Embodiments of the present invention generally relate to the field of integrated circuit packages, and, more particularly to backside mold process for ultra thin substrate and package on package assembly.
As microelectronic components shrink in size, a trend has emerged to provide package substrates that may be characterized as thin core substrates (that is, substrates having a core with a thickness less than or equal to 400 microns and larger than zero), or no-core substrates (that is, substrates without cores).
Disadvantageously, with a thin or no-core substrate, however, decrease in yield at first level chip attach due to warpage causing nonwets may occur during the package manufacturing process, such as, for example, during flip chip bonding where substrate flatness and rigidity are required. To address the above issue, the prior art sometimes provides substrates that may have a thickness of at least several tens of microns or more. However, the above measure disadvantageously detracts from further package size minimization.
The present invention is illustrated by way of example and not limitation in the figures of the accompanying drawings in which like references indicate similar elements, and in which:
In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the invention. It will be apparent, however, to one skilled in the art that embodiments of the invention can be practiced without these specific details. In other instances, structures and devices are shown in block diagram form in order to avoid obscuring the invention.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
Coreless substrate strip 102 represents a thin substrate that may be rolled out and processed before being singulated. In one embodiment, coreless substrate strip 102 is a direct laser lamination generation 3 (DLL3) strip. In one embodiment, substrate thickness 108 is about 200 micrometers.
In one embodiment, package 800 is processed further and singulated from other packages.
In the description above, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some of these specific details. In other instances, well-known structures and devices are shown in block diagram form.
Many of the methods are described in their most basic form but operations can be added to or deleted from any of the methods and information can be added or subtracted from any of the described messages without departing from the basic scope of the present invention. Any number of variations of the inventive concept is anticipated within the scope and spirit of the present invention. In this regard, the particular illustrated example embodiments are not provided to limit the invention but merely to illustrate it. Thus, the scope of the present invention is not to be determined by the specific examples provided above but only by the plain language of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
6050481 | Chapman et al. | Apr 2000 | A |
6404062 | Taniguchi et al. | Jun 2002 | B1 |
6713366 | Mong et al. | Mar 2004 | B2 |
7005317 | Chin et al. | Feb 2006 | B2 |
7172951 | Chin et al. | Feb 2007 | B2 |
20020068453 | Grigg et al. | Jun 2002 | A1 |
20020121695 | Stephenson et al. | Sep 2002 | A1 |
20070023891 | Reiss et al. | Feb 2007 | A1 |
20070096292 | Machida | May 2007 | A1 |
20070152326 | Lim et al. | Jul 2007 | A1 |
20070187810 | Mok et al. | Aug 2007 | A1 |
20080280397 | Kim et al. | Nov 2008 | A1 |
Entry |
---|
United States Patent Application, pending—not yet published, Application No. TBD, filed Jun. 30, 2008, to Weng Khoon Mong. |
Number | Date | Country | |
---|---|---|---|
20090321949 A1 | Dec 2009 | US |