This application claims the priority benefit of French patent application number 09/54846, filed on Jul. 10, 2009, entitled “SURFACE-MOUNTED SILICON CHIP,” which is hereby incorporated by reference to the maximum extent allowable by law.
1. Field of the Invention
The present invention relates to the field of integrated circuits and more specifically to the protection of a semiconductor chip against shocks.
The present invention more specifically relates to surface-mounted semiconductor chips, that is, semiconductor chips having their connection pads supporting conductive protrusions intended to be directly placed against metal areas of a support such as a printed circuit board, this type of mounting being generally called a flip-chip mounting.
2. Discussion of the Related Art
In a flip-chip mounting, to reduce the bulk, bare chips having their surfaces only coated with a thin insulating layer such as a silicon oxide layer are used.
Packaged chips, which are then bulky, are also used.
The present invention typically relates to substantially square or rectangular chips having dimensions ranging between 0.4 mm and 3 cm.
This type of mounting has been widely developed but experience has shown that it has a high risk of being defective. It has, in particular, been noted that the balls crack at their installation on the printed circuit or after mounting on the printed circuit when the device containing the printed circuit is submitted to shocks (for example, when the chip is mounted in a cell phone printed circuit and the user drops his phone on a hard surface). The ball cracking causes misconnections and an immediate failure of the circuit, or a progressive failure after some time of use.
An object of embodiments of the present invention is to protect surface-mounted chips against the consequences of shocks and more specifically against defects of the connection balls connecting the chip pads to tracks of a printed circuit.
The applicants carried out many trials and found a solution, which comprises coating the front and rear surfaces of the chip with a loaded thermosetting epoxy resin of selected composition, these layers having thicknesses selected within precise ranges.
More specifically, an embodiment of the present invention provides a silicon chip surface mounted via balls attached to its front surface, wherein the front and rear surfaces of the chip are covered with a thermosetting epoxy resin having the following characteristics:
the resin contains a proportion ranging from 45 to 60% by weight of a load formed of carbon fiber particles with a maximum size of 20 μm and with its largest portion having a diameter ranging between 2 and 8 μm,
on the front surface side, the loaded resin covers from 45 to 60% of the ball height,
on the rear surface side, the loaded resin has a thickness ranging between 80 and 150 μm.
According to an embodiment of the present invention, the resin has, after set-up, a Young's modulus ranging between 1 and 7 GPa.
According to an embodiment of the present invention, the balls have diameters ranging from 200 to 300 μm.
According to an embodiment of the present invention, the balls comprise a solder alloy of tin-silver-copper type, the proportion by weight of silver and copper being smaller than 10%, for example, 1% of silver and 0.5% of copper.
According to an embodiment of the present invention, the resin results from a compression molding.
The foregoing objects, features, and advantages of the present invention will be discussed in detail in the following non-limiting description of specific embodiments in connection with the accompanying drawings.
As usual in the representation of microelectronic components, the various drawings are not to scale and are only intended to assist with the understanding of the present invention.
The pads may be uniformly distributed as shown in the front view of
A thermosetting resin layer 11 is deposited on the front surface side of the chip to let a protrusion of each of balls 5 emerge. A thermosetting resin layer 13 is deposited on the rear surface side of chip 1.
The two thermosetting resin layers are epoxy resin layers loaded with carbon fiber bits. The carbon fiber bits have a length smaller than 20 μm and have, as a large majority, a diameter ranging between 2 and 8 μm.
Loaded epoxy resin layer 11 formed on the front surface of the chip has a thickness (e2) capable of covering from 45 to 60% of the height of the balls attached to the chip, preferably from 50 to 55%. Thus, for 300-μm balls, having a height with respect to the chip after attachment on the order of 250 μm, the resin layer will have a thickness on the order of 125 μm. Loaded epoxy resin layer 13 arranged on the rear surface of the chip is preferably formed of the same resin, loaded in the same way as resin layer 11 deposited on the front surface. As will be seen hereafter, resin layers 11 and 13 are deposited on the chips while they are still assembled in a single wafer, before dicing of this wafer. Resin layer 13 is essentially used to balance the tensile stress that may be applied to the wafer, for example after resin anneal operations, which would tend to cause a warpage of the wafer, thus adversely affecting the subsequent dicing operations. Thus, rear surface layer 13 will have a thickness (e3) on the same order of magnitude as front surface 11. Layer 13 will have a thickness greater than 50 μm and smaller than 200 μm, preferably ranging between 80 and 150 μm.
Further, the nature of the loaded thermosetting epoxy resin is selected so that, once loaded as indicated hereabove, and after setting, its Young's modulus ranges between 1 and 7 GPa.
Given the characteristics of the resin, it has appeared to be extremely difficult to form the resin layers with conventional injection molding techniques. The applicant has examined and successfully attempted to carry out a compression molding process.
In
In
The mold in the closed and compressed state is shown in
In this compression molding, resin dose 20 applied at the step illustrated in
An advantage of this compression process is that there is no segregation of the loads (carbon fiber bits), which are regularly distributed in the spread resin.
The application of resin to the rear surface of the wafer may be performed similarly by a compression process.
The applicants have carried out impact tests on the balls with chips formed as described hereabove and with chips in which there was a protection layer of a thickness smaller than half the ball thickness, or a protection layer having a thickness on the order of half the ball thickness, but with no loaded resin.
It has then been acknowledged that while most prior devices would exhibit ball defects after a number of shocks smaller than 10, the device such as disclosed herein would only exhibit ball defects after a number of shocks greater than 30.
Specific embodiments of the present invention have been described. Various alterations, modifications, and improvements will occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and the scope of the present invention. Accordingly, the foregoing description is by way of example only and is not intended to be limiting. The present invention is limited only as defined in the following claims and the equivalents thereto.
Number | Date | Country | Kind |
---|---|---|---|
09 54846 | Jul 2009 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
5075376 | Furuta et al. | Dec 1991 | A |
5933713 | Farnworth | Aug 1999 | A |
6054222 | Takami et al. | Apr 2000 | A |
6518090 | Dotta et al. | Feb 2003 | B2 |
6908784 | Farnworth et al. | Jun 2005 | B1 |
7025905 | Morii et al. | Apr 2006 | B2 |
7947362 | Hara et al. | May 2011 | B2 |
20010003049 | Fukasawa et al. | Jun 2001 | A1 |
20040102029 | Key et al. | May 2004 | A1 |
20040183215 | Fujieda et al. | Sep 2004 | A1 |
20040222522 | Homma | Nov 2004 | A1 |
20050167827 | Hayashi | Aug 2005 | A1 |
20090054577 | Uchida et al. | Feb 2009 | A1 |
20090326140 | Shimada et al. | Dec 2009 | A1 |
20110052979 | Bouillon et al. | Mar 2011 | A1 |
20110186993 | Kobayashi et al. | Aug 2011 | A1 |
20110284903 | Loh et al. | Nov 2011 | A1 |
20120085579 | Tatsuzawa et al. | Apr 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20110006423 A1 | Jan 2011 | US |