Thin stackable package and method

Abstract
A fan out buildup substrate stackable package includes an electronic component having an active surface having bond pads. A package body encloses the electronic component. A first die side buildup dielectric layer is applied to the active surface of the electronic component and to a first surface of the package body. A first die side circuit pattern is formed on the first die side buildup dielectric layer and electrically connected to the bond pads. Through vias extend through the package body and the first die side buildup dielectric layer, the through vias being electrically connected to the first die side circuit pattern. The fan out buildup substrate stackable package is extremely thin and provides a high density interconnect on both sides of the package allowing additional devices to be stacked thereon.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present application relates to the field of electronics, and more particularly, to methods of forming electronic component packages and related structures.


2. Description of the Related Art


To reduce the size of electronic devices such as cell phones, it is desirable to minimize the thickness of electronic component packages used within the electronic devices as well as the mounting area required to mount the electronic component packages. Often, electronic component packages are stacked one upon another to reduce the mounting area required for the electronic component packages as compared to mounting the electronic component packages in a side by side arrangement. Unfortunately, stacking the electronic component packages results in an undesirable increased thickness as compared to mounting the electronic component packages in a side by side arrangement.


SUMMARY OF THE INVENTION

A fan out buildup substrate stackable package includes an electronic component having an active surface having bond pads. A package body encloses the electronic component. A first die side buildup dielectric layer is applied to the active surface of the electronic component and to a first surface of the package body. A first die side circuit pattern is formed on the first die side buildup dielectric layer and electrically connected to the bond pads. Through vias extend through the package body and the first die side buildup dielectric layer, the through vias being electrically connected to the first die side circuit pattern. The fan out buildup substrate stackable package is extremely thin and provides a high density interconnect on both sides of the package allowing additional devices to be stacked thereon.


These and other features of the present invention will be more readily apparent from the detailed description set forth below taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional view of a fan out buildup substrate stackable package during fabrication in accordance with one embodiment;



FIGS. 2, 3, 4 are cross-sectional views of the fan out buildup substrate stackable package of FIG. 1 at later stages during fabrication in accordance with various embodiments;



FIG. 5 is a cross-sectional view of the fan out buildup substrate stackable package of FIG. 3 at a later stage during fabrication in accordance with another embodiment;



FIGS. 6, 7, 8 are cross-sectional views of the fan out buildup substrate stackable package of FIG. 4 at later stages during fabrication in accordance with various embodiments;



FIGS. 9, 10 are cross-sectional views of stacked assemblies formed with the fan out buildup substrate stackable package of FIG. 8 in accordance with various embodiments;



FIG. 11 is a cross-sectional view of a stacked assembly formed with two fan out buildup substrate stackable packages in accordance with one embodiment;



FIGS. 12, 13 are cross-sectional views of stacked assemblies formed with the fan out buildup substrate stackable package of FIG. 8 in accordance with various embodiments;



FIG. 14 is a cross-sectional view of a fan out buildup substrate stackable package during fabrication in accordance with another embodiment;



FIGS. 15, 16, 17 are cross-sectional views of the fan out buildup substrate stackable package of FIG. 14 at later stages during fabrication in accordance with various embodiments;



FIG. 18 is a cross-sectional view of a stacked assembly formed with the fan out buildup substrate stackable package of FIG. 17 in accordance with one embodiment;



FIG. 19 is a cross-sectional view of a stacked assembly formed with the fan out buildup substrate stackable package of FIG. 17 in accordance with yet another embodiment;



FIG. 20 is a cross-sectional view of a fan out buildup substrate stackable package during fabrication in accordance with another embodiment;



FIGS. 21, 22 are cross-sectional views of the fan out buildup substrate stackable package of FIG. 20 at later stages during fabrication in accordance with various embodiments;



FIG. 23 is a cross-sectional view of a fan out buildup substrate stackable package during fabrication in accordance with another embodiment;



FIGS. 24, 25, 26 are cross-sectional views of the fan out buildup substrate stackable package of FIG. 23 at later stages during fabrication in accordance with various embodiments; and



FIG. 27 is a cross-sectional view of a stacked assembly formed with two fan out buildup substrate stackable packages in accordance with one embodiment.





In the following description, the same or similar elements are labeled with the same or similar reference numbers.


DETAILED DESCRIPTION


FIG. 1 is a cross-sectional view of a fan out buildup substrate stackable package 100 during fabrication in accordance with one embodiment. Referring now to FIG. 1, an electronic component 102 is mounted to a carrier 104, sometimes called a support panel.


In one embodiment, electronic component 102 is an integrated circuit chip, e.g., an active component. However, in other embodiments, electronic component 102 is a passive component such as a capacitor, resistor, or inductor.


In accordance with this embodiment, electronic component 102 includes an active surface 106 and an opposite inactive surface 108. Electronic component 102 further includes bond pads 110 formed on active surface 106 and sides 112 extending between active surface 106 and inactive surface 108.


In one embodiment, carrier 104 includes an adhesive on an upper, e.g., first, surface 104U of carrier 104. Carrier 104 further includes a lower, e.g., second, surface 104L.


Active surface 106 of electronic component 102 is pressed into upper surface 104U of carrier 104 and thus sticks to carrier 104. However, in other embodiments, an adhesive is applied to active surface 106 of electronic component 102, and this adhesive is pressed into carrier 104 to stick electronic component 102 to carrier 104.



FIG. 2 is a cross-sectional view of fan out buildup substrate stackable package 100 of FIG. 1 at a later stage during fabrication in accordance with one embodiment. Referring now to FIG. 2, electronic component 102 is encapsulated in a dielectric package body 214.


Illustratively, electronic component 102 and carrier 104 are placed into a mold and mold compound is injected into the mold and around electronic component 102. This mold compound hardens to form package body 214. Thus, in accordance with this embodiment, package body 214 is formed of mold compound. However, in other embodiments, package body 214 is formed of other dielectric materials such as hardened liquid encapsulant.


Package body 214 includes a lower, e.g., first, surface 214L attached to upper surface 104U of carrier 104 and an upper, e.g., second, surface 214U. Package body 214 completely encloses electronic component 102 including inactive surface 108 and sides 112 and the exposed portion of upper surface 104U of carrier 104. Lower surface 214L is coplanar with active surface 106 of electronic component 102.


Package body 214 is thicker having a thickness T1 greater than a thickness T2 of electronic component 102. More particularly, upper surface 214U is above and spaced apart from inactive surface 108 such that inactive surface 108 is covered in package body 214.



FIG. 3 is a cross-sectional view of fan out buildup substrate stackable package 100 of FIG. 2 at a later stage during fabrication in accordance with one embodiment. Referring now to FIGS. 2 and 3 together, package body 214 is ground down from upper surface 214U to expose inactive surface 108 of electronic component 102. In one embodiment, inactive surface 108 is also ground down thus thinning both package body 214 and electronic component 102.


After thinning, upper surface 214U of package body 214 and inactive surface 108 of electronic component 102 are parallel and coplanar. Although various features may be described as being parallel, coplanar, perpendicular, or having other relationships, in light of this disclosure, those of skill in the art will understand that the features may not be exactly parallel, coplanar, perpendicular, but only substantially parallel, coplanar, perpendicular to within accepted manufacturing tolerances.


Further, after grinding, package body 214 and electronic component 102 have an equal thickness T3 less than thicknesses T1, T2 prior to grinding. Thinning package body 214 and electronic component 102 minimizes the overall thickness of fan out buildup substrate stackable package 100. Generally, fan out buildup substrate stackable package 100 is extremely thin resulting in extremely thin stacked assemblies. Grinding of package body 214 and electronic component 102 is optional, and in one embodiment, is not performed.


Package body 214 is a relatively rigid material allowing carrier 104 (FIG. 2) to be removed as illustrated in FIG. 3. In various embodiments, carrier 104 is removed by peeling, etching, grinding, or other removal technique.


Referring now to FIG. 3, a first die side buildup dielectric layer 316 is applied to lower surface 214L of package body 214 and active surface 106 of electronic component 102 including bond pads 110. More particularly, an upper, e.g., first, surface 316U is applied to lower surface 214L of package body 214 and active surface 106 of electronic component 102. First die side buildup dielectric layer 316 further includes a lower, e.g., second, surface 316L.


Further, a first mold side buildup dielectric layer 318 is applied to upper surface 214U of package body 214. In the case where inactive surface 108 of electronic component 102 is exposed, first mold side buildup dielectric layer 318 is also applied to inactive surface 108. More particularly, a lower, e.g., first, surface 318L of first mold side buildup dielectric layer 318 is applied to upper surface 214U of package body 214 and inactive surface 108 of electronic component 102. First mold side buildup dielectric layer 318 further includes an upper, e.g., second, surface 318U.


As further illustrated in FIG. 3, after first die side buildup dielectric layer 316 and first mold side buildup dielectric layer 318 are applied, mold side to die side via apertures 320 are formed. Via apertures 320 extend entirely through first mold side buildup dielectric layer 318, package body 214, and first die side buildup dielectric layer 316. In one embodiment, via apertures 320 are formed by laser ablating through first mold side buildup dielectric layer 318, package body 214, and first die side buildup dielectric layer 316.


Further, bond pad via apertures 322 are formed e.g., using laser ablation, entirely through first die side buildup dielectric layer 316. Bond pad via apertures 322 extend through first die side buildup dielectric layer 316 and to bond pads 110. Bond pads 110 are exposed through bond pad via apertures 322.



FIG. 4 is a cross-sectional view of fan out buildup substrate stackable package 100 of FIG. 3 at a later stage during fabrication in accordance with one embodiment. Referring now to FIGS. 3 and 4 together, an electrically conductive first die side circuit pattern 424 is formed. First die side circuit pattern 424 is sometimes called a redistribution layer (RDL).


First die side circuit pattern 424 includes electrically conductive bond pad vias 426 formed within bond pad via apertures 322. Bond pad vias 426 are electrically connected to bond pads 110.


First die side circuit pattern 424 further includes electrically conductive lands 428 and electrically conductive traces 430. In accordance with this embodiment, lands 428 and traces 430 are formed on lower surface 316L of first die side buildup dielectric layer 316. Traces 430 electrically connect bond pad vias 426 with lands 428.


Further, an electrically conductive first mold side circuit pattern 432 is formed. First mold side circuit pattern 432 includes electrically conductive lands 434 and electrically conductive traces 436. In accordance with this embodiment, lands 434 and traces 436 are formed on upper surface 318U of first mold side buildup dielectric layer 318. Traces 436 are electrically connected to lands 434.


In one embodiment, first mold side circuit pattern 432 includes shielding regions, e.g., relatively large regions of planar electrically conductive material that shields electronic component 102.


Further, electrically conductive mold side to die side through vias 438 are formed in via apertures 320 and extend entirely through first mold side buildup dielectric layer 318, package body 214, and first die side buildup dielectric layer 316. Through vias 438 electrically connect first die side circuit pattern 424, e.g., lands 428 thereof, to first mold side circuit pattern 432, e.g., lands 434 thereof.


In one embodiment, first die side circuit pattern 424, first mold side circuit pattern 432, and through vias 438 are simultaneously formed by plating an electrically conductive material such as copper. In one embodiment, lower and upper resists are applied to first die side buildup dielectric layer 316 and first mold side buildup dielectric layer 318 and patterned to form circuit pattern artifacts therein, e.g., positive images of first die side circuit pattern 424 and first mold side circuit pattern 432. The circuit pattern artifacts formed within the upper and lower resists as well as via apertures 320 are filled with the electrically conductive material to form first die side circuit pattern 424, first mold side circuit pattern 432, and through vias 438.


In another embodiment, an electrically conductive material is plated to fill via apertures 320 and to cover first die side buildup dielectric layer 316 and first mold side buildup dielectric layer 318. The electrically conductive material on first die side buildup dielectric layer 316 and first mold side buildup dielectric layer 318 is then selectively etched to form first die side circuit pattern 424 and first mold side circuit pattern 432, respectively.


As set forth above, first die side circuit pattern 424, e.g., lands 428 and traces 430 thereof, is formed on lower surface 316L of first die side buildup dielectric layer 316. Similarly, first mold side circuit pattern 432, e.g., lands 434 and traces 436 thereof, is formed on upper surface 318U of first mold side buildup dielectric layer 318.


However, in another embodiment, first die side circuit pattern 424, e.g., lands 428 and traces 430 thereof, is embedded into first die side buildup dielectric layer 316 at lower surface 316L. Similarly, first mold side circuit pattern 432, e.g., lands 434 and traces 436 thereof, is embedded into first mold side buildup dielectric layer 318 at upper surface 318U. Generally, first die side circuit pattern 424 contacts first die side buildup dielectric layer 316 and first mold side circuit pattern 432 contacts first mold side buildup dielectric layer 318.


In accordance with this embodiment, circuit pattern artifacts, e.g., positive images of first die side circuit pattern 424 and first mold side circuit pattern 432, are formed in first die side buildup dielectric layer 316 at lower surface 316L and in first mold side buildup dielectric layer 318 at upper surface 318U, respectively. The circuit pattern artifacts are formed using laser ablation, for example.


The circuit pattern artifacts formed within first die side buildup dielectric layer 316 and in first mold side buildup dielectric layer 318 as well as via apertures 320 are filled with the electrically conductive material to form first die side circuit pattern 424, first mold side circuit pattern 432, and through vias 438. First die side circuit pattern 424 and first mold side circuit pattern 432 are embedded within first die side buildup dielectric layer 316 and first mold side buildup dielectric layer 318, respectively.


In another embodiment, one or more of first die side circuit pattern 424, first mold side circuit pattern 432, and through vias 438 are formed in separate operations.


In yet another embodiment, first mold side buildup dielectric layer 318 is not formed. In accordance with this embodiment, first mold side circuit pattern 432 is formed directly on upper surface 214U of package body 214 and on inactive surface 108 of electronic component 102 in the case where inactive surface 108 is exposed.


As illustrated in FIG. 4, through vias 438 completely fill via apertures 320. In accordance with this embodiment, through vias 438 are formed in a single plating operation which fills via apertures 320 with electrically conductive material to form through vias 438. However, as discussed below in reference to FIG. 5, in another embodiment, via apertures 320 are filled in two or more operations.



FIG. 5 is a cross-sectional view of fan out buildup substrate stackable package 100 of FIG. 3 at a later stage during fabrication in accordance with another embodiment. Referring now to FIGS. 3 and 5 together, in accordance with this embodiment, through vias 438A include electrically conductive sidewall layers 540 and electrically conductive fillings 542.


Sidewall layers 540 are formed directly on sidewalls 544 of via apertures 320. Illustratively, sidewall layers 540 are formed, e.g., by plating, simultaneously with first die side circuit pattern 424 and/or first mold side circuit pattern 432. Sidewall layers 540 do not completely fill via apertures 320 such that voids exist within sidewall layers 540. These voids are filled with fillings 542. Illustratively, fillings 542 are formed of electrically conductive solder, adhesive, or other electrically conductive material.


Although through vias similar to through vias 438 of FIG. 4 are illustrated in the remaining figures, in light of this disclosure, those of skill in the art will understand that through vias similar to through vias 438A of FIG. 5 are used in alternative embodiments.



FIG. 6 is a cross-sectional view of fan out buildup substrate stackable package 100 of FIG. 4 at a later stage during fabrication in accordance with another embodiment. Referring now to FIG. 6, a second die side buildup dielectric layer 646 is applied to lower surface 316L of first die side buildup dielectric layer 316 and to first die side circuit pattern 424.


More particularly, an upper, e.g., first, surface 646U of second die side buildup dielectric layer 646 is applied to lower surface 316L of first die side buildup dielectric layer 316 and first die side circuit pattern 424. Second die side buildup dielectric layer 646 further includes a lower, e.g., second, surface 646L.


Further, a second mold side buildup dielectric layer 648 is applied to upper surface 318U of first mold side buildup dielectric layer 318 and to first mold side circuit pattern 432. More particularly, a lower, e.g., first, surface 648L of second mold side buildup dielectric layer 648 is applied to upper surface 318U of first mold side buildup dielectric layer 318 and to first mold side circuit pattern 432. Second mold side buildup dielectric layer 648 further includes an upper, e.g., second, surface 648U.


As further illustrated in FIG. 6, die side blind via apertures 650 are formed in second die side buildup dielectric layer 646. Die side blind via apertures 650 extend entirely through second die side buildup dielectric layer 646 to expose first die side circuit pattern 424, e.g., lands 428 thereof. In one embodiment, die side blind via apertures 650 are formed by laser ablating through second die side buildup dielectric layer 646, although other blind via aperture formation techniques are used in other embodiments.


Similarly, mold side blind via apertures 652 are formed in second mold side buildup dielectric layer 648. Mold side blind via apertures 652 extend entirely through second mold side buildup dielectric layer 648 to expose first mold side circuit pattern 432, e.g., lands 434 thereof. In one embodiment, mold side blind via apertures 652 are formed by laser ablating through second mold side buildup dielectric layer 648, although other blind via aperture formation techniques are used in other embodiments.



FIG. 7 is a cross-sectional view of fan out buildup substrate stackable package 100 of FIG. 6 at a later stage during fabrication in accordance with another embodiment. Referring now to FIGS. 6 and 7 together, an electrically conductive second die side circuit pattern 754 is formed.


Second die side circuit pattern 754 includes electrically conductive die side blind vias 756 formed within die side blind via apertures 650. Die side blind vias 756 are electrically connected to first die side circuit pattern 424, e.g., lands 428 thereof.


Second die side circuit pattern 754 further includes electrically conductive lands 758 and electrically conductive traces 760. In accordance with this embodiment, lands 758 and traces 760 are formed on lower surface 646L of second die side buildup dielectric layer 646. Traces 760 electrically connect die side blind vias 756 with lands 758.


Further, an electrically conductive second mold side circuit pattern 762 is formed. Second mold side circuit pattern 762 includes electrically conductive mold side blind vias 764 formed within mold side blind via apertures 652. Mold side blind vias 764 are electrically connected to first mold side circuit pattern 432, e.g., lands 434 thereof.


Second mold side circuit pattern 762 further includes electrically conductive lands 766 and electrically conductive traces 768. In accordance with this embodiment, lands 766 and traces 768 are formed on upper surface 648U of second mold side buildup dielectric layer 648. Traces 768 electrically connect mold side blind vias 764 with lands 766.


In one embodiment, second die side circuit pattern 754 and second mold side circuit pattern 762 are simultaneously formed by plating an electrically conductive material such as copper. In one embodiment, lower and upper resists are applied to second die side buildup dielectric layer 646 and second mold side buildup dielectric layer 648 and patterned to form circuit pattern artifacts therein, e.g., positive images of second die side circuit pattern 754 and second mold side circuit pattern 762. The circuit pattern artifacts formed within the upper and lower resists are filled with the electrically conductive material to form second die side circuit pattern 754 and second mold side circuit pattern 762.


In another embodiment, an electrically conductive material is plated to fill blind via apertures 650, 652 and to cover second die side buildup dielectric layer 646 and second mold side buildup dielectric layer 648. The electrically conductive material on second die side buildup dielectric layer 646 and second mold side buildup dielectric layer 648 is then selectively etched to form second die side circuit pattern 754 and second mold side circuit pattern 762, respectively.


As set forth above, second die side circuit pattern 754, e.g., lands 758 and traces 760 thereof, is formed on lower surface 646L of second die side buildup dielectric layer 646. Similarly, second mold side circuit pattern 762, e.g., lands 766 and traces 768 thereof, is formed on upper surface 648U of second mold side buildup dielectric layer 648.


However, in another embodiment, second die side circuit pattern 754, e.g., lands 758 and traces 760 thereof, is embedded into second die side buildup dielectric layer 646 at lower surface 646L. Similarly, second mold side circuit pattern 762, e.g., lands 766 and traces 768 thereof, is embedded into second mold side buildup dielectric layer 648 at upper surface 648U. Generally, second die side circuit pattern 754 contacts second die side buildup dielectric layer 646 and second mold side circuit pattern 762 contacts second mold side buildup dielectric layer 648.


In accordance with this embodiment, circuit pattern artifacts, e.g., positive images of second die side circuit pattern 754 and second mold side circuit pattern 762, are formed in second die side buildup dielectric layer 646 at lower surface 646L and in second mold side buildup dielectric layer 648 at upper surface 648U, respectively. The circuit pattern artifacts are formed using laser ablation, for example.


The circuit pattern artifacts formed within second die side buildup dielectric layer 646 and in second mold side buildup dielectric layer 648 are filled with the electrically conductive material to form second die side circuit pattern 754 and second mold side circuit pattern 762. Second die side circuit pattern 754 and second mold side circuit pattern 762 are embedded within second die side buildup dielectric layer 646 and second mold side buildup dielectric layer 648, respectively.


In another embodiment, second die side circuit pattern 754 and second mold side circuit pattern 762 are formed in separate operations.


Although first die side circuit pattern 424, first mold side circuit pattern 432, second die side circuit pattern 754, and second mold side circuit pattern 762 are set forth as containing particular features, e.g., bond pad vias, lands, traces, and blind vias, in light of this disclosure, those of skill in the art will understand that circuit patterns can be formed with other and/or different features depending on the particular signal routing desired.


As further illustrated in FIG. 7, a dielectric lower solder mask 770 is applied to lower surface 646L of second die side buildup dielectric layer 646. Lower solder mask 770 is patterned to form lower land openings 772 in lower solder mask 770. Lower land openings 772 expose lands 758 of second die side circuit pattern 754.


Similarly, a dielectric upper solder mask 774 is applied to upper surface 648U of second mold side buildup dielectric layer 648. Upper solder mask 774 is patterned to form upper land openings 776 in upper solder mask 774. Upper land openings 776 expose lands 766 of second mold side circuit pattern 762.



FIG. 8 is a cross-sectional view of fan out buildup substrate stackable package 100 of FIG. 7 at a later stage during fabrication in accordance with another embodiment. Referring now to FIGS. 7 and 8 together, lower interconnection balls 878, e.g., solder, are formed on lands 758 and in lower land opening 772 of lower solder mask 770. Similarly, upper interconnection balls 880, e.g., solder, are formed on lands 766 and in upper land opening 776 of upper solder mask 774.


Interconnection balls 878, 880 are distributed in Ball Grid Arrays (BGAs) in one embodiment. Interconnection balls 878, 880 are reflowed, i.e., heated to a melt and re-solidified, to mount fan out buildup substrate stackable package 100 to another structure such as a printed circuit motherboard and/or to mount stacked devices upon fan out buildup substrate stackable package 100 as discussed further below.


The formation of interconnection balls 878, 880 is optional. In one embodiment, lower interconnection balls 878 are not formed. In another embodiment, upper interconnection balls 880 are not formed. In yet another embodiment, neither lower interconnection balls 878 nor upper interconnection balls 880 are formed.


In one embodiment, a plurality of fan out buildup substrate stackable package 100 are formed simultaneously in an array using the methods as described above. The array is singulated to singulate the individual fan out buildup substrate stackable package 100 from one another.



FIG. 9 is a cross-sectional view of a stacked assembly 900 formed with fan out buildup substrate stackable package 100 of FIG. 8 in accordance with one embodiment. Referring now to FIG. 9, a stacked electronic component 902 is mold side stacked upon fan out buildup substrate stackable package 100.


In one embodiment, stacked electronic component 902 is an integrated circuit chip, e.g., an active component. However, in other embodiments, stacked electronic component 902 is a passive component such as a capacitor, resistor, or inductor. Stacked electronic component 902 is sometimes called a stacked device.


In accordance with this embodiment, stacked electronic component 902 includes an active surface 906 and an opposite inactive surface 908. Stacked electronic component 902 further includes bond pads 910 formed on active surface 906.


Bond pads 910 are flip chip mounted to second mold side circuit pattern 762, e.g., lands 766 thereof, by flip chip bumps 912. Flip chip bumps 912, e.g., solder, are formed by ref lowing upper interconnection balls 880 (see FIG. 8) of fan out buildup substrate stackable package 100 in accordance with one embodiment. In another embodiment, bond pads 910 are bumped, e.g., have solder bumps formed thereon, and the solder bumps are reflowed to physically and electrically mount stacked electronic component 902 to second mold side circuit pattern 762.


Optionally, an underfill 914 is applied between active surface 906 of stacked electronic component 902 and upper solder mask 774 and around flip chip bumps 912.



FIG. 10 is a cross-sectional view of a stacked assembly 1000 formed with fan out buildup substrate stackable package 100 of FIG. 8 in accordance with one embodiment. Referring now to FIG. 10, a stacked electronic component package 1002 is mold side stacked upon fan out buildup substrate stackable package 100. Stacked electronic component package 1002 is sometimes called a stacked device.


In accordance with this embodiment, stacked electronic component package 1002 includes a substrate 1004 having upper traces 1006 and lower traces 1008 formed thereon. Upper traces 1006 are electrically connected to lower traces 1008 through substrate 1004 by vias 1010.


An electronic component 1012, e.g., an integrated circuit die, has an inactive surface 1014 mounted to substrate 1004, e.g. with an adhesive 1015. Bond pads 1016 on an active surface 1018 of electronic component 1012 are electrically connected to upper traces 1006 by electrically conductive bond wires 1020. Electronic component 1012, bond wires 1020, and the exposed surface of substrate 1004 are enclosed in a package body 1022, e.g., encapsulant.


Lower traces 1008, e.g., lands thereof, are physically and electrically mounted to second mold side circuit pattern 762, e.g., lands 766 thereof, by interconnection bumps 1024. Interconnection bumps 1024, e.g., solder, are formed by ref lowing upper interconnection balls 880 (see FIG. 8) of fan out buildup substrate stackable package 100 in accordance with one embodiment. In another embodiment, stacked electronic component package 1002 is a wirebond Ball Grid Array (BGA) package, e.g., has solder bumps formed thereon, and the solder bumps are reflowed to mount stacked electronic component package 1002 to second mold side circuit pattern 762.


As set forth above, in one embodiment, stacked electronic component package 1002 is a wirebond BGA package. However, in other embodiments, other stacked electronic component packages are stacked upon fan out buildup substrate stackable package 100. Illustratively, a stacked electronic component package includes a plurality of integrated circuit dies stacked one upon another. In another embodiment, a stacked electronic component package includes an electronic component mounted in a flip chip configuration. Further, a stacked electronic component package can include any one of a number of different types to substrates, e.g., lead frame, Land Grid Array (LGA), or other substrates. Accordingly, the particular type of stacked electronic component package stacked upon fan out buildup substrate stackable package 100 is not essential to this embodiment.



FIG. 11 is a cross-sectional view of a stacked assembly 1100 formed with two fan out buildup substrate stackable packages 100, 100A in accordance with one embodiment. In accordance with this embodiment, referring now to FIGS. 10 and 11 together, stacked assembly 1000 of FIG. 10 is stacked upon a lower, e.g., second, fan out buildup substrate stackable package 100A.


Lower fan out buildup substrate stackable package 100A is similar or identical to fan out buildup substrate stackable package 100 of FIG. 8. Stacked assembly 1000 is similar or identical to stacked assembly 1000 of FIG. 10 and includes fan out buildup substrate stackable package 100 and stacked electronic component package 1002. In accordance with this embodiment, fan out buildup substrate stackable package 100 is sometimes called an upper, e.g., first, fan out buildup substrate stackable package.


Referring now to FIG. 11, lands 758 of second die side circuit pattern 754 of upper fan out buildup substrate stackable package 100 are mounted to lands 766 of second mold side circuit pattern 762 of lower fan out buildup substrate package 100A by interconnection bumps 1124. Interconnection bumps 1124, e.g., solder, are formed by reflowing upper interconnection balls 880 (see FIG. 8) of fan out buildup substrate stackable package 100A and/or interconnection balls 878 (see FIG. 8) of fan out buildup substrate stackable package 100 in accordance with various embodiments. In this manner, upper fan out buildup substrate stackable package 100 is stacked upon lower fan out buildup substrate package 100A.


Although stacked assembly 1100 includes two fan out buildup substrate stackable packages 100, 100A, in other embodiments, more than two fan out buildup substrate stackable packages are stacked upon one another.



FIG. 12 is a cross-sectional view of a stacked assembly 1200 formed with fan out buildup substrate stackable package 100 of FIG. 8 in accordance with one embodiment. Referring now to FIGS. 9 and 12 together, stacked assembly 1200 of FIG. 12 is similar to stacked assembly 900 of FIG. 9 and only the significant differences between stacked assemblies 1200, 900 are set forth below.


In accordance with this embodiment, fan out buildup substrate stackable package 100 is inverted from the view of FIG. 9 such that lands 758 of second die side circuit pattern 754 are oriented upwards. In accordance with this embodiment, bond pads 910 of electronic component 902 are flip chip physically and electrically mounted to second die side circuit pattern 754, e.g., lands 758 thereof, by flip chip bumps 1212. Flip chip bumps 1212, e.g., solder, are formed by reflowing lower interconnection balls 878 (see FIG. 8) of fan out buildup substrate stackable package 100 in accordance with one embodiment. In another embodiment, bond pads 910 are bumped, e.g., have solder bumps formed thereon, and the solder bumps are reflowed to physically and electrically mount stacked electronic component 902 to second die side circuit pattern 754.


Optionally, an underfill 1214 is applied between active surface 906 of stacked electronic component 902 and lower solder mask 770 and around flip chip bumps 1212.



FIG. 13 is a cross-sectional view of a stacked assembly 1300 formed with fan out buildup substrate stackable package 100 of FIG. 8 in accordance with one embodiment. Referring now to FIGS. 10 and 13 together, stacked assembly 1300 of FIG. 13 is similar to stacked assembly 1000 of FIG. 10 and only the significant differences between stacked assemblies 1300, 1000 are set forth below.


In accordance with this embodiment, fan out buildup substrate stackable package 100 is inverted from the view of FIG. 10 such that lands 758 of second die side circuit pattern 754 are oriented upwards. Lower traces 1008, e.g., lands thereof, of stacked electronic component package 1002 are physically and electrically mounted to second die side circuit pattern 754, e.g., lands 758 thereof, by interconnection bumps 1324. Interconnection bumps 1324, e.g., solder, are formed by ref lowing lower interconnection balls 878 (see FIG. 8) of fan out buildup substrate stackable package 100 in accordance with one embodiment. In another embodiment, stacked electronic component package 1002 is a wirebond Ball Grid Array (BGA) package, e.g., has solder bumps formed thereon, and the solder bumps are reflowed to mount stacked electronic component package 1002 to second die side circuit pattern 754.



FIGS. 9, 10, 11, 12, and 13 provide examples of stacked assemblies formed with fan out buildup substrate stackable package 100 and stacked devices stacked thereon. Although particular examples are set forth above, in light of this disclosure, those of skill in the art will understand that any one of a number of stacked assemblies can be formed using fan out buildup substrate stackable package 100 depending upon the particular stacked configuration desired. Fan out buildup substrate stackable package 100 provides high density interconnects on both sides providing maximum flexibility in allowing additional devices to be stacked thereon.



FIG. 14 is a cross-sectional view of a fan out buildup substrate stackable package 1400 during fabrication in accordance with another embodiment. Fan out buildup substrate stackable package 1400 of FIG. 14 is similar to fan out buildup substrate stackable package 100 of FIG. 3 and only the significant differences between fan out buildup substrate stackable packages 1400, 100 are discussed below.


In accordance with this embodiment, first mold side buildup dielectric layer 318 (see FIG. 3) is not applied. Recall that in fan out buildup substrate stackable package 100 of FIG. 3, first mold side buildup dielectric layer 318 was applied to upper surface 214U of package body 214 and to inactive surface 108 of electronic component 102.


Accordingly, referring now to FIG. 14, upper surface 214U and inactive surface 108 (if not covered by package body 214) are exposed to the ambient environment. Further, via apertures 320 extend through package body 214 and first die side buildup dielectric layer 316 only.



FIG. 15 is a cross-sectional view of fan out buildup substrate stackable package 1400 of FIG. 14 at a later stage during fabrication in accordance with one embodiment. Referring now to FIGS. 14 and 15 together, an electrically conductive first die side circuit pattern 424 is formed. First die side circuit pattern 424 includes bond pad vias 426, lands 428 and traces 430. First die side circuit pattern 424 of FIG. 15 is similar or identical to first die side circuit pattern 424 of FIG. 4, the discussion of which is incorporated herein.


Further, electrically conductive mold side to die side through vias 438 are formed in via apertures 320. Through vias 438 are electrically connected to first die side circuit pattern 424, e.g., lands 428 thereof.


Through vias 438 of FIG. 15 are similar to through vias 438 of FIG. 4, the discussion of which is incorporated herein. However, in accordance with this embodiment, the upper, e.g., first, ends of through vias 438 define mold side lands 1502. In one embodiment, lands 1502 are coplanar and parallel to upper surface 214U of package body 214. In another embodiment, lands 1502 are above or below upper surface 214U of package body 214.



FIG. 16 is a cross-sectional view of fan out buildup substrate stackable package 1400 of FIG. 15 at a later stage during fabrication in accordance with one embodiment. Referring now to FIG. 16, fan out buildup substrate stackable package 1400 includes second die side buildup dielectric layer 646, second die side circuit pattern 754, lower solder mask 770, and, optionally, lower interconnection balls 878.


Second die side buildup dielectric layer 646, second die side circuit pattern 754, lower solder mask 770, and lower interconnection balls 878 of FIG. 16 are similar to second die side buildup dielectric layer 646, second die side circuit pattern 754, lower solder mask 770, and lower interconnection balls 878 of FIG. 8, the discussion of which is incorporated herein.



FIG. 17 is a cross-sectional view of fan out buildup substrate stackable package 1400 of FIG. 16 at a later stage during fabrication in accordance with one embodiment. Referring now to FIGS. 16 and 17 together, optionally, interconnection balls 1704, e.g., solder, are formed on lands 1502. Formation of interconnection balls 1704 is optional, and in one embodiment, interconnection balls 1704 are not formed.


Illustratively, solder is applied to lands 1502 and reflowed to form interconnection balls 1704. In one embodiment, through vias 438 are formed of an electrically conductive material, e.g., copper, that is different than the electrically conductive material of interconnection balls 1704, e.g., solder.


In another embodiment, through vias 438 are formed of an electrically conductive material, e.g., solder, that is the same as the electrically conductive material of interconnection balls 1704, e.g., also solder. During the reflow, through vias 438 and interconnection balls 1704 fuse together. Accordingly, although interconnection balls 1704 are set forth as separate structures from through vias 438, in one embodiment, interconnection balls 1704 and through vias 438 are integral, i.e., are a single structure and not a plurality of separate structures mounted together.



FIG. 18 is a cross-sectional view of a stacked assembly 1800 formed with fan out buildup substrate stackable package 1400 of FIG. 17 in accordance with one embodiment. Referring now to FIG. 18, stacked electronic component 902 is mold side stacked upon fan out buildup substrate stackable package 1400.


Stacked electronic component 902 of FIG. 18 is similar or identical to stacked electronic component 902 of FIG. 9. In accordance with this embodiment, bond pads 910 are flip chip physically and electrically mounted to through vias 438, e.g., lands 1502 thereof, by flip chip bumps 1812. Flip chip bumps 1812, e.g., solder, are formed by ref lowing interconnection balls 1704 (see FIG. 17) of fan out buildup substrate stackable package 1400 in accordance with one embodiment. In another embodiment, bond pads 910 are bumped, e.g., have solder bumps formed thereon, and the solder bumps are ref lowed to physically and electrically mount stacked electronic component 902 to lands 1502 of through vias 438.


Optionally, an underfill 1814 is applied between active surface 906 of stacked electronic component 902 and upper surface 214U of package body 214 (and inactive surface 108 of electronic component 102 if exposed) and around flip chip bumps 1812.



FIG. 19 is a cross-sectional view of a stacked assembly 1900 formed with fan out buildup substrate stackable package 1400 of FIG. 17 in accordance with yet another embodiment. Referring now to FIG. 19, stacked electronic component package 1002 is mold side stacked upon fan out buildup substrate stackable package 1400.


Stacked electronic component package 1002 of FIG. 19 is similar or identical to stacked electronic component package 1002 of FIG. 10. In accordance with this embodiment, lower traces 1008, e.g., lands thereof, of stacked electronic component package 1002 are physically and electrically mounted to through vias 438, e.g., lands 1502 thereof, by interconnection bumps 1924. Interconnection bumps 1924, e.g., solder, are formed by reflowing interconnection balls 1704 (see FIG. 17) of fan out buildup substrate stackable package 1400 in accordance with one embodiment. In another embodiment, stacked electronic component package 1002 is a wirebond Ball Grid Array (BGA) package, e.g., has solder bumps formed thereon, and the solder bumps are ref lowed to mount stacked electronic component package 1002 to lands 1502 of through vias 438.



FIG. 20 is a cross-sectional view of a fan out buildup substrate stackable package 2000 during fabrication in accordance with another embodiment. Referring now to FIG. 20, electronic component 102 including carrier 104 are placed within a mold 2002. Mold 2002 includes a lower, e.g., first, mold half 2004 and an upper, e.g., second, mold half 2006. Upper mold half 2006 includes pins 2008 that protrude from a lower, e.g., first, surface 2006L of upper mold half 2006.


Lower surface 104L of carrier 104 is placed on lower mold half 2004. Upper mold half 2006 is then brought down upon carrier 104 and lower mold half 2004 thus enclosing electronic component 102 and carrier 104 within mold 2002.


In accordance with one embodiment, pins 2008 extend from lower surface 2006L of upper mold half 2006 to upper surface 104U of carrier 104. Illustratively, pin ends 2010 of pins 2008 contact carrier 104 thus preventing mold compound from entering the space between pin ends 2010 and carrier 104.


In accordance with another embodiment, as illustrated by the dashed lines, pin ends 2010 are spaced apart and do not contact carrier 104. In accordance with this embodiment, mold compound will enter the space between pin ends 2010 and carrier 104.


In accordance with this embodiment, pins 2008 taper from lower surface 2006L of upper mold half 2006. More particularly, pins 2008 have a maximum diameter at lower surface 2006L of mold half 2006 and gradually diminish in diameter away from lower surface 2006L of upper mold half 2006 to have a minimum diameter at pin ends 2010 of pins 2008.


Forming pins 2008 with a taper facilitates easy removal of pins 2008 from the mold compound as discussed further below with reference to FIGS. 21, 22. However, in another embodiment, pins 2008 do not taper, e.g., are in the shape of uniform diameter cylinders.


Although carrier 104 is set forth, in another embodiment, electronic component 102 is mounted directly to lower mold half 2004, e.g., with adhesive. In this event, pins 2008 contact lower mold half 2004 or are spaced apart from lower mold half 2004 in a manner similar to that discussed above regarding carrier 104.



FIG. 21 is a cross-sectional view of fan out buildup substrate stackable package 2000 of FIG. 20 at a later stage during fabrication in accordance with one embodiment. Referring now to FIG. 21, mold compound 2112 is injected into mold 2002. More particularly, mold compound 2112 is injected to enclose electronic component 102, the exposed portion of upper surface 104U of carrier 104, and pins 2008.



FIG. 22 is a cross-sectional view of fan out buildup substrate stackable package 2000 of FIG. 21 at a later stage during fabrication in accordance with one embodiment. Referring now to FIGS. 21 and 22 together, mold compound 2112 cures, e.g., cools, to form package body 214. More particularly, after curing of mold compound 2112, fan out buildup substrate stackable package 2000 is removed from mold 2002. Removal of pins 2008 from mold compound 2112 forms via apertures 320 within package body 214. More particularly, via apertures 320 are the empty spaces left in mold compound 2112 from removal of pins 2008.


Via apertures 320 extend entirely through package body 214 in the case where pin ends 2010 contact carrier 104. In the case where pin ends 2010 are spaced apart from carrier 104 as indicated by the dashed line in FIG. 21, via apertures 320 extend through most of package body 214 and a small filet of package body 214 covers the lower end of each via aperture 320 at lower surface 214L.


By using mold 2002 with pins 2008, via apertures 320 are formed during the molding process used to form package body 214. In this manner, additional operations, e.g., a laser ablation operation, to form via apertures 320 is avoided thus simplifying manufacturing and reducing the associated cost.


Referring now to FIG. 22, first die side buildup dielectric layer 316 is applied to lower surface 214L of package body 214 and active surface 106 of electronic component 102.


Directly after application, first die side buildup dielectric layer 316 covers and seals the lower ends of via apertures 320. First die side buildup dielectric layer 316 as well as any filets of package body 214 covering via apertures 320 are then patterned, e.g., using laser ablation, to open via apertures 320 such that via apertures 320 extend entirely through package body 214 and first die side buildup dielectric layer 316 as illustrated in FIG. 22. Further, bond pad via apertures 322 are formed. In accordance with one embodiment, processing continues as discussed above in reference to FIGS. 15-17 to complete fabrication of fan out buildup substrate stackable package 2000.


Referring still to FIG. 22, optionally, in addition to first die side buildup dielectric layer 316, first mold side buildup dielectric layer 318 is applied to upper surface 214U of package body 214. Application of first mold side buildup dielectric layer 318 is optional, and so first mold side buildup dielectric layer 318 is indicated by the dashed lines in FIG. 22.


Directly after application, first mold side buildup dielectric layer 318 covers and seals the upper ends of via apertures 320. First mold side buildup dielectric layer 318 is then patterned, e.g., using laser ablation, to open via apertures 320 such that via apertures 320 extend entirely through package body 214 and first mold side buildup dielectric layer 318 as illustrated in FIG. 22. In accordance with one embodiment, processing continues as discussed above in reference to FIGS. 4-8 to complete fabrication of fan out buildup substrate stackable package 2000. Generally, via apertures 320 can be formed using pins 2008 in any of the embodiments set forth herein.



FIG. 23 is a cross-sectional view of a fan out buildup substrate stackable package 2300 during fabrication in accordance with another embodiment. Fan out buildup substrate stackable package 2300 of FIG. 23 is similar to fan out buildup substrate stackable package 100 of FIG. 1 and only the significant differences between fan out buildup substrate stackable package are 2300, 100 are discussed below.


Referring now to FIG. 23, in accordance with this embodiment, electrically conductive through electronic component vias 2302 are formed through electronic component 102.


More particularly, through electronic component vias 2302 extend between active surface 106 and inactive surface 108. The ends of through electronic component vias 2302 at active surface 106 define active surface through via terminals 2304. Further, the ends of through electronic component vias 2302 at inactive surface 108 define inactive surface through via terminals 2306. Active surface through via terminals 2304 are electrically connected to inactive surface through via terminals 2306 by through electronic component vias 2302.


Active surface 106 including bond pads 110 and active surface through via terminals 2304 are mounted to upper surface 104U of carrier 104.



FIG. 24 is a cross-sectional view of fan out buildup substrate stackable package 2300 of FIG. 23 at a later stage during fabrication in accordance with one embodiment. Referring now to FIG. 24, electronic component 102 is encapsulated in dielectric package body 214.


Package body 214 completely encloses electronic component 102 including inactive surface 108, inactive surface through via terminals 2306, sides 112 and the exposed portion of upper surface 104U of carrier 104.



FIG. 25 is a cross-sectional view of fan out buildup substrate stackable package 2300 of FIG. 24 at a later stage during fabrication in accordance with one embodiment. Referring now to FIGS. 24 and 25 together, optionally, package body 214 is ground down from upper surface 214U to expose inactive surface 108 of electronic component 102 and inactive surface through via terminals 2306. As a further option, inactive surface 108 is also ground down thus thinning both package body 214 and electronic component 102. Grinding of package body 214 and electronic component 102 is optional, and in one embodiment, is not performed.


Package body 214 is a relatively rigid material allowing carrier 104 (FIG. 24) to be removed as illustrated in FIG. 25. In various embodiments, carrier 104 is removed by peeling, etching, grinding, or other removal technique.


Referring now to FIG. 25, first die side buildup dielectric layer 316 is applied to lower surface 214L of package body 214 and active surface 106 of electronic component 102 including bond pads 110 and active surface through via terminals 2304. Further, first mold side buildup dielectric layer 318 is applied to upper surface 214U of package body 214. In the case where inactive surface 108 of electronic component 102 is exposed, first mold side buildup dielectric layer 318 is also applied to inactive surface 108.


As further illustrated in FIG. 25, after first die side buildup dielectric layer 316 and first mold side buildup dielectric layer 318 are applied, mold side to die side via apertures 320 are formed.


Further, bond pad via apertures 322 are formed entirely through first die side buildup dielectric layer 316. Bond pad via apertures 322 extend through first die side buildup dielectric layer 316 and to bond pads 110 and also to active surface through via terminals 2304 in accordance with this example. Bond pads 110 and active surface through via terminals 2304 are exposed through bond pad via apertures 322.


Further still, via apertures 2508 are formed entirely through first mold side buildup dielectric layer 318. Via apertures 2508 extend through first mold side buildup dielectric layer 318 and to inactive surface through via terminals 2306. In the case where inactive surface 108 of electronic component 102 is covered by package body 214, via apertures 2508 are also formed through package body 214 and to inactive surface through via terminals 2306. Inactive surface through via terminals 2306 are exposed through via apertures 2508.



FIG. 26 is a cross-sectional view of fan out buildup substrate stackable package 2300 of FIG. 25 at a later stage during fabrication in accordance with one embodiment. Referring now to FIGS. 25 and 26 together, first die side circuit pattern 424 is formed.


First die side circuit pattern 424 includes bond pad vias 426 formed within bond pad via apertures 322. Bond pad vias 426 are electrically connected to bond pads 110 and also to active surface through via terminals 2304. First die side circuit pattern 424 further includes lands 428 and traces 430.


Further, first mold side circuit pattern 432 is formed. First mold side circuit pattern 432 includes electrically conductive vias 2608. Vias 2608 are formed within via apertures 2508. Vias 2608 are electrically connected to inactive surface through via terminals 2306.


Further, first mold side circuit pattern 432 includes lands 434 and traces 436. Traces 436 are electrically connected to lands 434 and vias 2608. Further, through vias 438 are formed in via apertures 320. In accordance with one embodiment, processing continues as discussed above in reference to FIGS. 4-8 to complete fabrication of fan out buildup substrate stackable package 2300. Generally, any of the embodiments as described herein can be fabricated with through electronic component vias 2302, e.g., with fan out buildup substrate stackable package 2300.



FIG. 27 is a cross-sectional view of a stacked assembly 2700 formed with two fan out buildup substrate stackable packages 2300, 2300A in accordance with one embodiment. Referring now to FIGS. 11, 26, and 27 together, stacked assembly 2700 of FIG. 27 is similar to stacked assembly 1100 of FIG. 11 and only the significant differences are discussed below.


In accordance with this embodiment, stacked assembly 2700 of FIG. 27 is formed with fan out buildup substrate stackable packages 2300, 2300A in place of fan out buildup substrate stackable packages 100, 100A of stacked assembly 1100 of FIG. 11. As discussed above, fan out buildup substrate stackable package 2300 includes through electronic component vias 2302. Fan out buildup substrate stackable package 2300A is similar or identical to fan out buildup substrate stackable package 2300 of FIG. 26 and also includes through electronic component vias 2302.


Although formation of individual packages is described above, in other embodiments, a plurality of packages are formed simultaneously in an array using the methods as described above. The array is singulated to singulate the individual packages from one another. In one embodiment, the plurality of packages are tested while still in an array and prior to singulation. Testing the packages while in an array is more cost effective than testing each package individually after singulation of the array thus minimizing fabrication costs.


The drawings and the forgoing description gave examples of the present invention. The scope of the present invention, however, is by no means limited by these specific examples. Numerous variations, whether explicitly given in the specification or not, such as differences in structure, dimension, and use of material, are possible. The scope of the invention is at least as broad as given by the following claims.

Claims
  • 1. A fan out buildup substrate stackable package comprising: an electronic component comprising: an active surface comprising bond pads;sides;an inactive surface; andthrough electronic component vias extending through the electronic component between the active surface and the inactive surface of the electronic component, wherein ends of the through electronic component vias at the active surface define active surface through via terminals;a package body enclosing the electronic component and directly contacting the sides;a first die side buildup dielectric layer applied to the active surface of the electronic component and a first surface of the package body, a second surface of the package body being coplanar with the inactive surface of the electronic component;a first die side circuit pattern in contact with the first die side buildup dielectric layer and electrically connected to the bond pads; andthrough vias extending through the package body and the first die side buildup dielectric layer, the through vias being electrically connected to the first die side circuit pattern.
  • 2. The fan out buildup substrate stackable package of claim 1 wherein the first die side circuit pattern comprises: bond pad vias extending entirely through the first die side buildup dielectric layer and being electrically connected to the bond pads;lands electrically connected to the through vias; andtraces electrically connecting the bond pad vias to the lands.
  • 3. The fan out buildup substrate stackable package of claim 1 further comprising: a second die side buildup dielectric layer applied to the first die side buildup dielectric layer and to the first die side circuit pattern; anda second die side circuit pattern in contact with the second die side buildup dielectric layer and electrically connected to the first die side circuit pattern, the second die side circuit pattern comprising lands.
  • 4. The fan out buildup substrate stackable package of claim 1 further comprising: a first mold side buildup dielectric layer applied to the second surface of the package body; anda first mold side circuit pattern in contact with the first mold side buildup dielectric layer and electrically connected to the through vias.
  • 5. The fan out buildup substrate stackable package of claim 4 wherein the first mold side circuit pattern comprises: lands electrically connected to the through vias; and traces electrically connected to the lands.
  • 6. The fan out buildup substrate stackable package of claim 4 further comprising: a second mold side buildup dielectric layer applied to the first mold side buildup dielectric layer and to the first mold side circuit pattern; anda second mold side circuit pattern in contact with the second mold side buildup dielectric layer and electrically connected to the first mold side circuit pattern, the second mold side circuit pattern comprising lands.
  • 7. The fan out buildup substrate stackable package of claim 1 wherein the through vias comprise: sidewall layers; andfillings.
  • 8. The fan out buildup substrate stackable package of claim 1 wherein first ends of the through vias define mold side lands.
  • 9. The fan out buildup substrate stackable package of claim 8 further comprising interconnection balls on the mold side lands.
  • 10. A fan out buildup substrate stackable package comprising: an electronic component comprising: an active surface comprising bond pads;sides;an inactive surface; andthrough electronic component vias extending through the electronic component between the active surface and the inactive surface of the electronic component, wherein ends of the through electronic component vias at the active surface define active surface through via terminals;a package body enclosing the electronic component and directly contacting the sides and the inactive surface;a first die side buildup dielectric layer applied to the active surface of the electronic component and a first surface of the package body, a second surface of the package body being above and spaced apart from the inactive surface of the electronic component; a first die side circuit pattern in contact with the first die side buildup dielectric layer and electrically connected to the bond pads; andthrough vias extending through the package body and the first die side buildup dielectric layer, the through vias being electrically connected to the first die side circuit pattern.
  • 11. A fan out buildup substrate stackable package comprising: an electronic component comprising:an active surface comprising bond pads;through electronic component vias extending through the electronic component between the active surface and the inactive surface of the electronic component, wherein ends of the through electronic component vias at the active surface define active surface through via terminals; andinactive surface through via terminals defined by ends of the through electronic component vias at the inactive surface of the electronic component;a package body enclosing the electronic component;a first die side buildup dielectric layer applied to the active surface of the electronic component and a first surface of the package body;a first die side circuit pattern in contact with the first die side buildup dielectric layer and electrically connected to the bond pads and the active surface through via terminals; andthrough vias extending through the package body and the first die side buildup dielectric layer, the through vias being electrically connected to the first die side circuit pattern.
  • 12. The fan out buildup substrate stackable package of claim 11 further comprising: a first mold side buildup dielectric layer applied to a second surface of the package body; anda first mold side circuit pattern in contact with the first mold side buildup dielectric layer and electrically connected to the inactive surface through via terminals.
  • 13. An assembly comprising: a fan out buildup substrate stackable package comprising:an electronic component comprising: an active surface comprising bond pads;sides;an inactive surface; andthrough electronic component vias extending through the electronic component between the active surface and the inactive surface of the electronic component, wherein ends of the through electronic component vias at the active surface define active surface through via terminals;a package body enclosing the electronic component and directly contacting the sides;a first die side buildup dielectric layer applied to the active surface of the electronic component and a first surface of the package body, a second surface of the package body being coplanar with the inactive surface of the electronic component;a first die side circuit pattern in contact with the first die side buildup dielectric layer and electrically connected to the bond pads; andthrough vias extending through the package body and the first die side buildup dielectric layer, the through vias being electrically connected to the first die side circuit pattern; anda stacked device stacked on the fan out buildup substrate stackable package.
  • 14. The assembly of claim 13 wherein the stacked device comprises a stacked electronic component.
  • 15. The assembly of claim 13 wherein the stacked device comprises a stacked electronic component package.
  • 16. The assembly of claim 13 wherein the stacked device comprises: a second fan out buildup substrate stackable package comprising: an electronic component comprising an active surface comprising bond pads;a package body enclosing the electronic component of the second fan out buildup substrate stackable package;a first die side buildup dielectric layer applied to the active surface of the electronic component and a first surface of the package body of the second fan out buildup substrate stackable package;a first die side circuit pattern in contact with the first die side buildup dielectric layer and electrically connected to the bond pads of the second fan out buildup substrate stackable package; andthrough vias extending through the package body and the first die side buildup dielectric layer of the second fan out buildup substrate stackable package, the through vias of the second fan out buildup substrate stackable package being electrically connected to the first die side circuit pattern of the second fan out buildup substrate stackable package.
  • 17. A fan out buildup substrate stackable package comprising: an electronic component comprising: an active surface comprising bond pads;sides;an inactive surface; andthrough electronic component vias extending through the electronic component between the active surface and the inactive surface of the electronic component, wherein ends of the through electronic component vias at the active surface define active surface through via terminals;a package body enclosing the electronic component and directly contacting the sides; a first die side buildup dielectric layer applied to the active surface of the electronic component and a first surface of the package body, a second surface of the package body being coplanar with the inactive surface of the electronic component;a first die side circuit pattern in contact with the first die side buildup dielectric layer, the first die side circuit pattern comprising: bond pad vias extending entirely through the first die side buildup dielectric layer and being electrically connected to the bond pads;lands; andtraces electrically connecting the bond pad vias to the lands; andthrough vias extending through the package body and the first die side buildup dielectric layer, the through vias being electrically connected to the lands.
  • 18. The fan out buildup substrate stackable package of claim 17 further comprising: a first mold side buildup dielectric layer applied to the second surface of the package body; anda first mold side circuit pattern in contact with the first mold side buildup dielectric layer, the first mold side circuit pattern comprising: lands electrically connected to the through vias; andtraces electrically connected to the lands.
US Referenced Citations (526)
Number Name Date Kind
2596993 Gookin May 1952 A
3435815 Forcier Apr 1969 A
3734660 Davies et al. May 1973 A
3838984 Crane et al. Oct 1974 A
3868724 Perrino Feb 1975 A
3916434 Garboushian Oct 1975 A
4054238 Lloyd et al. Oct 1977 A
4189342 Kock Feb 1980 A
4258381 Inaba Mar 1981 A
4289922 Devlin Sep 1981 A
4301464 Otsuki et al. Nov 1981 A
4322778 Barbour et al. Mar 1982 A
4332537 Slepcevic Jun 1982 A
4417266 Grabbe Nov 1983 A
4451224 Harding May 1984 A
4530152 Roche et al. Jul 1985 A
4532419 Takeda Jul 1985 A
4541003 Otsuka et al. Sep 1985 A
4642160 Burgess Feb 1987 A
4645552 Vitriol et al. Feb 1987 A
4646710 Schmid et al. Mar 1987 A
4685033 Inoue Aug 1987 A
4706167 Sullivan Nov 1987 A
4707724 Suzuki et al. Nov 1987 A
4716049 Patraw Dec 1987 A
4727633 Herrick Mar 1988 A
4729061 Brown Mar 1988 A
4737839 Burt Apr 1988 A
4756080 Thorp, Jr. et al. Jul 1988 A
4786952 MacIver et al. Nov 1988 A
4806188 Rellick Feb 1989 A
4811082 Jacobs et al. Mar 1989 A
4812896 Rothgery et al. Mar 1989 A
4862245 Pashby et al. Aug 1989 A
4862246 Masuda et al. Aug 1989 A
4897338 Spicciati et al. Jan 1990 A
4905124 Banjo et al. Feb 1990 A
4907067 Derryberry Mar 1990 A
4920074 Shimizu et al. Apr 1990 A
4935803 Kalfus et al. Jun 1990 A
4942454 Mori et al. Jul 1990 A
4964212 Deroux-Dauphin et al. Oct 1990 A
4974120 Kodai et al. Nov 1990 A
4987475 Schlesinger et al. Jan 1991 A
4996391 Schmidt Feb 1991 A
5018003 Yasunaga et al. May 1991 A
5021047 Movern Jun 1991 A
5029386 Chao et al. Jul 1991 A
5041902 McShane Aug 1991 A
5057900 Yamazaki Oct 1991 A
5059379 Tsutsumi et al. Oct 1991 A
5065223 Matsuki et al. Nov 1991 A
5070039 Johnson et al. Dec 1991 A
5072075 Lee et al. Dec 1991 A
5072520 Nelson Dec 1991 A
5081520 Yoshii et al. Jan 1992 A
5087961 Long et al. Feb 1992 A
5091341 Asada et al. Feb 1992 A
5091769 Eichelberger Feb 1992 A
5096852 Hobson Mar 1992 A
5108553 Foster et al. Apr 1992 A
5110664 Nakanishi et al. May 1992 A
5118298 Murphy Jun 1992 A
5122860 Kikuchi et al. Jun 1992 A
5134773 LeMaire et al. Aug 1992 A
5151039 Murphy Sep 1992 A
5157475 Yamaguchi Oct 1992 A
5157480 McShane et al. Oct 1992 A
5168368 Gow, 3rd et al. Dec 1992 A
5172213 Zimmerman Dec 1992 A
5172214 Casto Dec 1992 A
5175060 Enomoto et al. Dec 1992 A
5191174 Chang et al. Mar 1993 A
5200362 Lin et al. Apr 1993 A
5200809 Kwon Apr 1993 A
5214845 King et al. Jun 1993 A
5216278 Lin et al. Jun 1993 A
5218231 Kudo Jun 1993 A
5221642 Burns Jun 1993 A
5229550 Bindra et al. Jul 1993 A
5239448 Perkins et al. Aug 1993 A
5247429 Iwase et al. Sep 1993 A
5250841 Sloan et al. Oct 1993 A
5250843 Eichelberger Oct 1993 A
5252853 Michii Oct 1993 A
5258094 Furui et al. Nov 1993 A
5266834 Nishi et al. Nov 1993 A
5268310 Goodrich et al. Dec 1993 A
5273938 Lin et al. Dec 1993 A
5277972 Sakumoto et al. Jan 1994 A
5278446 Nagaraj et al. Jan 1994 A
5278726 Bernardoni et al. Jan 1994 A
5279029 Burns Jan 1994 A
5281849 Singh Deo et al. Jan 1994 A
5283459 Hirano et al. Feb 1994 A
5294897 Notani et al. Mar 1994 A
5327008 Djennas et al. Jul 1994 A
5332864 Liang et al. Jul 1994 A
5335771 Murphy Aug 1994 A
5336931 Juskey et al. Aug 1994 A
5343076 Katayama et al. Aug 1994 A
5353498 Fillion et al. Oct 1994 A
5358905 Chiu Oct 1994 A
5365106 Watanabe Nov 1994 A
5371654 Beaman et al. Dec 1994 A
5379191 Carey et al. Jan 1995 A
5381042 Lerner et al. Jan 1995 A
5391439 Tomita et al. Feb 1995 A
5394303 Yamaji Feb 1995 A
5404044 Booth et al. Apr 1995 A
5406124 Morita et al. Apr 1995 A
5410180 Fujii et al. Apr 1995 A
5414299 Wang et al. May 1995 A
5417905 Lemaire et al. May 1995 A
5424576 Djennas et al. Jun 1995 A
5428248 Cha Jun 1995 A
5432677 Mowatt et al. Jul 1995 A
5435057 Bindra et al. Jul 1995 A
5444301 Song et al. Aug 1995 A
5452511 Chang Sep 1995 A
5454905 Fogelson Oct 1995 A
5463253 Waki et al. Oct 1995 A
5474957 Urushima Dec 1995 A
5474958 Djennas et al. Dec 1995 A
5484274 Neu Jan 1996 A
5493151 Asada et al. Feb 1996 A
5497033 Fillion et al. Mar 1996 A
5508556 Lin Apr 1996 A
5508938 Wheeler Apr 1996 A
5517056 Bigler et al. May 1996 A
5521429 Aono et al. May 1996 A
5528076 Pavio Jun 1996 A
5530288 Stone Jun 1996 A
5531020 Durand et al. Jul 1996 A
5534467 Rostoker Jul 1996 A
5539251 Iverson et al. Jul 1996 A
5543657 Diffenderfer et al. Aug 1996 A
5544412 Romero et al. Aug 1996 A
5545923 Barber Aug 1996 A
5546654 Wojnarowski et al. Aug 1996 A
5574309 Papapietro et al. Nov 1996 A
5576517 Wojnarowski et al. Nov 1996 A
5578525 Mizukoshi Nov 1996 A
5581122 Chao et al. Dec 1996 A
5581498 Ludwig et al. Dec 1996 A
5582858 Adamopoulos et al. Dec 1996 A
5592019 Ueda et al. Jan 1997 A
5592025 Clark et al. Jan 1997 A
5594274 Suetaki Jan 1997 A
5595934 Kim Jan 1997 A
5604376 Hamburgen et al. Feb 1997 A
5608265 Kitano et al. Mar 1997 A
5608267 Mahulikar et al. Mar 1997 A
5616422 Ballard et al. Apr 1997 A
5619068 Benzoni Apr 1997 A
5625222 Yoneda et al. Apr 1997 A
5633528 Abbott et al. May 1997 A
5637832 Danner Jun 1997 A
5639990 Nishihara et al. Jun 1997 A
5640047 Nakashima Jun 1997 A
5641997 Ohta et al. Jun 1997 A
5643433 Fukase et al. Jul 1997 A
5644169 Chun Jul 1997 A
5646831 Manteghi Jul 1997 A
5650663 Parthasarathi Jul 1997 A
5661088 Tessier et al. Aug 1997 A
5665996 Williams et al. Sep 1997 A
5673479 Hawthorne Oct 1997 A
5674785 Akram et al. Oct 1997 A
5683806 Sakumoto et al. Nov 1997 A
5689135 Ball Nov 1997 A
5696666 Miles et al. Dec 1997 A
5701034 Marrs Dec 1997 A
5703407 Hori Dec 1997 A
5710064 Song et al. Jan 1998 A
5719749 Stopperan Feb 1998 A
5723899 Shin Mar 1998 A
5724233 Honda et al. Mar 1998 A
5726493 Yamashita et al. Mar 1998 A
5736432 Mackessy Apr 1998 A
5736448 Saia et al. Apr 1998 A
5739581 Chillara Apr 1998 A
5739585 Akram et al. Apr 1998 A
5739588 Ishida et al. Apr 1998 A
5742479 Asakura Apr 1998 A
5745984 Cole, Jr. et al. May 1998 A
5753532 Sim May 1998 A
5753977 Kusaka et al. May 1998 A
5766972 Takahashi et al. Jun 1998 A
5769989 Hoffmeyer et al. Jun 1998 A
5770888 Song et al. Jun 1998 A
5774340 Chang et al. Jun 1998 A
5776798 Quan et al. Jul 1998 A
5783861 Son Jul 1998 A
5784259 Asakura Jul 1998 A
5786238 Pai et al. Jul 1998 A
5798014 Weber Aug 1998 A
5801440 Chu et al. Sep 1998 A
5814877 Diffenderfer et al. Sep 1998 A
5814881 Alagaratnam et al. Sep 1998 A
5814883 Sawai et al. Sep 1998 A
5814884 Davis et al. Sep 1998 A
5817540 Wark Oct 1998 A
5818105 Kouda Oct 1998 A
5821457 Mosley et al. Oct 1998 A
5821615 Lee Oct 1998 A
5822190 Iwasaki Oct 1998 A
5826330 Isoda et al. Oct 1998 A
5834830 Cho Nov 1998 A
5835355 Dordi Nov 1998 A
5835988 Ishii Nov 1998 A
5841193 Eichelberger Nov 1998 A
5844306 Fujita et al. Dec 1998 A
5847453 Uematsu et al. Dec 1998 A
5856911 Riley Jan 1999 A
5859471 Kuraishi et al. Jan 1999 A
5859475 Freyman et al. Jan 1999 A
5866939 Shin et al. Feb 1999 A
5871782 Choi Feb 1999 A
5874770 Saia et al. Feb 1999 A
5874784 Aoki et al. Feb 1999 A
5877043 Alcoe et al. Mar 1999 A
5883425 Kobayashi Mar 1999 A
5886397 Ewer Mar 1999 A
5886398 Low et al. Mar 1999 A
5894108 Mostafazadeh et al. Apr 1999 A
5897339 Song et al. Apr 1999 A
5900676 Kweon et al. May 1999 A
5903049 Mori May 1999 A
5903050 Thurairajaratnam et al. May 1999 A
5903052 Chen et al. May 1999 A
5907477 Tuttle et al. May 1999 A
5909053 Fukase et al. Jun 1999 A
5915998 Stidham et al. Jun 1999 A
5917242 Ball Jun 1999 A
5936843 Ohshima et al. Aug 1999 A
5937324 Abercrombie et al. Aug 1999 A
5939779 Kim Aug 1999 A
5942794 Okumura et al. Aug 1999 A
5951305 Haba Sep 1999 A
5952611 Eng et al. Sep 1999 A
5959356 Oh Sep 1999 A
5969426 Baba et al. Oct 1999 A
5973388 Chew et al. Oct 1999 A
5976912 Fukutomi et al. Nov 1999 A
5977613 Takata et al. Nov 1999 A
5977615 Yamaguchi et al. Nov 1999 A
5977630 Woodworth et al. Nov 1999 A
5981314 Glenn et al. Nov 1999 A
5982632 Mosley et al. Nov 1999 A
5986333 Nakamura Nov 1999 A
5986885 Wyland Nov 1999 A
6001671 Fjelstad Dec 1999 A
6004619 Dippon et al. Dec 1999 A
6013947 Lim Jan 2000 A
6013948 Akram et al. Jan 2000 A
6018189 Mizuno Jan 2000 A
6020625 Qin et al. Feb 2000 A
6021564 Hanson Feb 2000 A
6025640 Yagi et al. Feb 2000 A
6028364 Ogino et al. Feb 2000 A
6031279 Lenz Feb 2000 A
RE36613 Ball Mar 2000 E
6034423 Mostafazadeh et al. Mar 2000 A
6034427 Lan et al. Mar 2000 A
6035527 Tamm Mar 2000 A
6040622 Wallace Mar 2000 A
6040626 Cheah et al. Mar 2000 A
6043430 Chun Mar 2000 A
6060768 Hayashida et al. May 2000 A
6060769 Wark May 2000 A
6060778 Jeong et al. May 2000 A
6069407 Hamzehdoost May 2000 A
6072228 Hinkle et al. Jun 2000 A
6072243 Nakanishi Jun 2000 A
6075284 Choi et al. Jun 2000 A
6081029 Yamaguchi Jun 2000 A
6081036 Hirano et al. Jun 2000 A
6084310 Mizuno et al. Jul 2000 A
6087715 Sawada et al. Jul 2000 A
6087722 Lee et al. Jul 2000 A
6100594 Fukui et al. Aug 2000 A
6113474 Shih et al. Sep 2000 A
6114752 Huang et al. Sep 2000 A
6118174 Kim Sep 2000 A
6118184 Ishio et al. Sep 2000 A
6119338 Wang et al. Sep 2000 A
6122171 Akram et al. Sep 2000 A
RE36907 Templeton, Jr. et al. Oct 2000 E
6127833 Wu et al. Oct 2000 A
6130115 Okumura et al. Oct 2000 A
6130473 Mostafazadeh et al. Oct 2000 A
6133623 Otsuki et al. Oct 2000 A
6140154 Hinkle et al. Oct 2000 A
6143981 Glenn Nov 2000 A
6160705 Stearns et al. Dec 2000 A
6169329 Farnworth et al. Jan 2001 B1
6172419 Kinsman Jan 2001 B1
6175087 Keesler et al. Jan 2001 B1
6177718 Kozono Jan 2001 B1
6181002 Juso et al. Jan 2001 B1
6184463 Panchou et al. Feb 2001 B1
6184465 Corisis Feb 2001 B1
6184573 Pu Feb 2001 B1
6194250 Melton et al. Feb 2001 B1
6194777 Abbott et al. Feb 2001 B1
6197615 Song et al. Mar 2001 B1
6198171 Huang et al. Mar 2001 B1
6201186 Daniels et al. Mar 2001 B1
6201292 Yagi et al. Mar 2001 B1
6204453 Fallon et al. Mar 2001 B1
6204554 Ewer et al. Mar 2001 B1
6208020 Minamio et al. Mar 2001 B1
6208021 Ohuchi et al. Mar 2001 B1
6208023 Nakayama et al. Mar 2001 B1
6211462 Carter, Jr. et al. Apr 2001 B1
6214525 Boyko et al. Apr 2001 B1
6214641 Akram Apr 2001 B1
6218731 Huang et al. Apr 2001 B1
6222258 Asano et al. Apr 2001 B1
6222259 Park et al. Apr 2001 B1
6225146 Yamaguchi et al. May 2001 B1
6229200 Mclellan et al. May 2001 B1
6229205 Jeong et al. May 2001 B1
6235554 Akram et al. May 2001 B1
6239367 Hsuan et al. May 2001 B1
6239384 Smith et al. May 2001 B1
6239485 Peters et al. May 2001 B1
6242281 Mclellan et al. Jun 2001 B1
D445096 Wallace Jul 2001 S
6256200 Lam et al. Jul 2001 B1
6258192 Natarajan Jul 2001 B1
6258629 Niones et al. Jul 2001 B1
6261918 So Jul 2001 B1
D446525 Okamoto et al. Aug 2001 S
6274821 Echigo et al. Aug 2001 B1
6280641 Gaku et al. Aug 2001 B1
6281566 Magni Aug 2001 B1
6281568 Glenn et al. Aug 2001 B1
6282095 Houghton et al. Aug 2001 B1
6285075 Combs et al. Sep 2001 B1
6291271 Lee et al. Sep 2001 B1
6291273 Miyaki et al. Sep 2001 B1
6294100 Fan et al. Sep 2001 B1
6294830 Fjelstad Sep 2001 B1
6295977 Ripper et al. Oct 2001 B1
6297548 Moden et al. Oct 2001 B1
6303984 Corisis Oct 2001 B1
6303997 Lee Oct 2001 B1
6307272 Takahashi et al. Oct 2001 B1
6309909 Ohgiyama Oct 2001 B1
6316285 Jiang et al. Nov 2001 B1
6316822 Venkateshwaran et al. Nov 2001 B1
6316838 Ozawa et al. Nov 2001 B1
6323550 Martin et al. Nov 2001 B1
6326243 Suzuya et al. Dec 2001 B1
6326244 Brooks et al. Dec 2001 B1
6326678 Karnezos et al. Dec 2001 B1
6335564 Pour Jan 2002 B1
6337510 Chun-Jen et al. Jan 2002 B1
6339255 Shin Jan 2002 B1
6348726 Bayan et al. Feb 2002 B1
6351031 Iijima et al. Feb 2002 B1
6353999 Cheng Mar 2002 B1
6355502 Kang et al. Mar 2002 B1
6365974 Abbott et al. Apr 2002 B1
6365975 DiStefano et al. Apr 2002 B1
6369447 Mori Apr 2002 B2
6369454 Chung Apr 2002 B1
6373127 Baudouin et al. Apr 2002 B1
6376906 Asai et al. Apr 2002 B1
6380048 Boon et al. Apr 2002 B1
6384472 Huang May 2002 B1
6388336 Venkateshwaran et al. May 2002 B1
6392160 Andry et al. May 2002 B1
6395578 Shin et al. May 2002 B1
6396148 Eichelberger et al. May 2002 B1
6396153 Fillion et al. May 2002 B2
6400004 Fan et al. Jun 2002 B1
6405431 Shin et al. Jun 2002 B1
6406942 Honda Jun 2002 B2
6407341 Anstrom et al. Jun 2002 B1
6407930 Hsu Jun 2002 B1
6410979 Abe Jun 2002 B2
6414385 Huang et al. Jul 2002 B1
6420779 Sharma et al. Jul 2002 B1
6429508 Gang Aug 2002 B1
6437429 Su et al. Aug 2002 B1
6444499 Swiss et al. Sep 2002 B1
6448510 Neftin et al. Sep 2002 B1
6448633 Yee et al. Sep 2002 B1
6451509 Keesler et al. Sep 2002 B2
6452279 Shimoda Sep 2002 B2
6459148 Chun-Jen et al. Oct 2002 B1
6464121 Reijnders Oct 2002 B2
6476469 Hung et al. Nov 2002 B2
6476474 Hung Nov 2002 B1
6479762 Kusaka Nov 2002 B2
6482680 Khor et al. Nov 2002 B1
6497943 Jimarez et al. Dec 2002 B1
6498099 McLellan et al. Dec 2002 B1
6498392 Azuma Dec 2002 B2
6507096 Gang Jan 2003 B2
6507120 Lo et al. Jan 2003 B2
6517995 Jacobson et al. Feb 2003 B1
6521530 Peters et al. Feb 2003 B2
6524885 Pierce Feb 2003 B2
6534391 Huemoeller et al. Mar 2003 B1
6534849 Gang Mar 2003 B1
6544638 Fischer et al. Apr 2003 B2
6545332 Huang Apr 2003 B2
6545345 Glenn et al. Apr 2003 B1
6559525 Huang May 2003 B2
6566168 Gang May 2003 B2
6583503 Akram et al. Jun 2003 B2
6586682 Strandberg Jul 2003 B2
6593645 Shih et al. Jul 2003 B2
6603196 Lee et al. Aug 2003 B2
6608757 Bhatt et al. Aug 2003 B1
6624005 DiCaprio et al. Sep 2003 B1
6660559 Huemoeller et al. Dec 2003 B1
6667546 Huang et al. Dec 2003 B2
6671398 Reinhorn et al. Dec 2003 B2
6705512 Ho et al. Mar 2004 B2
6715204 Tsukada et al. Apr 2004 B1
6727576 Hedler et al. Apr 2004 B2
6727645 Tsujimura et al. Apr 2004 B2
6730857 Konrad et al. May 2004 B2
6734542 Nakatani et al. May 2004 B2
6740964 Sasaki May 2004 B2
6753612 Adae-Amoakoh et al. Jun 2004 B2
6774748 Ito et al. Aug 2004 B1
6787443 Boggs et al. Sep 2004 B1
6803528 Koyanagi Oct 2004 B1
6815709 Clothier et al. Nov 2004 B2
6815739 Huff et al. Nov 2004 B2
6831371 Huemoeller et al. Dec 2004 B1
6838776 Leal et al. Jan 2005 B2
6845554 Frankowsky et al. Jan 2005 B2
6888240 Towle et al. May 2005 B2
6905914 Huemoeller et al. Jun 2005 B1
6919514 Konrad et al. Jul 2005 B2
6921968 Chung Jul 2005 B2
6921975 Leal et al. Jul 2005 B2
6930256 Huemoeller et al. Aug 2005 B1
6931726 Boyko et al. Aug 2005 B2
6953995 Farnworth et al. Oct 2005 B2
7015075 Fay et al. Mar 2006 B2
7030469 Mahadevan et al. Apr 2006 B2
7041534 Chao et al. May 2006 B2
7057290 Sunohara et al. Jun 2006 B2
7081661 Takehara et al. Jul 2006 B2
7125744 Takehara et al. Oct 2006 B2
7129158 Nakai Oct 2006 B2
7185426 Hiner et al. Mar 2007 B1
7190062 Sheridan et al. Mar 2007 B1
7192807 Huemoeller et al. Mar 2007 B1
7198980 Jiang et al. Apr 2007 B2
7242081 Lee Jul 2007 B1
7247523 Huemoeller et al. Jul 2007 B1
7272444 Peterson et al. Sep 2007 B2
7282394 Cho et al. Oct 2007 B2
7285855 Foong Oct 2007 B2
7321164 Hsu Jan 2008 B2
7345361 Mallik et al. Mar 2008 B2
7361533 Huemoeller et al. Apr 2008 B1
7372151 Fan et al. May 2008 B1
7420272 Huemoeller et al. Sep 2008 B1
7429786 Karnezos et al. Sep 2008 B2
7459202 Magera et al. Dec 2008 B2
7514767 Yang Apr 2009 B2
7548430 Huemoeller et al. Jun 2009 B1
7550857 Longo et al. Jun 2009 B1
7572681 Huemoeller et al. Aug 2009 B1
7588951 Mangrum et al. Sep 2009 B2
7633765 Scanlan et al. Dec 2009 B1
7807512 Lee et al. Oct 2010 B2
20010008305 McLellan et al. Jul 2001 A1
20010011654 Schmidt et al. Aug 2001 A1
20010012704 Eldridge Aug 2001 A1
20010014538 Kwan et al. Aug 2001 A1
20020017712 Bessho et al. Feb 2002 A1
20020024122 Jung et al. Feb 2002 A1
20020027297 Ikenaga et al. Mar 2002 A1
20020061642 Haji et al. May 2002 A1
20020066952 Taniguchi et al. Jun 2002 A1
20020140061 Lee Oct 2002 A1
20020140068 Lee et al. Oct 2002 A1
20020163015 Lee et al. Nov 2002 A1
20020195697 Mess et al. Dec 2002 A1
20030013232 Towle et al. Jan 2003 A1
20030025199 Wu et al. Feb 2003 A1
20030030131 Lee et al. Feb 2003 A1
20030064548 Isaak Apr 2003 A1
20030073265 Hu et al. Apr 2003 A1
20030128096 Mazzochette Jul 2003 A1
20030134451 Chen Jul 2003 A1
20030134455 Cheng et al. Jul 2003 A1
20030141582 Yang et al. Jul 2003 A1
20030197284 Khiang et al. Oct 2003 A1
20040004293 Murayama Jan 2004 A1
20040026781 Nakai Feb 2004 A1
20040046244 Nakamura et al. Mar 2004 A1
20040056277 Karnezos Mar 2004 A1
20040061212 Karnezos Apr 2004 A1
20040061213 Karnezos Apr 2004 A1
20040063242 Karnezos Apr 2004 A1
20040063246 Karnezos Apr 2004 A1
20040113260 Sunohara et al. Jun 2004 A1
20040145044 Sugaya et al. Jul 2004 A1
20040159462 Chung Aug 2004 A1
20040159933 Sunohara et al. Aug 2004 A1
20040188136 Sunohara et al. Sep 2004 A1
20050029644 Ho et al. Feb 2005 A1
20050139985 Takahashi Jun 2005 A1
20050242425 Leal et al. Nov 2005 A1
20050282314 Lo et al. Dec 2005 A1
20060124347 Takaike Jun 2006 A1
20060208356 Yamano et al. Sep 2006 A1
20070222062 Sunohara et al. Sep 2007 A1
20070273049 Khan et al. Nov 2007 A1
20070281471 Hurwitz et al. Dec 2007 A1
20070290376 Zhao et al. Dec 2007 A1
20080067666 Hsu Mar 2008 A1
20080157336 Yang Jul 2008 A1
20080230887 Sun et al. Sep 2008 A1
Foreign Referenced Citations (73)
Number Date Country
197 34 794 Jul 1998 DE
0 393 997 Oct 1990 EP
0 459 493 Dec 1991 EP
0 720 225 Jul 1996 EP
0 720 234 Jul 1996 EP
0 794 572 Sep 1997 EP
0 844 665 May 1998 EP
0 936 671 Aug 1999 EP
0 989 608 Mar 2000 EP
1 032 037 Aug 2000 EP
55-163868 Dec 1980 JP
57-045959 Mar 1982 JP
59-208756 Nov 1984 JP
59-227143 Dec 1984 JP
60-010756 Jan 1985 JP
60-116239 Jun 1985 JP
60-195957 Oct 1985 JP
60-231349 Nov 1985 JP
61-039555 Feb 1986 JP
62-009639 Jan 1987 JP
63-033854 Feb 1988 JP
63-067762 Mar 1988 JP
63-188964 Aug 1988 JP
63-205935 Aug 1988 JP
63-233555 Sep 1988 JP
63-249345 Oct 1988 JP
63-289951 Nov 1988 JP
63-316470 Dec 1988 JP
64-054749 Mar 1989 JP
01-106456 Apr 1989 JP
01-175250 Jul 1989 JP
01-205544 Aug 1989 JP
01-251747 Oct 1989 JP
02-129948 May 1990 JP
03-069248 Jul 1991 JP
03-177060 Aug 1991 JP
04-098864 Mar 1992 JP
05-109975 Apr 1993 JP
05-129473 May 1993 JP
05-136323 Jun 1993 JP
05-166992 Jul 1993 JP
05-283460 Oct 1993 JP
06-092076 Apr 1994 JP
06-140563 May 1994 JP
06-260532 Sep 1994 JP
07-017175 Jan 1995 JP
07-297344 Nov 1995 JP
07-312405 Nov 1995 JP
08-064634 Mar 1996 JP
08-083877 Mar 1996 JP
08-125066 May 1996 JP
08-190615 Jul 1996 JP
08-222682 Aug 1996 JP
08-306853 Nov 1996 JP
09-008205 Jan 1997 JP
09-008206 Jan 1997 JP
09-008207 Jan 1997 JP
09-092775 Apr 1997 JP
09-293822 Nov 1997 JP
10-022447 Jan 1998 JP
10-163401 Jun 1998 JP
10-199934 Jul 1998 JP
10-256240 Sep 1998 JP
10-334205 Dec 1998 JP
2000-150765 May 2000 JP
2000-556398 Oct 2000 JP
2001-060648 Mar 2001 JP
2002-043497 Feb 2002 JP
1994-0001979 Jan 1994 KR
10-0220154 Jun 1999 KR
2002-0049944 Jun 2002 KR
WO 9956316 Nov 1999 WO
WO 9967821 Dec 1999 WO
Non-Patent Literature Citations (19)
Entry
IBM Technical Disclosure Bulletin, “Microstructure Solder Mask by Means of a Laser”, vol. 36, Issue 11, p. 589, Nov. 1, 1993. (NN9311589).
Kim et al., “Application of Through Mold Via (TMV) as PoP base package”, 58th ECTC Proceedings, May 2008, Lake Buena Vista, FL, 6 pages, IEEE.
Scanlan, “Package-on-package (PoP) with Through-mold Vias”, Advanced Packaging, Jan. 2008, 3 pages, vol. 17, Issue 1, PennWell Corporation.
Huemoeller et al., “Integrated Circuit Film Substrate Having Embedded Conductive Patterns and Vias”, U.S. Appl. No. 10/261,868, filed Oct. 1, 2002.
Hiner et al., “Printed Wiring Motherboard Having Bonded Interconnect Redistribution Mesa”, U.S. Appl. No. 10/992,371, filed Nov. 18, 2004.
Berry et al., “Direct-Write Wafer Level Chip Scale Package”, U.S. Appl. No. 11/289,826, filed Nov. 29, 2005.
Lee et al., “Substrate for Semiconductor Device and Manufacturing Method Thereof”, U.S. Appl. No. 11/440,548, filed May 24, 2006.
Hiner et al., “Semiconductor Package Including Top-Surface Terminals for Mounting Another Semiconductor Package”, U.S. Appl. No. 11/595,411, filed Nov. 9, 2006.
Huemoeller et al., “Electronic Component Package Comprising Fan-out and Fan-in Traces”, U.S. Appl. No. 11/605,740, filed Nov. 28, 2006.
Berry et al., “Direct-write Wafer Level Chip Scale Package”, U.S. Appl. No. 11/810,799, filed Jun. 6, 2007.
Huemoeller et al., “Build Up Motherboard Fabrication Method and Structure”, U.S. Appl. No. 11/824,395, filed Jun. 29, 2007.
Berry et al., “Thin Stacked Interposer Package”, U.S. Appl. No. 11/865,617, filed Oct. 1, 2007.
Huemoeller et al., “Two-sided Fan-out Wafer Escape Package”, U.S. Appl. No. 12/221,797, filed Aug. 5, 2008.
Longo et al., “Stacked Redistribution Layer (RDL) Die Assembly Package”, U.S. Appl. No. 12/387,672, filed May 5, 2009.
Huemoeller et al., “Buildup Dielectric Layer Having Metallization Pattern Semiconductor Package Fabrication Method”, U.S. Appl. No. 12/387,691, filed May 5, 2009.
Miller Jr. et al., “Thermal Via Heat Spreader Package and Method”, U.S. Appl. No. 12/421,118, filed Apr. 9, 2009.
Huemoeller et al., “Embedded Electronic Component Package Fabrication Method”, U.S. Appl. No. 12/459,532, filed Jul. 2, 2009.
Scanlan et al., “Fan Out Build Up Substrate Stackable Package and Method”, U.S. Appl. No. 12/573,466, filed Oct. 5, 2009.
Scanlan et al., “Semiconductor Package Including a Top-Surface Metal Layer for Implementing Circuit Features”, U.S. Appl. No. 12/589,839, filed Oct. 28, 2009.