This invention relates generally to a semiconductor package and a method of making the same. More particularly, the present invention relates to the semiconductor package having co-packed transistors and an integrated circuit (IC) and the method of making the same.
More and more batteries are integrated into modern devices. Overcharging a battery may lead to dangerous conditions. Therefore, battery protection modules are also integrated into modern devices. A battery protection module includes a battery monitoring IC and two or more field-effect transistors (FETs).
A horizontal dimension of a conventional battery monitoring IC is 1.8 mm by 1.6 mm. A horizontal dimension of a conventional FET is 1.98 mm by 1.86 mm. The instant disclosure reduces the horizontal dimension of a co-packed semiconductor package, including a battery monitoring IC and two FETs, to 2.9 mm by 2 mm.
The present invention discloses a semiconductor package comprising a lead frame, a first FET, a second FET, an IC, a plurality of bond wires, and a molding encapsulation. The lead frame comprises a first die paddle and a second die paddle. The first FET is flipped and attached to the first die paddle. The second FET is flipped and attached to the second die paddle.
A method for fabricating a semiconductor package is also disclosed. The method comprises the steps of providing a lead frame comprising a first die paddle and a second die paddle; applying a first adhesive layer; mounting a first FET and a second FET; applying a second adhesive layer; mounting an IC; applying bonding wires; forming a molding encapsulation; and applying a singulation process.
The lead frame 210 has a substantial rectangular shape and comprises a first die paddle 512 of
The second FET 340 is flipped and attached to the second die paddle 522 by a conductive adhesive layer 329. The second FET 340 comprises a source electrode 342 and a gate electrode 344 on a front surface of the second FET 340; and a drain electrode 346 on a back surface of the second FET 340. In examples of the present disclosure, the second FET 340 may further comprise a sense FET formed on the same semiconductor substrate 301 having a sense source electrode 352 separated from the source electrode 342 formed on the front surface, a sense gate electrically connected to the gate electrode 344, and a sense drain electrically connected to the drain electrode 346 of the second FET 340.
The IC 360 is positioned above the first FET 320 and the second FET 340. In examples of the present disclosure, the first FET 320 and the second FET 340 are included in a same die 539 of
In examples of the present disclosure, the molding encapsulation 190 encloses the first FET 320, the second FET 340, the IC 360, and a majority portion of the lead frame 210. In one example, a majority portion refers to a percentage larger than 50%. In examples of the present disclosure, the molding encapsulation 190 further encloses the plurality of bond wires 280.
In examples of the present disclosure, the first die paddle 512 comprises a paddle section 515 of
In examples of the present disclosure, the second die paddle 522 comprises a paddle section 525 of
In examples of the present disclosure, the IC 360 is a battery monitoring IC. The first FET 320 is a first power transistor. The second FET 340 is a second power transistor.
In examples of the present disclosure, a first source pad 102 of
In the example of the present disclosure, the first gate lead G1 and the second gate lead G2 are located on a first side of the lead frame 210, the first sense lead and the second sense lead are located on a second side opposite the first side. In the example of the present disclosure, the first gate lead and the second gate lead are located respectively on two adjacent corners of the lead frame 210, and the first sense lead and the second sense lead are located respectively on two adjacent corners of the lead frame 210. A first gate lead tie bar 511, a first source lead tie bar 519 and a first sense source lead tie bar 513 extend vertically to a first end face and exposed through the molding at the first end face. A second gate lead tie bar 521, a second source lead tie bar 529 and a second sense source lead tie bar 523 extend vertically to a second end face and exposed through the molding at the second end face. In examples of the present disclosure, an exposed side surface 107 of
In block 402, referring now to
Two source leads S1 disposed on first and second opposite sides are connected to the paddle section 515 by two connection sections 517. A gate lead G1 disposed on the first side is connected to the gate section 515g by a connection section 517, and a sense source lead SS1 disposed on the second side is connected to the sense source section 515s by a connection section 517. A gate lead tie bar 511 connecting to the gate lead G1 through the connection section extends vertically to a first end of the lead frame. A sense source lead tie bar 513 connecting to the sense source lead SS1 through the connection section extends vertically to the first end of the lead frame. A source lead tie bar 519 between the gate lead tie bar and the sense source lead tie bar connecting to a mid-portion of the paddle section 515 between the gate section 515g and the sense source section 515s extends vertically to the first end.
The number of the connection sections 517 may vary. Each of the connection sections 517, the gate lead tie bar 511, the source lead tie bar 519 and the sense source lead tie bar 513 is top-etched so that a top surface of each connection section, the gate lead tie bar, the source lead tie bar and the sense source lead tie bar is recessed from the top surface of the paddle section 515, and a thickness of each connection section 517 is smaller than a thickness of the paddle section 515. In one example, the thickness of each connection section of the connection sections 517 is 50% of the thickness of the paddle section 515. Each of the two source leads S1, the gate lead G1, and the sense source lead SS1 has a top surface substantially coplanar to the top surface of the paddle section 515.
In examples of the present disclosure, the second die paddle 522 comprises a paddle section 525, a gate section 525g, and a sense source section 525s separated from one another. The paddle section 525 is in substantial rectangular shape with the gate section 525g and the sense source section 525s disposed on two opposite cutoff corners. The gate section 525g and the sense source section 525s are bottom etched with top surfaces of the gate section 525g and the sense source section 525s coplanar to a top surface of the paddle section 525. Two source leads S2 disposed on first and second opposite sides are connected to the paddle section 525 by two connection sections 527. A gate lead G2 disposed on the first side is connected to the gate section 525g by a connection section 527, and a sense source lead SS2 disposed on the second side is connected to the sense source section 525s by a connection section 527. A gate lead tie bar 521 connecting to the gate lead G2 through the connection section extends vertically to a second end of the lead frame. A sense source lead tie bar 523 connecting to the sense source lead SS2 through the connection section extends vertically to the second end of the lead frame. A source lead tie bar 529 between the gate lead tie bar and the sense source lead tie bar connecting to a mid-portion of the paddle section 525 between the gate section 525g and the sense source section 525s extends vertically to the first end.
The number of the connection sections 527 may vary. Each of the connection sections 527, the gate lead tie bar 521, the source lead tie bar 529 and the sense source lead tie bar 523 is top-etched so that a top surface of each connection section, the gate lead tie bar, the source lead tie bar and the sense source lead tie bar is recessed from the top surface of the paddle section 525, and a thickness of each connection section 527 is smaller than a thickness of the paddle section 525. In one example, the thickness of each connection section of the two or more connection sections 527 is 50% of the thickness of the paddle section 525. Each of the two or more source leads S2, the gate lead G2, and the sense source lead SS2 has a top surface substantially coplanar to the top surface of the paddle section 525. Block 402 may be followed by block 404.
In block 404, referring now to
The second FET 540 comprises a source electrode 342 and a gate electrode 344 on a front surface of the second FET 540; and a drain electrode 346 on a back surface of the second FET 540. The second FET 540 may further comprise a sense FET formed on the same semiconductor substrate 301 having a sense source electrode 352 separated from the source electrode 342 formed on the front surface, a sense gate electrically connected to the gate electrode 344, and a sense drain electrically connected to the drain electrode 346 of the second FET 340.
In examples of the present disclosure, the first FET 520 and the second FET 540 are formed on a same die 539 having a substantial rectangular shape. In examples of the present disclosure, the gate electrode 324 is located at a first corner of the die 539 and the sense source electrode 332 is located on a second corner of the die 539 adjacent to the first corner. The gate electrode 344 is located at a fourth corner of the die 539 adjacent the first corner and the sense source electrode 352 is located on a third corner of the die 539 adjacent to the second corner and the fourth corner.
In block 406, referring now to
In block 408, referring now to
In block 410, referring now to
In block 412, referring now to
In block 414, referring now to
In block 416, a singulation process 593 is applied so as to separate the semiconductor package 501 from adjacent semiconductor packages 503 and 505. In examples of the present disclosure, the IC 560 is a battery monitoring IC. The first FET 520 is a first power transistor. The second FET 540 is a second power transistor. In examples of the present disclosure, a first source pad 102 of
Those of ordinary skill in the art may recognize that modifications of the embodiments disclosed herein are possible. For example, a number of bond wires may vary. Other modifications may occur to those of ordinary skill in this art, and all such modifications are deemed to fall within the purview of the present invention, as defined by the claims.
This patent application is a Continuation-in-part application of a pending application Ser. No. 18/509,168 filed on Nov. 14, 2023. The entire Disclosure made in the pending application Ser. No. 18/509,168 is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 18509168 | Nov 2023 | US |
Child | 18758522 | US |