LDMOSs (Laterally Diffused MOSFET) are transistors that find wide use in many high-voltage switching applications, for example in switching DC-to-DC converters. To reduce the size of inductors used in some DC-to-DC converters, an LDMOS is switched on and off at a relatively high frequency.
In accordance with at least one embodiment of the invention, a transistor comprises a semiconductor, a first drift layer, a drain region, a body region, a source region, a shallow trench isolation region, a dielectric, and a gate. The first drift layer is formed in the semiconductor and has majority carriers of a first type. The drain region is formed in the first drift layer and has majority carriers of the first type. The body region is formed in the semiconductor and has majority carriers of a second type. The source region is formed in the body region and has majority carriers of the first type. The shallow trench isolation region is formed in the first drift layer and disposed between the drain region and the body region. The dielectric is formed on the semiconductor, and the gate is formed over the dielectric and has a lift-up region.
In accordance with at least one embodiment of the invention, the transistor further comprises a doped region formed in the first drift layer, where the doped region has majority carriers of the first type.
In accordance with at least one embodiment of the invention, the dielectric has a lift-up region under the lift-up region of the gate.
In accordance with at least one embodiment of the invention, the doped region shares a rounded interface with the shallow trench isolation region.
In accordance with at least one embodiment of the invention, the rounded interface reduces a local electric field during operation of the transistor.
In accordance with at least one embodiment of the invention, the transistor further comprises a second drift layer formed in the semiconductor, where the second drift layer has majority carriers of the first type.
In accordance with at least one embodiment of the invention, a method comprises forming in a semiconductor a first drift layer having majority carriers of a first type, forming a shallow trench isolation region in the first drift layer, growing a pad oxide layer over the semiconductor, depositing a nitride layer over the pad oxide layer, depositing a photoresist layer over the nitride layer, exposing an opening pattern in the photoresist layer, etching an opening in the photoresist layer based on the opening pattern to expose an opening to the nitride layer, etching the opening to the nitride layer to expose an opening to the pad oxide layer, removing the photoresist layer, growing oxide on the opening to the pad oxide layer, removing the nitride layer, removing the pad oxide layer, and leaving at least part of the oxide grown on the pad oxide layer, growing a gate oxide layer, forming a gate over the gate oxide layer, forming in the first drift layer a drain region having majority carriers of the first type, forming in the semiconductor a body region having majority carriers of a second type, and forming in the body region a source region having majority carriers of the first type.
In accordance with at least one embodiment of the invention, where when growing the oxide on the opening to the pad oxide layer, the oxide is grown to a thickness of at least 200 angstroms.
In accordance with at least one embodiment of the invention, the method further comprises implanting dopants through the opening to the pad oxide layer to provide majority carriers of the first type.
In accordance with at least one embodiment of the invention, for the method, the majority carriers of the first type are electrons and the majority carriers of the second type are holes, wherein implanting dopants through the opening to the pad oxide layer includes implanting phosphorous or arsenic at a dose of 6·1011 cm−2 to 9·1012 cm−2 with energy in the range of 25 keV to 250 keV, with implant angles from 0° to 9°.
In accordance with at least one embodiment of the invention, for the method, the semiconductor comprises silicon. The oxide, pad oxide layer, and gate oxide layer each comprises silicon dioxide. Furthermore, growing the oxide on the opening to the oxide pad layer includes oxidizing the semiconductor.
In accordance with at least one embodiment of the invention, the method further comprises forming in the semiconductor a second drift layer having majority carriers of the first type.
In accordance with at least one embodiment of the invention, forming in the semiconductor the first drift layer comprises implanting arsenic in the semiconductor with a dose of 8·1011 cm−2 to 2·1013 cm−2 at an energy of 25 keV to 400 keV, with implant angles from 0° to 9°. Furthermore, forming in the semiconductor the second drift layer comprises implanting phosphorus in the semiconductor with a dose of 1·1012 cm−2 to 2·1013 cm−2 at an energy of 160 keV to 1 MeV, with implant angles from 0° to 9°.
In accordance with at least one embodiment of the invention, forming in the semiconductor the first buried layer comprises implanting boron into the semiconductor with a dose of 1·1012 cm−2 to 2·1013 cm−2 at an energy of 800 keV to 2 MeV, with implant angles from 0° to 9°.
In accordance with at least one embodiment of the invention, the method further comprises forming in the semiconductor a second buried layer having majority carriers of the second type.
In accordance with at least one embodiment of the invention, a second transistor comprises a semiconductor, a first drift layer, a drain region, a body region, a source region, a shallow trench isolation region, a dielectric, and a doped region. The first drift is formed layer in the semiconductor and has majority carriers of a first type. The drain region is formed in the first drift layer and has majority carriers of the first type. The body region is formed in the semiconductor and has majority carriers of a second type. The source region is formed in the body region and has majority carriers of the first type. The shallow trench isolation region is formed in the first drift layer and is disposed between the drain region and the body region. The dielectric is formed on the semiconductor, and the doped region is formed in the first drift layer and has majority carriers of the first type.
In accordance with at least one embodiment of the invention, for the second transistor above, the doped region shares a rounded interface with the shallow trench isolation region.
In accordance with at least one embodiment of the invention, for the second transistor above, the rounded interface reduces a local electric field during operation of the transistor.
For a detailed description of various examples, reference will now be made to the accompanying drawings in which:
LDMOSs are switched on and off at a relatively high frequency to reduce the size of inductors used in some DC-to-DC converters. However, high frequency switching may lead to energy losses due to the gate-to-source capacitance and gate-to-drain capacitance of an LDMOS. Furthermore, an LDMOS may exhibit hot carrier degradation, thereby adversely affecting the LDMOS characteristics and manufacturability. It is desirable to provide LDMOSs suitable for high frequency switching, with an acceptable figure-of-merit RSPQ product, where RSP is the specific drain-to-source on-resistance and Q is the gate charge.
In accordance with the disclosed embodiments, a transistor, such as an LDMOS, comprises a gate having a lift-up region. The lift-up region is proposed to help reduce the capacitance between the gate and the drift layer of the LDMOS. An LDMOS may comprise a shallow trench isolation (STI) region having a rounded corner in the junction field effect transistor (JFET) region of the LDMOS. The rounded corner is proposed to help improve the interface between the STI region and the JFET region, and to help provide reduced surface field (RESURF), as well as mitigation of hot carrier degradation. In some embodiments, doping of the JFET region may be fine-tuned by self-aligned implanting in the JFET region. In accordance with the disclosed embodiments, an LDMOS comprises a deep p-type buried layer adjacent to a p-type buried layer, and for some embodiments comprises two n-type drift layers, where the p-type and n-type layers have graded doping profiles for RESURF and for providing fully depleted regions under high voltage operation.
Formed in the silicon substrate 102 are an n-type buried layer 104, a p-type buried layer 106, and a p-type buried layer 108. In some embodiments, the p-type buried layer 106 is formed by implanting boron into the silicon substrate 102 with a dose of 3·1012 cm−2 to 8·1012 cm−2 at an energy of 800 keV to 2.5 MeV. In some embodiments, the p-type buried layer 108 is formed by implanting boron into the silicon substrate 102 with a dose of 1·1012 cm−2 to 2·1013 cm−2 at an energy of 800 keV to 2 MeV, with implant angles from 0° to 9°.
The relationship among the layers in the illustrative LDMOS 100 may be described as the p-type buried layer 108 being formed on the p-type buried layer 106, and the p-type buried layer 106 being formed on the n-type buried layer 104, where the p-type buried layer 108 and the p-type buried layer 106 are adjacent to each other, and the p-type buried layer 106 and the n-type buried layer 104 are adjacent to each other. However, it is to be appreciated that these layers may not have precisely defined boundaries where one layer stops and an adjacent layer begins.
Formed in the silicon substrate 102 are an n-type drift layer 110 and an n-type drift layer 112. In some embodiments, the n-type drift layer 110 is formed by implanting phosphorus with a dose of 1·1012 cm−2 to 2·1013 cm−2 at an energy of 160 keV to 1 MeV, with implant angles from 0° to 9°. In some embodiments, the n-type drift layer 112 is formed by implanting arsenic with a dose of 8·1011 cm−2 to 2·1013 cm−2 at an energy of 25 keV to 400 keV, with implant angles from 0° to 9°. The n-type drift layer 110 and the n-type drift layer 112 may be described as being adjacent to each other, where the n-type drift layer 112 is formed on the n-type drift layer 110. The n-type drift layer 110 may be described as being adjacent to and formed on the p-type buried layer 108. However, these layers may not have precisely defined boundaries where one layer stops and an adjacent layer begins.
In some embodiments, the order in forming the layers 104, 106, 108, 110, and 112 is implied by their ordered illustration in
An STI region 114 is formed in the n-type drift layer 110 and in the n-type drift layer 112. A drain region 116 is formed in the n-type drift layer 112 adjacent to the STI region 114. For the embodiment of
A gate 120 is formed over a gate oxide region 119, above part of STI region 114, and includes a lift-up region 122. The gate 120 may comprise polysilicon. The lift-up region 122 arises because the STI region 114 has a lift-up region 124, and the lift-up region 124 is due to edge oxide growth of the STI region 114. This growth also causes a rounded corner 126, as will be described in more detail later. The lift-up regions 122 and 124 are proposed to help reduce the gate-to-drain capacitance of the illustrative LDMOS 100, and the rounded corner 126 is proposed to provide RESURF.
The lift-up regions 122 and 124 may be described as being proximal to each other. In the embodiment of
A p-type body region 128 is formed, adjacent to the n-type drift layers 110 and 112, where for some embodiments the gate 120 may provide self-alignment of the p-type body region 128. For some embodiments, the p-type body region 128 may be formed before forming the gate 120. The p-type body region 128 may be described as being adjacent to the n-type drift layers 110 and 112, so that the STI region 114 is disposed between the drain region 116 and the p-type body region 128. A non-heavily doped n-type region 130 may be formed in the p-type body region 128, followed by depositing a spacer layer 132 adjacent to the gate 120, followed by forming a heavily doped n-type region 134 so that the regions 130 and 134 provide a source region. A body contact 136 is a heavily doped p-type region in the p-type body region 128 to provide an ohmic contact to the p-type body region 128.
In some embodiments, to form part of the source region (the region 130), an upper region of the p-type body 128 may be implanted with arsenic with a dose of 3·1013 cm−2 to 1·1015 cm−2 at an energy of 25 keV to 160 keV, with implant angles from 0° to 9°. In some embodiments, the upper region of the p-type body 128 may also be implanted with boron with a dose of 1·1013 cm−2 to 5·1014 cm−2 at an energy of 60 keV to 260 keV, with implant angles from 7° to 35° for the body contact 136. In some embodiments, a bottom region of the p-type body 128 may be implanted with boron with a dose of 2·1012 cm−2 to 6·1013 cm−2 at an energy of 300 keV to 1.6 MeV, with implant angles from 0° to 9° to connect the p-type body 128 to the p-type buried layer 108 for RESURF.
A contact 138 is formed on the source region (region 134) and the body contact 136. Vias and other metal layers (not shown) are electrically connected to the contact 138 to provide electrical connection to the p-type body 128 and to the source region (regions 130 and 134).
Portions of the p-type body 128 and the n-type drift layer 112 that are near each other and share an interface define a JFET region. In some embodiments, before the gate oxide region 119 and the gate 120 are formed, a region 139 in the JFET region, specifically in the n-type drift layer 112 adjacent to the STI region 114, is doped with implants to fine-tune the electric field in the JFET region. The region 139 shares a rounded interface with the rounded corner 126 of the STI region 114. The region 139 is referred to as a JFET adjusting implant region 139.
Some embodiments may have one p-type buried layer instead of the two p-type buried layers 106 and 108, and one n-type drift layer instead of the two n-type drift layers 110 and 112. However with the layers 106, 108, 110, and 112 having a balanced doping profile, the illustrative LDMOS 100 may be better (or fully) depleted under reverse bias so that higher voltage circuits may be realized, with a relatively small drift layer.
The illustrative LDMOS 100 is an n-channel LDMOS, where the majority carriers of the n-type regions are electrons and the majority carriers of the p-type regions are holes. Other embodiments may interchange the n-type regions and p-type regions so that a p-channel LDMOS may be fabricated.
An STI region 140 may be formed when the STI region 114 is formed, where the STI region 140 helps provide isolation from other devices (not shown). A deep trench comprising vertical layers of n-type, p-type, and oxide layers may be formed next to the illustrative LDMOS 100 to provide further isolation, but for ease of illustration these layers are not shown.
Doping the JFET region of the illustrative LDMOS 100 to provide the JFET adjusting implant region 139 can reduce the JFET region resistance and allow for adjustment of the electric field in the JFET region. Chain implantation to provide the doping profiles of the JFET region, the n-type drift layers 110 and 112, and the p-type buried layers 106 and 108 allows for trading off performance with the gate length (i.e., the gate length associated with the gate 120), hot carriers, and drift layer resistance. The doping profile can help shield the electric field between the p-type body region 128 to a sidewall of the STI region 114 (e.g., the rounded corner 126 in
The gate 120 is formed on the oxide layer 119 over portions of the body region 128, part of the n-type drift layer 112 and the JFET adjusting implant region 139, and the STI region 114, as shown in
In step 810 a photoresist layer is deposited, lithographically exposed, baked, and etched to expose an opening to the nitride layer. In step 812 the opening to the nitride layer is etched to expose an opening to the sacrificial pad oxide layer. In step 814 a region in the first n-type drift layer is doped by implanting donors through the opening to the sacrificial pad oxide layer. This region will be part of the JFET region when the p-type body region 128 is formed, and has been referred to previously as the JFET adjusting implant region.
After the photoresist layer is removed, in step 816 the opening to the sacrificial pad oxide layer is thermally grown. In step 818 the nitride layer is removed and a body region is formed. In step 820 the sacrificial pad oxide layer is removed (leaving most of the oxide growth of step 816), and a high quality gate oxide is grown. In step 822 a gate is deposited over the oxide, and patterned and etched using a photoresist layer to form a gate. In the remaining steps, the other basic components of the illustrative LDMOS 100 are formed. For example, in step 824 an n-type drain region is formed in the first n-type drift layer, and an n-type source region is formed in the p-type body region. In step 826 a body contact is formed in the p-type body region.
The above discussion is meant to be illustrative of the principles and various embodiments of the present disclosure. Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.
Under 35 U.S.C. § 120, this divisional application claims the benefit of and priority to U.S. patent application Ser. No. 15/788,216, filed on Oct. 19, 2017, issued as U.S. Pat. No. 10,424,647, the entirety of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6620692 | Scott et al. | Sep 2003 | B2 |
9214548 | Kim et al. | Dec 2015 | B1 |
20010053581 | Mosher | Dec 2001 | A1 |
20040201061 | Jeon | Oct 2004 | A1 |
20050189585 | Jones | Sep 2005 | A1 |
20080067615 | Kim | Mar 2008 | A1 |
20120299093 | Kim | Nov 2012 | A1 |
20130175615 | Uhlig et al. | Jul 2013 | A1 |
20130181287 | Zhang et al. | Jul 2013 | A1 |
20140035033 | Lim et al. | Feb 2014 | A1 |
20150249126 | Kataoka et al. | Sep 2015 | A1 |
20150325693 | Mori | Nov 2015 | A1 |
20160043217 | Cai | Feb 2016 | A1 |
20160087039 | Ko | Mar 2016 | A1 |
20160099340 | Hsu | Apr 2016 | A1 |
20160190269 | Brown et al. | Jun 2016 | A1 |
20160372591 | Huang et al. | Dec 2016 | A1 |
20170125252 | Strachan et al. | May 2017 | A1 |
20170179260 | Edwards et al. | Jun 2017 | A1 |
20170213895 | Edwards et al. | Jun 2017 | A1 |
20170222042 | Lee | Aug 2017 | A1 |
20170263763 | Ryu et al. | Sep 2017 | A1 |
20170271482 | Jung et al. | Sep 2017 | A1 |
20170317208 | Chin et al. | Nov 2017 | A1 |
20180069116 | Ningaraju et al. | Mar 2018 | A1 |
20180102431 | Mori et al. | Apr 2018 | A1 |
20180175192 | Fujii et al. | Jun 2018 | A1 |
20180182890 | Mori | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
2016112149 | Oct 2017 | RU |
2639579 | Dec 2017 | RU |
Number | Date | Country | |
---|---|---|---|
20200006502 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15788216 | Oct 2017 | US |
Child | 16566924 | US |