb 2005 A1
20050024809 Kuchimachi Feb 2005 A1
20050039852 Roche et al. Feb 2005 A1
20050092596 Kouznetsov May 2005 A1
20050098118 Amann et al. May 2005 A1
20050151544 Mahoney et al. Jul 2005 A1
20050152159 Isurin et al. Jul 2005 A1
20050286916 Nakazato et al. Dec 2005 A1
20060043065 Buchberger, Jr. Mar 2006 A1
20060075969 Fischer Apr 2006 A1
20060130767 Herchen Jun 2006 A1
20060139843 Kim Jun 2006 A1
20060158823 Mizuno et al. Jul 2006 A1
20060171848 Roche et al. Aug 2006 A1
20060219178 Asakura Oct 2006 A1
20060278521 Stowell Dec 2006 A1
20070042603 Kropewnicki Feb 2007 A1
20070113787 Higashiura et al. May 2007 A1
20070114981 Vasquez et al. May 2007 A1
20070196977 Wang et al. Aug 2007 A1
20070284344 Todorov et al. Dec 2007 A1
20070285869 Howald Dec 2007 A1
20070297118 Fujii Dec 2007 A1
20080012548 Gerhardt et al. Jan 2008 A1
20080037196 Yonekura et al. Feb 2008 A1
20080048498 Wiedemuth et al. Feb 2008 A1
20080106842 Ito et al. May 2008 A1
20080135401 Kadlec et al. Jun 2008 A1
20080160212 Koo Jul 2008 A1
20080185537 Walther et al. Aug 2008 A1
20080210545 Kouznetsov Sep 2008 A1
20080236493 Sakao Oct 2008 A1
20080252225 Kurachi et al. Oct 2008 A1
20080272706 Kwon et al. Nov 2008 A1
20080289576 Lee et al. Nov 2008 A1
20090016549 French et al. Jan 2009 A1
20090059462 Mizuno et al. Mar 2009 A1
20090078678 Kojima Mar 2009 A1
20090133839 Yamazawa et al. May 2009 A1
20090236214 Janakiraman et al. Sep 2009 A1
20090295295 Shannon et al. Dec 2009 A1
20100018648 Collins et al. Jan 2010 A1
20100025230 Ehiasarian et al. Feb 2010 A1
20100029038 Murakawa Feb 2010 A1
20100072172 Ui et al. Mar 2010 A1
20100101935 Chistyakov et al. Apr 2010 A1
20100118464 Matsuyama May 2010 A1
20100154994 Fischer et al. Jun 2010 A1
20100193491 Cho et al. Aug 2010 A1
20100271744 Ni et al. Oct 2010 A1
20100276273 Heckman et al. Nov 2010 A1
20100321047 Zollner et al. Dec 2010 A1
20100326957 Maeda et al. Dec 2010 A1
20110096461 Yoshikawa et al. Apr 2011 A1
20110100807 Matsubara et al. May 2011 A1
20110143537 Lee et al. Jun 2011 A1
20110157760 Willwerth Jun 2011 A1
20110177669 Lee et al. Jul 2011 A1
20110177694 Chen et al. Jul 2011 A1
20110259851 Brouk et al. Oct 2011 A1
20110281438 Lee et al. Nov 2011 A1
20110298376 Kanegae Dec 2011 A1
20120000421 Miller et al. Jan 2012 A1
20120052599 Brouk et al. Mar 2012 A1
20120081350 Sano et al. Apr 2012 A1
20120088371 Ranjan et al. Apr 2012 A1
20120097908 Willwerth et al. Apr 2012 A1
20120171390 Nauman Jul 2012 A1
20120319584 Brouk et al. Dec 2012 A1
20130059448 Marakhtanov Mar 2013 A1
20130087447 Bodke et al. Apr 2013 A1
20130175575 Ziemba et al. Jul 2013 A1
20130213935 Liao et al. Aug 2013 A1
20130214828 Valcore, Jr. et al. Aug 2013 A1
20130340938 Tappan et al. Dec 2013 A1
20130344702 Nishizuka Dec 2013 A1
20140057447 Yang Feb 2014 A1
20140061156 Brouk et al. Mar 2014 A1
20140062495 Carter et al. Mar 2014 A1
20140077611 Young et al. Mar 2014 A1
20140083977 Ui Mar 2014 A1
20140109886 Singleton et al. Apr 2014 A1
20140117861 Finley et al. May 2014 A1
20140125315 Kirchmeier et al. May 2014 A1
20140154819 Gaff et al. Jun 2014 A1
20140177123 Thach et al. Jun 2014 A1
20140238844 Chistyakov Aug 2014 A1
20140262755 Deshmukh et al. Sep 2014 A1
20140263182 Chen Sep 2014 A1
20140273487 Deshmukh et al. Sep 2014 A1
20140305905 Yamada et al. Oct 2014 A1
20140356984 Ventzek et al. Dec 2014 A1
20140361690 Yamada et al. Dec 2014 A1
20150002018 Lill et al. Jan 2015 A1
20150043123 Cox Feb 2015 A1
20150076112 Sriraman et al. Mar 2015 A1
20150084509 Yuzurihara et al. Mar 2015 A1
20150111394 Hsu Apr 2015 A1
20150116889 Yamasaki et al. Apr 2015 A1
20150130354 Leray et al. May 2015 A1
20150130525 Miller et al. May 2015 A1
20150170952 Subramani et al. Jun 2015 A1
20150181683 Singh et al. Jun 2015 A1
20150235809 Ito et al. Aug 2015 A1
20150256086 Miller et al. Sep 2015 A1
20150303914 Ziemba et al. Oct 2015 A1
20150315698 Chistyakov Nov 2015 A1
20150318846 Prager et al. Nov 2015 A1
20150325413 Kim et al. Nov 2015 A1
20150366004 Nangoy et al. Dec 2015 A1
20160004475 Beniyama et al. Jan 2016 A1
20160020072 Brouk et al. Jan 2016 A1
20160027678 Parkhe et al. Jan 2016 A1
20160056017 Kim et al. Feb 2016 A1
20160064189 Tandou et al. Mar 2016 A1
20160196958 Leray et al. Jul 2016 A1
20160241234 Mavretic Aug 2016 A1
20160284514 Hirano Sep 2016 A1
20160314946 Pelleymounter Oct 2016 A1
20160322242 Nguyen et al. Nov 2016 A1
20160327029 Ziemba et al. Nov 2016 A1
20160351375 Valcore, Jr. et al. Dec 2016 A1
20160358755 Long et al. Dec 2016 A1
20170011887 Deshmukh et al. Jan 2017 A1
20170018411 Sriraman et al. Jan 2017 A1
20170022604 Christie et al. Jan 2017 A1
20170029937 Chistyakov et al. Feb 2017 A1
20170069462 Kanarik et al. Mar 2017 A1
20170076962 Engelhardt Mar 2017 A1
20170098527 Kawasaki et al. Apr 2017 A1
20170098549 Agarwal Apr 2017 A1
20170110335 Yang et al. Apr 2017 A1
20170110358 Sadjadi et al. Apr 2017 A1
20170113355 Genetti et al. Apr 2017 A1
20170115657 Trussell et al. Apr 2017 A1
20170117172 Genetti et al. Apr 2017 A1
20170154726 Prager et al. Jun 2017 A1
20170162417 Ye et al. Jun 2017 A1
20170163254 Ziemba et al. Jun 2017 A1
20170169996 Ui et al. Jun 2017 A1
20170170449 Alexander et al. Jun 2017 A1
20170178917 Kamp et al. Jun 2017 A1
20170221682 Nishimura et al. Aug 2017 A1
20170236688 Caron et al. Aug 2017 A1
20170236741 Angelov et al. Aug 2017 A1
20170236743 Severson et al. Aug 2017 A1
20170243731 Ziemba et al. Aug 2017 A1
20170250056 Boswell et al. Aug 2017 A1
20170263478 McChesney et al. Sep 2017 A1
20170278665 Carter et al. Sep 2017 A1
20170287791 Coppa et al. Oct 2017 A1
20170311431 Park Oct 2017 A1
20170316935 Tan et al. Nov 2017 A1
20170330734 Lee et al. Nov 2017 A1
20170330786 Genetti et al. Nov 2017 A1
20170334074 Genetti et al. Nov 2017 A1
20170358431 Dorf et al. Dec 2017 A1
20170366173 Miller et al. Dec 2017 A1
20170372912 Long et al. Dec 2017 A1
20180019100 Brouk et al. Jan 2018 A1
20180076032 Wang et al. Mar 2018 A1
20180102769 Prager et al. Apr 2018 A1
20180139834 Nagashima et al. May 2018 A1
20180166249 Dorf et al. Jun 2018 A1
20180189524 Miller et al. Jul 2018 A1
20180190501 Jeda Jul 2018 A1
20180204708 Tan et al. Jul 2018 A1
20180205369 Prager et al. Jul 2018 A1
20180218905 Park et al. Aug 2018 A1
20180226225 Koh et al. Aug 2018 A1
20180226896 Miller et al. Aug 2018 A1
20180253570 Miller et al. Sep 2018 A1
20180286636 Ziemba et al. Oct 2018 A1
20180294566 Wang et al. Oct 2018 A1
20180309423 Okunishi et al. Oct 2018 A1
20180331655 Prager et al. Nov 2018 A1
20180350649 Gomm Dec 2018 A1
20180366305 Nagami et al. Dec 2018 A1
20180374672 Hayashi et al. Dec 2018 A1
20190027344 Okunishi et al. Jan 2019 A1
20190080884 Ziemba et al. Mar 2019 A1
20190088518 Koh Mar 2019 A1
20190090338 Koh et al. Mar 2019 A1
20190096633 Pankratz et al. Mar 2019 A1
20190157041 Zyl et al. May 2019 A1
20190157042 Van Zyl et al. May 2019 A1
20190157044 Ziemba et al. May 2019 A1
20190172685 Van Zyl et al. Jun 2019 A1
20190172688 Jeda Jun 2019 A1
20190180982 Brouk et al. Jun 2019 A1
20190198333 Tokashiki Jun 2019 A1
20190259562 Dorf et al. Aug 2019 A1
20190267218 Wang et al. Aug 2019 A1
20190277804 Prager et al. Sep 2019 A1
20190295769 Prager et al. Sep 2019 A1
20190295819 Okunishi et al. Sep 2019 A1
20190318918 Saitoh et al. Oct 2019 A1
20190333741 Nagami et al. Oct 2019 A1
20190341232 Thokachichu et al. Nov 2019 A1
20190348258 Koh et al. Nov 2019 A1
20190348263 Okunishi Nov 2019 A1
20190363388 Esswein et al. Nov 2019 A1
20190385822 Marakhtanov et al. Dec 2019 A1
20190393791 Ziemba et al. Dec 2019 A1
20200016109 Feng et al. Jan 2020 A1
20200020510 Shoeb et al. Jan 2020 A1
20200024330 Chan-Hui et al. Jan 2020 A1
20200035457 Ziemba et al. Jan 2020 A1
20200035458 Ziemba et al. Jan 2020 A1
20200035459 Ziemba et al. Jan 2020 A1
20200036367 Slobodov et al. Jan 2020 A1
20200037468 Ziemba et al. Jan 2020 A1
20200051785 Miller et al. Feb 2020 A1
20200051786 Ziemba et al. Feb 2020 A1
20200058475 Engelstaedter et al. Feb 2020 A1
20200066497 Engelstaedter et al. Feb 2020 A1
20200066498 Engelstaedter et al. Feb 2020 A1
20200075293 Ventzek et al. Mar 2020 A1
20200090905 Brouk et al. Mar 2020 A1
20200106137 Murphy et al. Apr 2020 A1
20200126760 Ziemba et al. Apr 2020 A1
20200126837 Kuno et al. Apr 2020 A1
20200144030 Prager et al. May 2020 A1
20200161091 Ziemba et al. May 2020 A1
20200161098 Cui et al. May 2020 A1
20200161155 Rogers et al. May 2020 A1
20200162061 Prager et al. May 2020 A1
20200168436 Ziemba et al. May 2020 A1
20200168437 Ziemba et al. May 2020 A1
20200176221 Prager et al. Jun 2020 A1
20200227230 Ziemba et al. Jul 2020 A1
20200227289 Song et al. Jul 2020 A1
20200234922 Dorf Jul 2020 A1
20200234923 Dorf Jul 2020 A1
20200243303 Mishra et al. Jul 2020 A1
20200251371 Kuno et al. Aug 2020 A1
20200266022 Dorf et al. Aug 2020 A1
20200266035 Nagaiwa Aug 2020 A1
20200294770 Kubota Sep 2020 A1
20200328739 Miller et al. Oct 2020 A1
20200352017 Dorf et al. Nov 2020 A1
20200357607 Ziemba et al. Nov 2020 A1
20200373114 Prager et al. Nov 2020 A1
20200389126 Prager et al. Dec 2020 A1
20200407840 Hayashi et al. Dec 2020 A1
20200411286 Koshimizu et al. Dec 2020 A1
20210005428 Shaw et al. Jan 2021 A1
20210013006 Nguyen et al. Jan 2021 A1
20210013011 Prager et al. Jan 2021 A1
20210013874 Miller et al. Jan 2021 A1
20210027990 Ziemba et al. Jan 2021 A1
20210029815 Bowman et al. Jan 2021 A1
20210043472 Koshimizu et al. Feb 2021 A1
20210051792 Dokan et al. Feb 2021 A1
20210066042 Ziemba et al. Mar 2021 A1
20210082669 Koshiishi et al. Mar 2021 A1
20210091759 Prager et al. Mar 2021 A1
20210125812 Ziemba et al. Apr 2021 A1
20210130955 Nagaike et al. May 2021 A1
20210140044 Nagaike et al. May 2021 A1
20210151295 Ziemba et al. May 2021 A1
20210152163 Miller et al. May 2021 A1
20210210313 Ziemba et al. Jul 2021 A1
20210210315 Ziemba et al. Jul 2021 A1
20210249227 Bowman et al. Aug 2021 A1
20210272775 Koshimizu Sep 2021 A1
20210288582 Ziemba et al. Sep 2021 A1
20210313213 Kraus Oct 2021 A1
Foreign Referenced Citations (142)
Number Date Country
1814857 Aug 2006 CN
101990353 Mar 2011 CN
102084024 Jun 2011 CN
101707186 Feb 2012 CN
103098559 May 2013 CN
105408993 Mar 2016 CN
106206234 Dec 2016 CN
104752134 Feb 2017 CN
665306 Aug 1995 EP
983394 Mar 2000 EP
1119033 Jul 2001 EP
1203441 May 2002 EP
1214459 Jun 2002 EP
1418670 May 2004 EP
1691481 Aug 2006 EP
1701376 Sep 2006 EP
1708239 Oct 2006 EP
1780777 May 2007 EP
1852959 Nov 2007 EP
2096679 Sep 2009 EP
2221614 Aug 2010 EP
2541584 Jan 2013 EP
2580368 Apr 2013 EP
2612544 Jul 2013 EP
2838112 Feb 2015 EP
2991103 Mar 2016 EP
3086359 Oct 2016 EP
3396700 Oct 2018 EP
3616234 Mar 2020 EP
H08236602 Sep 1996 JP
2748213 May 1998 JP
H11025894 Jan 1999 JP
2002-313899 Oct 2002 JP
2002299322 Oct 2002 JP
2008-300491 Dec 2008 JP
4418424 Feb 2010 JP
2011035266 Feb 2011 JP
5018244 Sep 2012 JP
2014112644 Jun 2014 JP
2016-225439 Dec 2016 JP
6741461 Aug 2020 JP
100757347 Sep 2007 KR
10-2007-0098556 Oct 2007 KR
20160042429 Apr 2016 KR
20200036947 Apr 2020 KR
498706 Aug 2002 TW
200406021 Apr 2004 TW
201526068 Jul 2015 TW
201717247 May 2017 TW
201727696 Aug 2017 TW
1998053116 Nov 1998 WO
2000017920 Mar 2000 WO
2000030147 May 2000 WO
2000063459 Oct 2000 WO
2001005020 Jan 2001 WO
2001012873 Feb 2001 WO
2001013402 Feb 2001 WO
2002052628 Jul 2002 WO
2002054835 Jul 2002 WO
2002059954 Aug 2002 WO
2003037497 May 2003 WO
2003052882 Jun 2003 WO
2003054911 Jul 2003 WO
2003077414 Sep 2003 WO
2004084394 Sep 2004 WO
2005124844 Dec 2005 WO
2007118042 Oct 2007 WO
2008016747 Feb 2008 WO
2008050619 May 2008 WO
2008061775 May 2008 WO
2008061784 May 2008 WO
2008062663 May 2008 WO
2009012804 Jan 2009 WO
2009069670 Jun 2009 WO
2009111473 Sep 2009 WO
2011073093 Jun 2011 WO
2011087984 Jul 2011 WO
2011156055 Dec 2011 WO
2012030500 Mar 2012 WO
2012109159 Aug 2012 WO
2012122064 Sep 2012 WO
2013000918 Jan 2013 WO
2013016619 Jan 2013 WO
2013084459 Jun 2013 WO
2013088677 Jun 2013 WO
2013099133 Jul 2013 WO
2013114882 Aug 2013 WO
2013118660 Aug 2013 WO
2013125523 Aug 2013 WO
2013187218 Dec 2013 WO
2014035889 Mar 2014 WO
2014035894 Mar 2014 WO
2014035897 Mar 2014 WO
2014036000 Mar 2014 WO
2014124857 Aug 2014 WO
2014197145 Dec 2014 WO
2015060185 Apr 2015 WO
2014124857 May 2015 WO
2015134398 Sep 2015 WO
2015198854 Dec 2015 WO
2016002547 Jan 2016 WO
2016059207 Apr 2016 WO
2016060058 Apr 2016 WO
2016060063 Apr 2016 WO
2015073921 May 2016 WO
2016104098 Jun 2016 WO
2016128384 Aug 2016 WO
2016131061 Aug 2016 WO
2016170989 Oct 2016 WO
2017172536 Oct 2017 WO
2017208807 Dec 2017 WO
2018048925 Mar 2018 WO
2018111751 Jun 2018 WO
2018170010 Sep 2018 WO
2018197702 Nov 2018 WO
2019036587 Feb 2019 WO
2019040949 Feb 2019 WO
2019099102 May 2019 WO
2019099870 May 2019 WO
2019185423 Oct 2019 WO
2019225184 Nov 2019 WO
2019239872 Dec 2019 WO
2019244697 Dec 2019 WO
2019244698 Dec 2019 WO
2019244734 Dec 2019 WO
2019245729 Dec 2019 WO
2020004048 Jan 2020 WO
2020017328 Jan 2020 WO
2020022318 Jan 2020 WO
2020022319 Jan 2020 WO
2020026802 Feb 2020 WO
2020036806 Feb 2020 WO
2020037331 Feb 2020 WO
2020046561 Mar 2020 WO
2020051064 Mar 2020 WO
2020112921 Jun 2020 WO
2020121819 Jun 2020 WO
2020145051 Jul 2020 WO
2021003319 Jan 2021 WO
2021062223 Apr 2021 WO
2021097459 May 2021 WO
2021134000 Jul 2021 WO
Non-Patent Literature Citations (48)
Entry
Taiwan Office Action for 110128466 dated May 31, 2022.
The International Search Report and the Written Opinion for International Application No. PCT/US2021/040380; dated Oct. 27, 2021; 10 pages.
International Search Report and Written Opinion dated Feb. 4, 2022 for Application No. PCT/US2021/054806.
International Search Report and Written Opinion dated Feb. 4, 2022 for Application No. PCT/US2021/054814.
U.S. Appl. No. 17/346,103, filed Jun. 11, 2021.
U.S. Appl. No. 17/349,763, filed Jun. 16, 2021.
U.S. Appl. No. 63/242,410, filed Sep. 9, 2021.
U.S. Appl. No. 17/410,803, filed Aug. 24, 2021.
U.S. Appl. No. 17/537,107, filed Nov. 29, 2021.
U.S. Appl. No. 17/352,165, filed Jun. 18, 2021.
U.S. Appl. No. 17/352,176, filed Jun. 18, 2021.
U.S. Appl. No. 17/337,146, filed Jun. 2, 2021.
U.S. Appl. No. 17/361,178, filed Jun. 28, 2021.
U.S. Appl. No. 63/210,956, filed Jun. 15, 2021.
U.S. Appl. No. 17/475,223, filed Sep. 14, 2021.
U.S. Appl. No. 17/537,314, filed Nov. 29, 2021.
Chinese Office Action for 201880053380.1 dated Dec. 2, 2021.
Taiwan Office Action for 108132682 dated Mar. 24, 2022.
Korean Office Action for 10-2022-7019539 dated Jul. 1, 2022.
Chinese Office Action for 201880053380.1 dated Jun. 13, 2022.
Wang, S.B., et al.—“Control of ion energy distribution at substrates during plasma processing,” Journal of Applied Physics, vol. 88, No. 2, Jul. 15, 2000, pp. 643-646.
PCT International Search Report and Written Opinion dated Nov. 7, 2018, for International Application No. PCT/US2018/042956.
Taiwan Office Action for Application No. 107125613 dated Dec. 24, 2020, 16 pages.
Richard Barnett et al. A New Plasma Source for Next Generation MEMS Deep Si Etching: Minimal Tilt, Improved Profile Uniformity and Higher Etch Rates, SPP Process Technology Systems. 2010.
Yiting Zhang et al. “Investigation of feature orientation and consequences of ion tilting during plasma etching with a three-dimensional feature profile simulator”, Nov. 22, 2016.
Michael A. Lieberman, “Principles of Plasma Discharges and Material Processing”, A Wiley Interscience Publication. 1994.
Eagle Harbor Technologies presentation by Dr. Kenneth E. Miller—“The EHT Integrated Power Module (IPM): An IGBT-Based, High Current, Ultra-Fast, Modular, Programmable Power Supply Unit,” Jun. 2013, 21 pages.
Eagle Harbor Technologies webpage—“EHT Integrator Demonstration at DIII-D,” 2015, 1 page.
Eagle Harbor Technologies webpage—“High Gain and Frequency Ultra-Stable Integrators for ICC and Long Pulse ITER Applications,” 2012, 1 page.
Eagle Harbor Technologies webpage—High Gain and Frequency Ultra-Stable Integrators for Long Pulse and/or High Current Applications, 2018, 1 page.
Eagle Harbor Technologies webpage—“In Situ Testing of EHT Integrators on a Tokamak,” 2015, 1 page.
Eagle Harbor Technologies webpage—“Long-Pulse Integrator Testing with DIII-D Magnetic Diagnostics,” 2016, 1 page.
Kamada, Keiichi, et al., Editors—“New Developments of Plasma Science with Pulsed Power Technology,” Research Report, NIFS-PROC-82, presented at National Institute for Fusion Science, Toki, Gifu, Japan, Mar. 5-6, 2009, 109 pages.
Prager, J.R., et al.—“A High Voltage Nanosecond Pulser with Variable Pulse Width and Pulse Repetition Frequency Control for Nonequilibrium Plasma Applications,” IEEE 41st International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International Conference on High-Power Particle Beams (BEAMS), pp. 1-6, 2014.
Semiconductor Components Industries, Llc (SCILLC)—“Switch-Mode Power Supply” Reference Manual, SMPSRM/D, Rev. 4, Apr. 2014, ON Semiconductor, 73 pages.
Sunstone Circuits—“Eagle Harbor Tech Case Study,” date unknown, 4 pages.
Zhuoxing Luo, B.S., M.S, “RF Plasma Etching With a DC Bias” A Dissertation in Physics. Dec. 1994.
Dr. Steve Sirard, “Introduction to Plasma Etching”, Lam Research Corporation. 64 pages.
Michael A. Lieberman, “A short course of the principles of plasma discharges and materials processing”, Department of Electrical Engineering and Computer Sciences University of California, Berkeley, CA 94720.
Electrical 4 U webpage—“Clamping Circuit,” Aug. 29, 2018, 1 page.
Kyung Chae Yang et al., A study on the etching characteristics of magnetic tunneling junction materials using DC pulse-biased inductively coupled plasmas, Japanese Journal of Applied Physics, vol. 54, 01AE01, Oct. 29, 2014, 6 pages.
Chang, Bingdong, “Oblique angled plasma etching for 3D silicon structures with wiggling geometries” 31(8), [085301]. https://doi.org/10.1088/1361-6528/ab53fb. DTU Library. 2019.
Zhen-hua Bi et al., A brief review of dual-frequency capacitively coupled discharges, Current Applied Physics, vol. 11, Issue 5, Supplement, 2011, Pages S2-S8.
S.B. Wang et al. “lon Bombardment Energy and SiO 2/Si Fluorocarbon Plasma Etch Selectivity”, Journal of Vacuum Science & Technology A 19, 2425 (2001).
Eagle Harbor Technologies presentation by Dr. Kenneth E. Miller—“The EHT Long Pulse Integrator Program,” ITPA Diagnostic Meeting, General Atomics, Jun. 4-7, 2013, 18 pages.
Lin, Jianliang, et al.,—“Diamond like carbon films deposited by HiPIMS using oscillatory voltage pulses,” Surface & Coatings Technology 258, 2014, published by Elsevier B.V., pp. 1212-1222.
Japanese Office Action for Application No. 2021-198264 dated Mar. 7, 2023.
Taiwan Office Action for 112114518 dated Jan. 16, 2024.
Related Publications (1)
Number Date Country
20210183681 A1 Jun 2021 US
Divisions (1)
Number Date Country
Parent 15710753 Sep 2017 US
Child 16714144 US
Continuations (1)
Number Date Country
Parent 16714144 Dec 2019 US
Child 17186873 US