Thin module system and method

Information

  • Patent Grant
  • 7480152
  • Patent Number
    7,480,152
  • Date Filed
    Tuesday, December 7, 2004
    19 years ago
  • Date Issued
    Tuesday, January 20, 2009
    15 years ago
Abstract
A flexible circuit is populated with integrated circuits. Integrated circuits populated on the side of the flexible circuit closest to the substrate are disposed, at least partially, in what are, in a preferred embodiment, windows, pockets, or cutaway areas in the substrate. In a preferred embodiment, the overall module profile does not, consequently, include the thickness of the substrate. Other embodiments may only populate one side of the flexible circuit or may only remove enough substrate material to reduce but not eliminate the entire substrate contribution to overall profile. The flex circuit may be aligned using tooling holes in the flex circuit and substrate. The flexible circuit may exhibit one or two or more conductive layers, and may have changes in the layered structure or have split layers. Other embodiments may stagger or offset the ICs.
Description
FIELD

The present invention relates to systems and methods for creating high density circuit modules.


BACKGROUND

The well-known DIMM (Dual In-line Memory Module) board has been used for years, in various forms, to provide memory expansion. A typical DIMM includes a conventional PCB (printed circuit board) with memory devices and supporting digital logic devices mounted on both sides. The DIMM is typically mounted in the host computer system by inserting a contact-bearing edge of the DIMM into a card edge connector. Systems that employ DIMMs provide, however, very limited profile space for such devices and conventional DIMM-based solutions have typically provided only a moderate amount of memory expansion.


There are several known methods to improve the limited capacity of a DIMM or other circuit board. In one strategy, for example, small circuit boards (daughter cards) are connected to the DIMM to provide extra mounting space. The additional connection may cause, however, flawed signal integrity for the data signals passing from the DIMM to the daughter card and the additional thickness of the daughter card(s) increases the profile of the DIMM.


Multiple die packages (MDP) are also used to increase DIMM capacity while preserving profile conformity. This scheme increases the capacity of the memory devices on the DIMM by including multiple semiconductor die in a single device package. The additional heat generated by the multiple die typically requires, however, additional cooling capabilities to operate at maximum operating speed. Further, the MDP scheme may exhibit increased costs because of increased yield loss from packaging together multiple die that are not fully pre-tested.


Stacked packages are yet another strategy used to increase circuit board capacity. This scheme increases capacity by stacking packaged integrated circuits to create a high-density circuit module for mounting on the circuit board. In some techniques, flexible conductors are used to selectively interconnect packaged integrated circuits. Staktek Group L.P. has developed numerous systems for aggregating CSP (chipscale packaged) devices in space saving topologies. The increased component height of some stacking techniques may alter, however, system requirements such as, for example, required cooling airflow or the minimum spacing around a circuit board on its host system.


What is needed, therefore, are methods and structures for providing high capacity circuit boards in thermally efficient, reliable designs that perform well at higher frequencies but still approach profile minimums.


SUMMARY

A flexible circuit is populated with integrated circuits. Integrated circuits populated on the side of the flexible circuit closest to the substrate are disposed, at least partially, in what are, in a preferred embodiment, windows, pockets, or cutaway areas in the substrate. In a preferred embodiment, the overall module profile does not, consequently, include the thickness of the substrate. Other embodiments may only populate one side of the flexible circuit or may only remove enough substrate material to reduce but not eliminate the entire substrate contribution to overall profile. The flex circuit may be aligned using tooling holes in the flex circuit and substrate. The flexible circuit may exhibit one or two or more conductive layers, and may have changes in the layered structure or have split layers. Other embodiments may stagger or offset the ICs.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a contact-bearing first side of a flex circuit devised in accordance with a preferred embodiment of the present invention.



FIG. 2 depicts the second side of the flex circuit of FIG. 1.



FIG. 3 depicts a cross-sectional view of a module assembly devised in accordance with a preferred embodiment of the present invention.



FIG. 4 is an enlarged view of the area marked “A” in FIG. 3.



FIG. 5 is an enlarged view of a portion of one preferred embodiment.



FIG. 6 depicts an exemplar contact-bearing first side of a flex circuit devised in accordance with a preferred embodiment of the present invention.



FIG. 7 depicts the second side of the flex circuit of FIG. 6.



FIG. 8 depicts an exemplar substrate formed to be employed with the exemplar flex circuit depicted in FIGS. 6 and 7.



FIG. 9 depicts a view along the line A-A shown in FIG. 8 with flex circuit 12 combined with substrate 14.



FIG. 10 is another depiction of a relationship between flex circuit 12, and a substrate 14 which has been patterned or window in accordance with a preferred embodiment.



FIG. 11 depicts exemplar substrate 14 employed in FIG. 10 before being combined with populated flex circuit 12 as viewed along a line through windows 250 of substrate 14.



FIG. 12 depicts from another perspective the substrate depicted in FIG. 11.



FIG. 13 depicts another embodiment having thinned portions of the substrate.



FIG. 14 depicts yet another embodiment of the present invention.



FIG. 15 depicts another embodiment of the invention having additional ICs.



FIG. 16 depicts yet another embodiment of the present invention.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS


FIGS. 1 and 2 depict opposing sides 8 and 9, respectively, of a preferred flex circuit 12 (“flex”, “flex circuitry”, “flexible circuit”) used in constructing a module according to an embodiment of the present invention. Flex circuit 12 is preferably made from one or more conductive layers supported by one or more flexible substrate layers as further described with reference to later Figs. The construction of flex circuitry is known in the art. The entirety of the flex circuit 12 may be flexible or, as those of skill in the art will recognize, the flexible circuit structure 12 may be made flexible in certain areas to allow conformability to required shapes or bends, and rigid in other areas to provide rigid and planar mounting surfaces. Preferred flex circuit 12 has openings 17 for use in aligning flex circuit 12 to substrate 14 during assembly.


ICs 18 on flexible circuit 12 are, in this embodiment, chip-scale packaged memory devices. For purposes of this disclosure, the term chip-scale or “CSP” shall refer to integrated circuitry of any function with an array package providing connection to one or more die through contacts (often embodied as “bumps” or “balls” for example) distributed across a major surface of the package or die. CSP does not refer to leaded devices that provide connection to an integrated circuit within the package through leads emergent from at least one side of the periphery of the package such as, for example, a TSOP.


Embodiments of the present invention may be employed with leaded or CSP devices or other devices in both packaged and unpackaged forms but where the term CSP is used, the above definition for CSP should be adopted. Consequently, although CSP excludes leaded devices, references to CSP are to be broadly construed to include the large variety of array devices (and not to be limited to memory only) and whether die-sized or other size such as BGA and micro BGA as well as flip-chip. As those of skill will understand after appreciating this disclosure, some embodiments of the present invention may be devised to employ stacks of ICs each disposed where an IC 18 is indicated in the exemplar Figs.


Multiple integrated circuit die may be included in a package depicted as a single IC 18. While in this embodiment memory ICs are used to provide a memory expansion board or module, and various embodiments may include a variety of integrated circuits and other components. Such variety may include microprocessors, FPGA's, RF transceiver circuitry, digital logic, as a list of non-limiting examples, or other circuits or systems which may benefit from a high-density circuit board or module capability. Circuit 19 depicted between ICs 18 may be a memory buffer or controller.


The depiction of FIG. 1 shows two pluralities of ICs 18 along side 8 of flex circuit 12, the pluralities or sets of ICs being referenced in FIG. 1 as ICR1 and ICR2. Contact arrays are disposed beneath ICs 18 and circuits 19 to provide conductive pads for interconnection to the ICs 18. An exemplar contact array 11A is shown as is exemplar IC 18 to be mounted at contact array 11A as depicted. The contact arrays 11A that correspond to an IC row (e.g., ICR1) may be considered a contact array set. Between the rows ICR1 and ICR2 of ICs 18, flex circuit 12 has two rows (CR1 and CR2) of module contacts 20. When flex circuit 12 is folded as depicted in later FIGS. 3 and 4, side 8 depicted in FIG. 1 is presented at the outside of module 10. The opposing side 9 of flex circuit 12 (FIG. 2) is on the inside in the configurations of FIGS. 3 and 4. Other embodiments may have other numbers of rows and there may be only one such row.



FIG. 2 depicts another two pluralities of ICs 18 along side 9 of flex circuit 12 referenced as ICR3 and ICR4. Various discrete components such as termination resistors, bypass capacitors, and bias resistors may also be mounted on each of sides 8 and 9 of flex 12. Such discrete components are not shown to simplify the drawing. Flex circuit 12 may also depicted with reference to its perimeter edges, two of which are typically long (PElong1 and PElong2) and two of which are typically shorter (PEshort1 and PEshort2) Other embodiments may employ flex circuits 12 that are not rectangular in shape and may be square in which case the perimeter edges would be of equal size or other convenient shape to adapt to manufacturing particulars. However, rectangular shapes for flex circuit 12 assist in providing a low profile for a preferred module devised with use of flex circuit 12.



FIG. 1 depicts exemplar conductive traces 21 connecting rows CR1 and CR2 of module contacts 20 to ICs 18. Only a few exemplar traces are shown to simplify the drawing. Traces 21 may also connect to vias that may transit to other conductive layers of flex 12 in certain embodiments having more than one conductive layer. Shown is a via 23 connecting a signal trace from circuit 19 to a trace 25 disposed on another conductive layer of flex 12 as illustrated by the dotted line of trace 25. In a preferred embodiment, vias connect ICs 18 on side 9 of flex 12 (FIG. 2) to module contacts 20. Traces 21 and 25 may make other connections between the ICs on either side of flex 12 and may traverse the rows of module contacts 20 to interconnect ICs. Together the various traces and vias make interconnections needed to convey data and control signals to the various ICs. Those of skill will understand that the present invention may be implemented with only a single row of module contacts 20 and may, in other embodiments be implemented as a module bearing ICs on only one side of flex circuit 12 or with fewer or greater numbers of ICs 18 or rows of ICs 18.



FIG. 3 is a cross section view of a module 10 devised in accordance with a preferred embodiment of the present invention. Module 10 is populated with ICs 18 having top surfaces 18T and bottom surfaces 18B. Substrate 14 or support structure has first and second perimeter edges 16A and 16B appearing in the depiction of FIG. 3 as ends. Substrate or support structure 14 typically has first and second lateral sides S1 and S2. Flex 12 is wrapped about perimeter edge 16A of substrate 14, which in the depicted embodiment, provides the basic shape of a common DIMM board form factor such as that defined by JEDEC standard MO-256. Those of skill will recognize that transitting flex circuit 12 about support structure or substrate 14 as depicted separates a first set of CSPs from a second set of CSPs based upon which lateral side of substrate 14 with which the CSPs are then associated.


The inner pair of the four depicted ICs 18 pass through windows 250 in substrate 14 as shown in later Figs. in further detail and the inner ICs 18 are preferably attached to each other's upper surfaces 18T with a thermally conductive adhesive 30. While in this embodiment, the four depicted ICs are attached to flex circuit 12 in opposing pairs, fewer or greater numbers of ICs may be connected in other arrangements such as, for example, staggered or offset arrangements they may exhibit preferred thermal characteristics. Further, while only CSP packaged ICs are shown, other ICs and components may be employed such as leaded devices. In a preferred embodiment, ICs 18 will be memory CSPs and various discrete components such as, for example, resistors and capacitors will also be mounted on flex circuit 12. To simplify the drawing, the discrete components are not shown.


In this embodiment, flex circuit 12 has module contacts 20 positioned in a manner devised to fit in a circuit board card edge connector or socket and connect to corresponding contacts in the connector (not shown). While module contacts 20 are shown protruding from the surface of flex circuit 12, other embodiments may have flush contacts or contacts below the surface level of flex 12. Substrate 14 supports module contacts 20 from behind flex circuit 12 in a manner devised to provide the mechanical form required for insertion into a socket. In other embodiments, the thickness or shape of substrate 14 in the vicinity of perimeter edge 16A may differ from that in the vicinity of perimeter edge 16B. Substrate 14 in the depicted embodiment is preferably made of a metal such as aluminum or copper, as non-limiting examples, or where thermal management is less of an issue, materials such as FR4 (flame retardant type 4) epoxy laminate, PTFE (poly-tetra-fluoro-ethylene) or plastic. In another embodiment, advantageous features from multiple technologies may be combined with use of FR4 having a layer of copper on both sides to provide a substrate 14 devised from familiar materials which may provide heat conduction or a ground plane.



FIG. 4 is an enlarged view of the area marked ‘A’ in FIG. 3. Edge 16A of substrate 14 is shaped like a male side edge of an edge card connector. While a particular oval-like configuration is shown, edge 16A may take on other shapes devised to mate with various connectors or sockets. The form and function of various edge card connectors are well know in the art. In many preferred embodiments, flex 12 is wrapped around edge 16A of substrate 14 and may be laminated or adhesively connected to substrate 14 with adhesive 30. The depicted adhesive 30 and flex 12 may vary in thickness and are not drawn to scale to simplify the drawing. The depicted substrate 14 has a thickness such that when assembled with the flex 12 and adhesive 30, the thickness measured between module contacts 20 falls in the range specified for the mating connector. In some other embodiments, flex circuit 12 may be wrapped about perimeter edge 16B or both perimeter edges 16A and 16B of substrate 14. In other instances, multiple flex circuits may be employed or a single flex circuit may connect one or both sets of contacts 20 to the resident ICs.



FIG. 5 is an enlarged view of a portion of one preferred embodiment showing lower IC 181 and upper IC 182. In this embodiment, conductive layer 66 of flex circuit 12 contains conductive traces connecting module contacts 20 to BGA contacts 63 on ICs 181 and 182. The number of layers may be devised in a manner to achieve the bend radius required in those embodiments that bend flex circuit 12 around edge 16A (FIG. 4) or 16B, for example. The number of layers in any particular portion of flex circuit 12 may also be devised to achieve the necessary connection density given a particular minimum trace width associated with the flex circuit technology used. Some flex circuits 12 may have three or four or more conductive layers. Such layers may be beneficial to route signals for applications such as, for example, a FB-DIMM (fully-buffered DIMM) which may have fewer DIMM input/output signals than a registered DIMM, but may have more interconnect traces required among devices on the DIMM, such as, for example, the C/A copy A and C/A copy B (command/address) signals produced by an FB-DIMM advanced memory buffer (AMB).


In this embodiment, there are three layers of flex circuit 12 between the two depicted ICs 181 and 182. Conductive layers 64 and 66 express conductive traces that connect to the ICs and may further connect to other discrete components (not shown). Preferably, the conductive layers are metal such as, for example, copper or alloy 110. Vias such as the exemplar vias 23 connect the two conductive layers 64 and 66 and thereby enable connection between conductive layer 64 and module contacts 20. In this preferred embodiment having a three-layer portion of flex circuit 12, the two conductive layers 64 and 66 may be devised in a manner so that one of them has substantial area employed as a ground plane. The other layer may employ substantial area as a voltage reference plane. The use of plural conductive layers provides advantages and the creation of a distributed capacitance intended to reduce noise or bounce effects that can, particularly at higher frequencies, degrade signal integrity, as those of skill in the art will recognize. If more than two conductive layers are employed, additional conductive layers may be added with insulating layers separating conductive layers. Portions of flex circuit 12 may in some embodiments be rigid portions (rigid-flex). Construction of rigid-flex circuitry is known in the art.


With the construction of an embodiment such as that shown in FIG. 5, thermal energy will be urged to move between the respective ICs 181. Thus, the ICs become a thermal mass sharing the thermal load. Flex circuit 12 may be particularly devised to operate as a heat spreader or sink adding to the thermal conduction out of ICs 181 and 182.



FIG. 6 depicts an exemplar contact-bearing first side of a flex circuit devised in accordance with a preferred embodiment of the present invention. As those of skill will understand, the depiction of FIG. 6 is simplified to show more clearly the principles of the invention but depicts fewer ICs 18 than would typically be presented on a flex circuit 12 devised for use in embodiments of the present invention. An embodiment with more ICs 18 is shown in FIG. 1. The principles of the present invention may, however, be employed where only one IC 18 is resident on a side of a flex circuit 12 or where multiple rows or sets of ICS are resident on a side of flex circuit 12.



FIG. 7 depicts the second side of the flex circuit of FIG. 6. FIG. 7, in the interests of clarity, illustrates the embodiment with fewer ICs 18 than would typically be employed in an actual embodiment of the invention devised in accord with the principles described herein.



FIG. 8 depicts an exemplar substrate formed to be employed with the exemplar flex circuit depicted in FIG. 7. The second side 9 of flex circuit 12 shown in FIG. 7 is folded about substrate 14 shown in FIG. 8 to place ICs 18 into the windows 250 arrayed along substrate 14. This results in ICs along rows ICR3 and ICR4 being disposed back to back within windows 250. Preferably, a thermally conductive adhesive or glue is used on the upper sides of ICs 18 to encourage thermal energy flow as well as provide some mechanical advantages. Those of skill will recognize that in this embodiment, where FIG. 6 depicts the first or, in this case, the outer side of the flex circuit once combined with substrate 14, the flex circuit itself will have staggered mounting arrays 11A on side 8 of flex circuit 12 relative to side 9 of flex circuit 12. This is merely one relative arrangement between ICs 18 on respective sides of substrate 14.



FIG. 9 depicts a view along the line A-A shown in FIG. 8 with flex circuit 12 combined with substrate 14. As shown in FIG. 8, ICs 18 which are on second side 9 (which in this depiction is the inner side with respect to the module 10) of populated flex circuit 12 are disposed in windows 250 so that the upper surfaces 18T of ICs 18 of row ICR3 are in close proximity with the upper surfaces 18T of ICs 18 of row ICR4. Thus, these first and second groups of ICs (CSPs in the depiction) are positioned in the cutaway areas of the first and second lateral sides, respectively, of substrate 14. In this case, the cutaway areas on each lateral side of substrate 14 are in spatial coincidence to create windows 250. Those of skill will recognize that the depiction is not to scale but representative of the interrelationships between the elements and the arrangement results in a profile “P” for module 10 that is significantly smaller than it would have been without fitting ICs 18 along inner side 9 of flex circuit 12 into windows 250. Profile P in this case is approximately the sum of the distances between the upper and lower surfaces of IC 18 plus 4× the diameter of the BGA contacts 63 plus 2× the thickness of flex circuit 12 in addition to any adhesive layers 30 employed to adhere one IC 18 to another. This profile dimension will vary depending upon whether BGA contacts 63 are disposed below the surface of flex circuit 12 to reach an appropriate conductive layer or contacts which typically are a part of flex circuit 12.



FIG. 10 is another depiction of the relationship between flex circuit 12, and a substrate 14 which has been patterned or windowed with cutaway areas. The view of FIG. 10 is taken along a line that would intersect the bodies of ICs 18. In FIG. 10, as those of skill will recognize, ICs 18 that comprise row or group ICR3 are staggered relative to those that comprise row or group ICR4 of second side 9 of flex circuit 12 when module 10 is assembled and flex circuit 12 is combined with substrate 14. This staggering may result in some construction benefits providing a mechanical “step” for ICs 18 as they are fitted into substrate 14 and may further provide some thermal advantages increasing the contact area between substrate 14 and the plurality of ICs 18.



FIG. 11 depicts exemplar substrate 14 employed in FIG. 10 before being combined with populated flex circuit 12 as viewed along a line through windows 250 of substrate 14. As depicted in FIG. 11, a number of cutaway areas or pockets are delineated with dotted lines and identified with references 250B3 and 250B4, respectively. Those areas identified as 250B3 correspond, in this example, to the pockets, sites, or cutaway areas on one side of substrate 14 into which ICs 18 from ICR3 of flex circuit 12 will be disposed when substrate 14 and flex circuit 12 are combined. Those pocket, sites, or cutaway areas identified as references 250B4 correspond to the sites into which ICs 18 from ICR4 will be disposed. In alternate embodiments, there may be more than one row of ICs 18 disposed on a single side of substrate 14.


For purposes herein, the term window may refer to an opening all the way through substrate 14 across span “S” which corresponds to the width or height dimension of packaged IC 18, or it may also refer to that opening where cutaway areas on each of the two sides of substrate 14 overlap.



FIG. 12 depicts the substrate 14 previously depicted in FIG. 11 along the line represented by C. Where cutaway areas 250B3 and 250B4 overlap, there are, as depicted, windows all the way through substrate 14. In some embodiments, cutaway areas 250B3 and 250B4 may not overlap or in other embodiments, there may be pockets or cutaway areas only on one side of substrate 14. Those of skill will recognize that cutaway areas such as those identified with references 250B3 and 250B4 may be formed in a variety of ways depending on the material of substrate 14 and need not literally be “cut” away but may be formed by a variety of molding, milling and cutting processes as is understood by those in the field.



FIG. 13 depicts another module having a thinned portion of substrate 14. In this embodiment, substrate 14 has a first thickness 1 toward edge 16A devised to provide support for an edge and surrounding area of module assembly 10 as may be needed for connection to a card edge connector. Above the portion of substrate 14 with thickness 1 is a portion 92 having thickness 2.



FIG. 14 depicts another embodiment of the present invention. Depicted extension 112 of substrate 14 extends beyond the top of flex 12 and is shaped to provide additional surface area for convective cooling. Such shape may be achieved by methods such as, for example, milling or extrusion, which are both known in the art. Preferably, extruded aluminum is used for substrate 14 in this and similar embodiments. The embodiment depicted in FIG. 14 employs two flex circuits 12A and 12B thus presenting an embodiment in which the flex circuit does not wrap about end 16A of substrate 14. The innermost ICs 18 are shown disposed in windows with their respective upper surfaces 18T connected with an adhesive 30 which is preferably thermally conductive.



FIG. 15 depicts another embodiment of the invention having additional ICs 18. In this embodiment, four flex level transitions 26 connect to four mounting portions 28 of flex circuits 12A1, 12A2, 12B1, and 12B2. Each mounting portion 28 has ICs 18 on both sides. Flex circuitry 12 may also be provided in this configuration by, for example, having a split flex with layers interconnected with vias. As depicted, module 10 of FIG. 15 exhibits eight (8) ICs 18 coincident with a single window site 250 in substrate 14. Consequently, as those of skill will recognize, the possibilities for large capacity iterations of module 10 are magnified by such strategies and the same principles may be employed where the ICs 18 on one side of substrate 14 are staggered relative to those ICs 18 on the other side of substrate 14.


Four flex circuits are employed in module 10 as depicted in FIG. 15 and, although those embodiments that wrap flex circuit 12 about end 16A of substrate 14 present manufacturing efficiencies, in some environments having flex circuitry separate from each other on respective sides S1 and S2 of substrate 14 may be desirable.



FIG. 16 depicts another embodiment in which flex circuit 12 connects ICs 18 fitted on respective sides into windows 250 and connected face to face with BGA contacts 63 facing each other on opposite sides of flex circuit 12 which is split at juncture 50 into flex circuits 12S1 and 12S2 that convey signals from ICs 18 to module contacts 20.


One advantageous methodology for efficiently assembling a circuit module 10 such as described and depicted herein is as follows. In a preferred method of assembling a preferred module assembly 10, flex circuit 12 is placed flat and both sides populated according to circuit board assembly techniques known in the art. Flex circuit 12 is then folded about end 16A of substrate 14 as ICs 18 are fitted into respective cutout areas of substrate 14. Tooling holes 17 may be used to align flex 12 to substrate 14. Flex 12 may be laminated or otherwise attached to substrate 14.


Although the present invention has been described in detail, it will be apparent to those skilled in the art that many embodiments taking a variety of specific forms and reflecting changes, substitutions and alterations can be made without departing from the spirit and scope of the invention. The described embodiments illustrate but do not restrict the scope of the claims.

Claims
  • 1. A circuit module comprising: a flex circuit having a first side and a second side and two rows of plural contacts which are adapted for connection to an edge connector and disposed along the first side of the flex circuit;a first plurality of CSPs mounted along the second side of the flex circuit;a rigid substrate having first and second opposing lateral sides and a bottom edge, the rigid substrate having at least one window passing therethrough, and within which at least one window is at least partially disposed at least one CSP of the first plurality of CSPs mounted along the second side of the flex circuit, the flex circuit being disposed about the bottom edge of the rigid substrate to position the two rows of plural contacts proximal to said bottom edge with each of the two rows of plural contacts being disposed so as to be supported by the first and second opposing lateral sides of the rigid substrate, respectively.
  • 2. The circuit module of claim 1 further comprising a first outer plurality of CSPs, the first outer plurality of CSPs being mounted along the first side of the flex circuit.
  • 3. The circuit module of claim 2 further comprising a second outer plurality of CSPs, the second outer plurality of CSPs being mounted along the first side of the flex circuit.
  • 4. The circuit module of claim 1 in which the upper surfaces of respective CSPs which comprise the first plurality of CSPs are adhered together.
  • 5. A circuit module comprising: a flex circuit having edge connector contacts adapted for connection to an edge connector socket, the flex circuit further having a first side and a second side along which second side are mounted a first group and a second group of CSPs;a rigid substrate having a first lateral side and a second lateral side and a bottom edge, the rigid substrate having one or more windows that pass through the rigid substrate, the flex circuit being disposed about the bottom edge of the rigid substrate to position individual ones of the first group of CSPs into the one or more windows of the rigid substrate from the first lateral side of the rigid substrate and position individual ones of the second group of CSPs into the one or more windows of the rigid substrate from the second lateral side of the rigid substrate so as to contact the individual ones of the first group of CSPs positioned into the one or more windows of the rigid substrate from the first lateral side of the rigid substrate.
  • 6. A circuit module comprising: (a) a flex circuit having an inner side and an outer side;(b) plural CSPs mounted along the inner side and the outer side of the flex circuit;(c) a bend in the flex circuit between first and second portions of the flex circuit, the flex circuit having first and second rows of edge connector contacts disposed on the outer side of the flex circuit with the first row of edge connector contacts being disposed on the first portion of the flex circuit and the second row of edge connector contacts being disposed on the second portion of the flex circuit; and(d) a rigid substrate having a first lateral side and a second lateral side and a bottom edge about which the flex circuit transits through the bend to dispose the first and second rows of edge connector contacts proximal to the bottom edge of the rigid substrate with the first row of edge connector contacts being supported by the first lateral side of the rigid substrate and the second row of edge connector contacts being supported by the second lateral side of the rigid substrate, the rigid substrate having a first part and a second part, the first part being thinner than the second part, the first part having at least one window passing therethrough, through which at least one window passes at least one of the plural CSPs mounted along the inner side of the flex circuit that transits about the bottom edge of the rigid substrate.
  • 7. A circuit module comprising: a rigid substrate having two opposing lateral sides and a bottom edge and a plurality of windows that pass through the rigid substrate and dimensioned to accept individual CSPs;a flex circuit wrapped around the bottom edge of the rigid substrate, the flex circuit having an inner side and an outer side, the inner and outer sides each having contact sites for mounting CSPs, the flex circuit having plural edge connector contacts adapted for electrical connection of the circuit module to an edge connector;a plurality of CSPs, each of which is mounted to one of the contact sites of the inner side of the flex circuit, at least some of which are disposed through individual ones of the plurality of windows through the rigid substrate.
RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 10/934,027, filed Sep. 3, 2004. U.S. patent application Ser. No. 10/934,027 has been incorporated by reference herein.

US Referenced Citations (352)
Number Name Date Kind
3372310 Kantor Mar 1968 A
3436604 Hyltin Apr 1969 A
3582865 Franck et al. Jun 1971 A
3654394 Gordon Apr 1972 A
3704455 Scarbrough Nov 1972 A
3718842 Abbott, III et al. Feb 1973 A
3727064 Bottini Apr 1973 A
3746934 Stein Jul 1973 A
3766439 Isaacson Oct 1973 A
3772776 Weisenburger Nov 1973 A
4169642 Mouissie Oct 1979 A
4288841 Gogal Sep 1981 A
4342069 Link Jul 1982 A
4429349 Zachry Jan 1984 A
4437235 McIver Mar 1984 A
4513368 Houseman Apr 1985 A
4547834 Dumont et al. Oct 1985 A
4567543 Miniet Jan 1986 A
4587596 Bunnell May 1986 A
4645944 Uya Feb 1987 A
4656605 Clayton Apr 1987 A
4672421 Lin Jun 1987 A
4682207 Akasaki et al. Jul 1987 A
4696525 Coller et al. Sep 1987 A
4709300 Landis Nov 1987 A
4724611 Hagihara Feb 1988 A
4727513 Clayton Feb 1988 A
4733461 Nakano Mar 1988 A
4739589 Brehm et al. Apr 1988 A
4763188 Johnson Aug 1988 A
4771366 Blake et al. Sep 1988 A
4821007 Fields et al. Apr 1989 A
4823234 Konishi et al. Apr 1989 A
4833568 Berhold May 1989 A
4850892 Clayton et al. Jul 1989 A
4862249 Carlson Aug 1989 A
4911643 Perry et al. Mar 1990 A
4953060 Lauffer et al. Aug 1990 A
4956694 Eide Sep 1990 A
4972580 Nakamura Nov 1990 A
4982265 Watanabe et al. Jan 1991 A
4983533 Go Jan 1991 A
4985703 Kaneyama Jan 1991 A
4992849 Corbett et al. Feb 1991 A
4992850 Corbett et al. Feb 1991 A
5014115 Moser May 1991 A
5014161 Lee et al. May 1991 A
5016138 Woodman May 1991 A
5025306 Johnson et al. Jun 1991 A
5034350 Marchisi Jul 1991 A
5041015 Travis Aug 1991 A
5053853 Haj-Ali-Ahmadi et al. Oct 1991 A
5065277 Davidson Nov 1991 A
5099393 Bentlage et al. Mar 1992 A
5104820 Go et al. Apr 1992 A
5109318 Funari et al. Apr 1992 A
5117282 Salatino May 1992 A
5119269 Nakayama Jun 1992 A
5138430 Gow, III et al. Aug 1992 A
5138434 Wood et al. Aug 1992 A
5140405 King et al. Aug 1992 A
5159535 Desai et al. Oct 1992 A
5173840 Kodai et al. Dec 1992 A
5191404 Wu et al. Mar 1993 A
5208729 Cipolla et al. May 1993 A
5214845 King et al. Jun 1993 A
5219377 Poradish Jun 1993 A
5222014 Lin Jun 1993 A
5224023 Smith et al. Jun 1993 A
5229916 Frankeny et al. Jul 1993 A
5229917 Harris et al. Jul 1993 A
5239198 Lin et al. Aug 1993 A
5241454 Ameen et al. Aug 1993 A
5241456 Marcinkiewicz et al. Aug 1993 A
5247423 Lin et al. Sep 1993 A
5252857 Kane et al. Oct 1993 A
5259770 Bates et al. Nov 1993 A
5261068 Gaskins et al. Nov 1993 A
5268815 Cipolla et al. Dec 1993 A
5276418 Klosowiak et al. Jan 1994 A
5281852 Normington Jan 1994 A
5289062 Wyland Feb 1994 A
5309986 Itoh May 1994 A
5313097 Haj-Ali-Ahmadi et al. May 1994 A
5347428 Carson et al. Sep 1994 A
5375041 McMahon Dec 1994 A
5386341 Olson et al. Jan 1995 A
5394300 Yoshimura Feb 1995 A
5397916 Normington Mar 1995 A
5400003 Kledzik Mar 1995 A
5428190 Stopperan Jun 1995 A
5438224 Papageorge et al. Aug 1995 A
5448511 Paurus et al. Sep 1995 A
5477082 Buckley, III et al. Dec 1995 A
5491612 Nicewarner, Jr. et al. Feb 1996 A
5502333 Bertin et al. Mar 1996 A
5523619 McAllister et al. Jun 1996 A
5523695 Lin Jun 1996 A
5541812 Burns Jul 1996 A
5572065 Burns Nov 1996 A
5600178 Russell Feb 1997 A
5612570 Eide et al. Mar 1997 A
5631193 Burns May 1997 A
5642055 Difrancesco Jun 1997 A
5644161 Burns Jul 1997 A
5646446 Nicewarner et al. Jul 1997 A
5654877 Burns Aug 1997 A
5661339 Clayton Aug 1997 A
5686730 Laudon et al. Nov 1997 A
5708297 Clayton Jan 1998 A
5714802 Cloud et al. Feb 1998 A
5717556 Yanagida Feb 1998 A
5729894 Rostoker et al. Mar 1998 A
5731633 Clayton Mar 1998 A
5739887 Ueda et al. Apr 1998 A
5744862 Ishii Apr 1998 A
5751553 Clayton May 1998 A
5754409 Smith May 1998 A
5764497 Mizumo Jun 1998 A
5776797 Nicewarner, Jr. et al. Jul 1998 A
5789815 Tessier et al. Aug 1998 A
5790447 Laudon et al. Aug 1998 A
5802395 Connolly et al. Sep 1998 A
5805422 Otake et al. Sep 1998 A
5828125 Burns Oct 1998 A
5835988 Ishii Nov 1998 A
5869353 Levy et al. Feb 1999 A
5899705 Akram May 1999 A
5917709 Johnson et al. Jun 1999 A
5925934 Lim Jul 1999 A
5926369 Ingraham et al. Jul 1999 A
5949657 Karabatsos Sep 1999 A
5953214 Dranchak et al. Sep 1999 A
5953215 Karabatsos Sep 1999 A
5959839 Gates Sep 1999 A
5963427 Bolleson Oct 1999 A
5973395 Suzuki et al. Oct 1999 A
5995370 Nakamori Nov 1999 A
6002167 Hatano et al. Dec 1999 A
6002589 Perino et al. Dec 1999 A
6008538 Akram et al. Dec 1999 A
6014316 Eide Jan 2000 A
6021048 Smith Feb 2000 A
6028352 Eide Feb 2000 A
6028365 Akram et al. Feb 2000 A
6034878 Osaka et al. Mar 2000 A
6038132 Tokunaga et al. Mar 2000 A
6040624 Chambers et al. Mar 2000 A
6049975 Clayton Apr 2000 A
6060339 Akram et al. May 2000 A
6072233 Corisis et al. Jun 2000 A
6078515 Nielsen et al. Jun 2000 A
6084294 Tomita Jul 2000 A
6091145 Clayton Jul 2000 A
6097087 Farnworth et al. Aug 2000 A
6111757 Dell et al. Aug 2000 A
6121676 Solberg Sep 2000 A
RE36916 Moshayedi Oct 2000 E
6157541 Hacke Dec 2000 A
6172874 Bartilson Jan 2001 B1
6178093 Bhatt et al. Jan 2001 B1
6180881 Isaak Jan 2001 B1
6187652 Chou et al. Feb 2001 B1
6205654 Burns Mar 2001 B1
6208521 Nakatsuka Mar 2001 B1
6208546 Ikeda Mar 2001 B1
6214641 Akram Apr 2001 B1
6215181 Akram et al. Apr 2001 B1
6215687 Sugano et al. Apr 2001 B1
6222737 Ross Apr 2001 B1
6222739 Bhakta et al. Apr 2001 B1
6225688 Kim et al. May 2001 B1
6232659 Clayton May 2001 B1
6233650 Johnson et al. May 2001 B1
6234820 Perino et al. May 2001 B1
6262476 Vidal Jul 2001 B1
6262895 Forthun Jul 2001 B1
6265660 Tandy Jul 2001 B1
6266252 Karabatsos Jul 2001 B1
6281577 Oppermann et al. Aug 2001 B1
6288907 Burns Sep 2001 B1
6288924 Sugano et al. Sep 2001 B1
6300679 Mukerji et al. Oct 2001 B1
6316825 Park et al. Nov 2001 B1
6323060 Isaak Nov 2001 B1
6336262 Dalal et al. Jan 2002 B1
6343020 Lin et al. Jan 2002 B1
6347394 Ochoa et al. Feb 2002 B1
6349050 Woo et al. Feb 2002 B1
6351029 Isaak Feb 2002 B1
6357023 Co et al. Mar 2002 B1
6358772 Miyoshi Mar 2002 B2
6360433 Ross Mar 2002 B1
6368896 Farnworth et al. Apr 2002 B2
6370668 Garrett, Jr. et al. Apr 2002 B1
6376769 Chung Apr 2002 B1
6392162 Karabatsos May 2002 B1
6404043 Isaak Jun 2002 B1
6410857 Gonya Jun 2002 B1
6426240 Isaak Jul 2002 B2
6426549 Isaak Jul 2002 B1
6426560 Kawamura et al. Jul 2002 B1
6428360 Hassanzadeh et al. Aug 2002 B2
6433418 Fujisawa et al. Aug 2002 B1
6444921 Wang et al. Sep 2002 B1
6446158 Karabatsos Sep 2002 B1
6449159 Haba Sep 2002 B1
6452826 Kim et al. Sep 2002 B1
6459152 Tomita et al. Oct 2002 B1
6462412 Kamei et al. Oct 2002 B2
6465877 Farnworth et al. Oct 2002 B1
6465893 Khandros et al. Oct 2002 B1
6472735 Isaak Oct 2002 B2
6473308 Forthun Oct 2002 B2
6486544 Hashimoto Nov 2002 B1
6489687 Hashimoto Dec 2002 B1
6502161 Perego et al. Dec 2002 B1
6514793 Isaak Feb 2003 B2
6521984 Matsuura Feb 2003 B2
6528870 Fukatsu et al. Mar 2003 B2
6531772 Akram et al. Mar 2003 B2
6544815 Isaak Apr 2003 B2
6552910 Moon et al. Apr 2003 B1
6552948 Woo et al. Apr 2003 B2
6560117 Moon May 2003 B2
6566746 Isaak et al. May 2003 B2
6572387 Burns et al. Jun 2003 B2
6573593 Syri et al. Jun 2003 B1
6576992 Cady et al. Jun 2003 B1
6588095 Pan Jul 2003 B2
6590282 Wang et al. Jul 2003 B1
6600222 Levardo Jul 2003 B1
6614664 Lee Sep 2003 B2
6627984 Bruce et al. Sep 2003 B2
6629855 North et al. Oct 2003 B1
6646936 Hamamatsu et al. Nov 2003 B2
6660561 Forthun Dec 2003 B2
6661092 Shibata et al. Dec 2003 B2
6677670 Kondo Jan 2004 B2
6683377 Shim et al. Jan 2004 B1
6690584 Uzuka et al. Feb 2004 B2
6699730 Kim et al. Mar 2004 B2
6720652 Akram et al. Apr 2004 B2
6721181 Pfeifer et al. Apr 2004 B1
6721185 Dong et al. Apr 2004 B2
6721226 Woo et al. Apr 2004 B2
6744656 Sugano et al. Jun 2004 B2
6751113 Bhakta et al. Jun 2004 B2
6756661 Tsuneda et al. Jun 2004 B2
6760220 Canter et al. Jul 2004 B2
6762942 Smith Jul 2004 B1
6768660 Kong et al. Jul 2004 B2
6833981 Suwabe et al. Dec 2004 B2
6833984 Belgacem Dec 2004 B1
6839266 Garrett, Jr. et al. Jan 2005 B1
6841868 Akram et al. Jan 2005 B2
6850414 Benisek et al. Feb 2005 B2
6873534 Bhakta et al. Mar 2005 B2
6878571 Isaak et al. Apr 2005 B2
6884653 Larson Apr 2005 B2
6914324 Rapport et al. Jul 2005 B2
6919626 Burns Jul 2005 B2
6956284 Cady et al. Oct 2005 B2
7053478 Roper et al. May 2006 B2
7094632 Cady et al. Aug 2006 B2
7180167 Partridge et al. Feb 2007 B2
7289327 Goodwin et al. Oct 2007 B2
20010001085 Hassanzadeh et al. May 2001 A1
20010006252 Kim et al. Jul 2001 A1
20010013423 Dalal et al. Aug 2001 A1
20010015487 Forthun Aug 2001 A1
20010026009 Tsuneda et al. Oct 2001 A1
20010028588 Yamada et al. Oct 2001 A1
20010035572 Isaak Nov 2001 A1
20010040793 Inaba Nov 2001 A1
20010052637 Akram et al. Dec 2001 A1
20020001216 Sugano et al. Jan 2002 A1
20020006032 Karabatsos Jan 2002 A1
20020030995 Shoji Mar 2002 A1
20020076919 Peters et al. Jun 2002 A1
20020094603 Isaak Jul 2002 A1
20020101261 Karabatsos Aug 2002 A1
20020139577 Miller Oct 2002 A1
20020164838 Moon et al. Nov 2002 A1
20020180022 Emoto Dec 2002 A1
20020185731 Akram et al. Dec 2002 A1
20020196612 Gall et al. Dec 2002 A1
20030002262 Benisek et al. Jan 2003 A1
20030026155 Yamagata Feb 2003 A1
20030035328 Hamamatsu et al. Feb 2003 A1
20030045025 Coyle et al. Mar 2003 A1
20030049886 Salmon Mar 2003 A1
20030064548 Isaak Apr 2003 A1
20030081387 Schulz May 2003 A1
20030081392 Cady et al. May 2003 A1
20030089978 Miyamoto et al. May 2003 A1
20030090879 Doblar et al. May 2003 A1
20030096497 Moore et al. May 2003 A1
20030109078 Takahashi et al. Jun 2003 A1
20030116835 Miyamoto et al. Jun 2003 A1
20030159278 Peddle Aug 2003 A1
20030168725 Warner et al. Sep 2003 A1
20030234443 Partridge et al. Dec 2003 A1
20040000708 Rapport et al. Jan 2004 A1
20040012991 Kozaru Jan 2004 A1
20040021211 Darnberg Feb 2004 A1
20040099938 Kang et al. May 2004 A1
20040150107 Cha et al. Aug 2004 A1
20040229402 Cady et al. Nov 2004 A1
20040236877 Burton Nov 2004 A1
20040256731 Mao et al. Dec 2004 A1
20040262737 Haba Dec 2004 A1
20050018412 Roper et al. Jan 2005 A1
20050047776 Watanabe et al. Mar 2005 A1
20050057911 Rapport et al. Mar 2005 A1
20050082663 Wakiyama et al. Apr 2005 A1
20050108468 Hazelzet et al. May 2005 A1
20050133897 Baek et al. Jun 2005 A1
20050146031 Partridge et al. Jul 2005 A1
20050242423 Partridge et al. Nov 2005 A1
20050263911 Igarashi et al. Dec 2005 A1
20060020740 Bartley et al. Jan 2006 A1
20060048385 Cady et al. Mar 2006 A1
20060049500 Goodwin Mar 2006 A1
20060049502 Goodwin et al. Mar 2006 A1
20060049512 Goodwin Mar 2006 A1
20060049513 Goodwin Mar 2006 A1
20060050488 Goodwin Mar 2006 A1
20060050489 Wehrly et al. Mar 2006 A1
20060050492 Goodwin et al. Mar 2006 A1
20060050496 Goodwin Mar 2006 A1
20060050497 Goodwin Mar 2006 A1
20060050498 Cady et al. Mar 2006 A1
20060053345 Goodwin Mar 2006 A1
20060083043 Cypher Apr 2006 A1
20060090102 Wehrly et al. Apr 2006 A1
20060091529 Wehrly et al. May 2006 A1
20060095592 Borkenhagen May 2006 A1
20060111866 LeClerg et al. May 2006 A1
20060125067 Wehrly et al. Jun 2006 A1
20060129888 Szewerenko et al. Jun 2006 A1
20060198238 Partridge et al. Sep 2006 A1
20060203442 Goodwin Sep 2006 A1
20060250780 Goodwin Nov 2006 A1
20060261449 Rapport et al. Nov 2006 A1
20070111606 Goodwin May 2007 A1
20070115017 Goodwin et al. May 2007 A1
20070126124 Rapport et al. Jun 2007 A1
20070126125 Rapport et al. Jun 2007 A1
20070176286 Wehrly, Jr. Aug 2007 A1
20070201208 Goodwin et al. Aug 2007 A1
20070258217 Roper et al. Nov 2007 A1
Foreign Referenced Citations (22)
Number Date Country
122-687 (A) Oct 1984 EP
0 298 211 Jan 1989 EP
1 119049 Jul 2001 EP
2 130 025 May 1984 GB
53-85159 Jul 1978 JP
58-96756 (A) Jun 1983 JP
3-102862 Apr 1991 JP
5-29534 (A) Feb 1993 JP
5-335695 (A) Dec 1993 JP
2821315 (B2) Nov 1998 JP
2001077294 (A) Mar 2001 JP
2001085592 (A) Mar 2001 JP
2001332683 (A) Nov 2001 JP
2002009231 (A) Jan 2002 JP
2003037246 (A) Feb 2003 JP
2003086760 (A) Mar 2003 JP
2003086761 (A) Mar 2003 JP
2003309246 (A) Oct 2003 JP
2003347503 (A) Dec 2003 JP
WO03037053 May 2003 WO
WO 03037053 May 2003 WO
WO 2004109802 Dec 2004 WO
Related Publications (1)
Number Date Country
20060050496 A1 Mar 2006 US
Continuation in Parts (1)
Number Date Country
Parent 10934027 Sep 2004 US
Child 11005992 US