This application is a national phase entry under 35 U.S.C. § 371 of International Application No. PCT/KR2014/012028, filed Dec. 8, 2014, which claims priority to Korean Patent Application No. 10-2013-0151866, filed Dec. 6, 2013, Korean Patent Application No. 10-2013-0151865, filed Dec. 6, 2013, Korean Patent Application No. 10-2013-0151867, filed Dec. 6, 2013, Korean Patent Application No. 10-2013-0159994, filed Dec. 20, 2013, Korean Patent Application No. 10-2014-0131964, filed Sep. 30, 2014 and Korean Patent Application No. 10-2014-0175404, filed Dec. 8, 2014.
The present application relates to a block copolymer.
Block copolymers have molecular structures in which polymer subunits having chemically different structures from each other are linked by covalent bonds. Block copolymers are capable of forming periodically aligned structure such as the sphere, the cylinder or the lamella through phase separations. Sizes of domains of the structures formed by the self assemblies of block copolymers may be adjusted in a wide range, and various shapes of structures can be prepared. Therefore, they can be utilized in pattern-forming methods by lithography, various magnetic recording mediae or next generation nano devices such as metal dots, quantum dots or nano lines, high density magnetic storage mediae, and the like.
The present application provides a block copolymer and its application.
The term “alkyl group” as used herein may refer to, unless defined otherwise, an alkyl group having 1 to 20, 1 to 16, 1 to 12, 1 to 8, or 1 to 4 carbon atoms. The alkyl group may have a linear, branched or cyclic structure, and may be optionally substituted with at least one substituent.
The term “alkoxy group” as used herein may refer to, unless defined otherwise, an alkoxy group having 1 to 20, 1 to 16, 1 to 12, 1 to 8, or 1 to 4 carbon atoms. The alkoxy group may have a linear, branched, or cyclic structure, and may be optionally substituted with at least one substituent.
The term “alkenyl or alkynyl group” as used herein may refer to, unless defined otherwise, an alkenyl or alkynyl group having 2 to 20, 2 to 16, 2 to 12, 2 to 8, or 2 to 4 carbon atoms. The alkenyl or alkynyl group may have a linear, branched, or cyclic structure, and may be optionally substituted with at least one substituent.
The term “alkylene group” as used herein may refer to, unless defined otherwise, an alkylene group having 1 to 20, 1 to 16, 1 to 12, 1 to 8 or 1 to 4 carbon atoms. The alkylene group may have a linear, branched, or cyclic structure, and may be optionally substituted with at least one substituent.
The term “alkenylene or alkynylene group” as used herein may refer to, unless defined otherwise, an alkenylene or alkynylene group having 2 to 20, 2 to 16, 2 to 12, 2 to 8 or 2 to 4 carbon atoms. The alkenylene or alkynylene group may have a linear, branched, or cyclic structure, and may be optionally substituted with at least one substituent.
The term “aryl or arylene group” as used herein may be, unless defined otherwise, a monovalent or bivalent substituent derived from a compound including one benzene ring structure or a structure, in which at least two benzene rings are linked with sharing one or two carbon atoms or by an optional linker, or a derivative of the compound. The aryl or arylene group may be, unless defined otherwise, an aryl group having 6 to 30, 6 to 25, 6 to 21, 6 to 18, or 6 to 13 carbon atoms.
The term “aromatic structure” as used herein may refer to the aryl group or the arylene group.
The term “alicyclic structure” as used herein may refer to, unless defined otherwise, a cyclic hydrocarbon structure that is not the aromatic cyclic structure. The alicyclic structure may be, unless defined otherwise, a structure having 3 to 30, 3 to 25, 3 to 21, 3 to 18 or 3 to 13 carbon atoms.
The term “single bond” as used herein may refer to a case where there is no atom in a corresponding site. For example, a case where “B” is a single bond in the structure represented by “A-B-C,” means that there is no atom in the “B” position and therefore the structure represented by “A-C” is formed by the “A” directly connecting to the “C.”
A substituent that may optionally substitute for the alkyl group, the alkenyl group, the alkynyl group, the alkylene group, the alkenylene group, the alkynylene group, the alkoxy group, the aryl group, the arylene group, a chain, the aromatic structure, and the like may be hydroxyl group, halogen atom, carboxyl group, glycidyl group, acryloyl group, methacryloyl group, acryloyloxy group, methacryloyloxy group, thiol group, alkyl group, alkenyl group, alkynyl group, alkylene group, alkenylene group, alkynylene group, alkoxy group or aryl group, but is not limited thereto.
In one embodiment, a monomer as represented by Formula 1 below that have a novel structure and that is capable of forming block copolymers may be provided.
In Formula 1, the R is hydrogen or an alkyl group and the X is the single bond, the oxygen atom, the sulfur atom, —S(═O)2—, the carbonyl group, the alkylene group, the alkenylene group, the alkynylene group, —C(═O)—X1— or —X1—C(═O)—. In the above, the X1 may be the oxygen atom, the sulfur atom, —S(═O)2—, the alkylene group, the alkenylene group or the alkynylene group, and the Y may be a monovalent substituent including a cyclic structure to which a chain having 8 or more chain-forming atoms is linked.
In another embodiment, in the Formula 1, the X may be the single bond, the oxygen atom, the carbonyl group, —C(═O)—O— or —O—C(═O)—; or the X may be —C(═O)—O—, but is not limited thereto.
In Formula 1, the monovalent substituent Y includes a chain structure formed by at least 8 chain-forming atoms.
The term “chain-forming atoms” as used herein refers to atoms forming a linear structure of a certain chain. The chain may have a linear or branched structure; however the number of the chain-forming atoms is calculated only by the number of atoms forming the longest linear chain. Therefore, other atoms such as, in a case where the chain-forming atom is the carbon atom, the hydrogen atom that is linked to the carbon atom and the like are not calculated as the number of the chain-forming atoms. Further, in case of the branched chain, the number of the chain-forming atoms is the number of atoms forming the longest chain. For example, the chain is n-pentyl, all of the chain-forming atoms are carbon atoms and the number thereof is 5. If the chain is 2-methylpentyl, all of the chain-forming atoms are also carbon atoms and the number thereof is 5. The chain-forming atoms may be the carbon, the oxygen, the sulfur or the nitrogen, and the like and appropriate chain-forming atoms may be the carbon, the oxygen or the nitrogen; or the carbon or the oxygen. The number of the chain-forming atoms may be 8 or more, 9 or more, 10 or more, 11 or more; or 12 or more. The number of the chain-forming atoms may be 30 or less, 25 or less, 20 or less or 16 or less.
When the compound of the Formula 1 forms a block copolymer, the block copolymer may show an excellent self-assembly properties due to the presence of the chain.
In one embodiment, the chain may be a linear hydrocarbon chain such as a linear alkyl group. In this case, the alkyl group may be an alkyl group having 8 or more, 8 to 30, 8 to 25, 8 to 20 or 8 to 16 carbon atoms. At least one carbon atom of the alkyl group may be optionally substituted with the oxygen atom, and at least one hydrogen atom of the alkyl group may be optionally substituted with another substituent.
In Formula 1, the Y may include a cyclic structure. The chain may be linked to the cyclic structure. The self assembly properties of block copolymers formed by the compound may be further improved due to the cyclic structure. The cyclic structure may be the aromatic structure or the alicyclic structure.
The chain may be directly linked to the cyclic structure or may be linked to the cyclic structure via a linker. As the linker, the oxygen atom, the sulfur atom, —NR1—, —S(═O)2—, the carbonyl group, the alkylene group, the alkenylene group, the alkynylene group, —C(═O)—X1— or —X1—C(═O)— may be illustrated. In the above, the R1 may be the hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group and the X1 may be the single bond, the oxygen atom, the sulfur atom, —NR2—, —S(═O)2—, the alkylene group, the alkenylene group or the alkynylene group and, in the above, the R2 may be the hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group. An appropriate linker may be the oxygen atom or the nitrogen atom. For example, the chain may be linked to the aromatic structure via the oxygen atom or the nitrogen atom. In this case, the linker may be the oxygen atom or the —NR1—, where the R1 may be the hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group.
In one embodiment, the Y of the Formula 1 may be represented by Formula 2 below.
—P-Q-Z [Formula 2]
In Formula 2, the P may be the arylene group, the Q may be the single bond, the oxygen atom or —NR3—, where the R3 may be the hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group, and the Z may be the chain having at least 8 chain-forming atoms. In case where the Y of the Formula 1 is the substituent of the Formula 2, the P of the Formula 2 may be directly linked to the X of the Formula 1.
In Formula 2, an appropriate P may be an arylene group having 6 to 12 carbon atoms such as the phenylene group, but is not limited thereto.
In Formula 2, an appropriate Q may be the oxygen atom or —NR1—, where the R1 may be the hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group.
As an appropriate embodiment of the monomer of Formula 1, a monomer of Formula 1, in which the R is the hydrogen atom or the alkyl group; or the hydrogen atom or the alkyl group having 1 to 4 carbon atom(s), the X is —C(═O)—O— and the Y is the substituent of Formula 2, in which the P is the arylene having 6 to 12 carbon atoms or phenylene group, the Q is the oxygen atom and the Z is the chain having 8 or more chain-forming atoms may be illustrated.
Therefore, as an appropriate embodiment, a monomer of Formula 3 below may be illustrated.
In Formula 3, the R is the hydrogen atom or the alkyl group having 1 to 4 carbon atom(s), the X is —C(═O)—O—, the P is the arylene group having 6 to 12 carbon atoms, Q is the oxygen atom, and Z is the above-described chain having 8 or more chain-forming atoms.
Another embodiment of the present application relates to a method for preparing a block copolymer comprising a step of forming a block by polymerizing the monomer.
A specific method for preparing the block copolymer is not particularly limited, as long as it comprises a step forming at least one block of the block copolymer by using the above-described monomer.
For example, the block copolymer may be prepared by a living radical polymerization (LRP) using the monomer. For example, there are methods such as the anionic polymerization, in which block copolymers are synthesized in the presence of inorganic acid salts such as salts of alkali metal or alkali earth metal by using organic rare earth metal complexes or organic alkali metal compounds as polymerization initiators; the anionic polymerization, in which block copolymers are synthesized in the presence of organic aluminum compounds by using organic alkali metal compounds as polymerization initiators; the atom-transfer radical polymerization (ATRP) using an atom transfer radical polymerizer as a polymerization controller; the activators regenerated by electron transfer (ATGET) ATRP performing polymerization in the presence of an organic or inorganic reducing agent generating electrons using an atom transfer radical polymerizer as a polymerization controller; the initiators for continuous activator regeneration (ICAR) ATRP; the reversible addition-ring opening chain transfer (RAFT) polymerization using an inorganic reducing agent reversible addition-ring opening chain transfer agent; and the a method using an organic tellurium compound as an initiator, and an appropriate method may be selected among the above methods.
In one embodiment, the block copolymer may be prepared by a method including polymerizing a material comprising monomers capable of forming the block in the presence of radical initiators and living radical polymerization reagents by the living radical polymerization.
In the preparation of the block copolymer, a method for forming other block included in the block copolymer along with the block formed by the above monomer is not particularly limited, and the other block may be formed by selecting appropriate monomers considering the kind of blocks to be formed.
The method for preparing the block copolymer may further include precipitating a polymerized product produced by the above-described process in a non-solvent.
A kind of the radical initiators may be suitably selected in consideration of polymerization efficiency without particular limitation, and an azo compound such as azobisisobutyronitrile (AIBN) or 2,2′-azobis-(2,4-dimethylvaleronitrile), or a peroxide compound such as benzoyl peroxide (BPO) or di-t-butyl peroxide (DTBP) may be used.
The LRP may be performed in a solvent such as methylenechloride, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, benzene, toluene, acetone, chloroform, tetrahydrofuran, dioxane, monoglyme, diglyme, dimethylformamide, dimethylsulfoxide or dimethylacetamide.
As the non-solvent, for example, an alcohol such as methanol, ethanol, normal propanol or isopropanol, a glycol such as ethyleneglycol, or an ether compound such as n-hexane, cyclohexane, n-heptane or petroleum ether may be used without limitation.
Another embodiment of the present application relates to a block copolymer including a block (hereinafter, may be referred to as a first block) formed by using the monomer.
The block may be represented by, for example, Formula 4.
In the Formula 4, the R, X and Y may be the same as described regarding the R, X and Y of the Formula 1, respectively.
Therefore, in Formula 4, the R may be hydrogen or an alkyl group having 1 to 4 carbon atom(s), the X may be the single bond, the oxygen atom, the sulfur atom, —S(═O)2—, the carbonyl group, the alkylene group, the alkenylene group, the alkynylene group, —C(═O)—X1— or —X1—C(═O)—, wherein the X1 may be the oxygen atom, the sulfur atom, —S(═O)2—, the alkylene group, the alkenylene group or the alkynylene group, and the Y may be a monovalent substituent including a cyclic structure to which a chain having 8 or more chain-forming atoms is linked. As for a specific type of above each substituent, the above description may be applied in the same manner.
In one embodiment, the first block may be a block of the Formula 4, in which the R is the hydrogen or the alkyl group; or the hydrogen or the alkyl group having 1 to 4 carbon atom(s), the X is —C(═O)—O—, and the Y is the substituent represented by Formula 2. Such a block may be referred to as a 1A block, but is not limited thereto. This block may be represented by the Formula 5 below.
In Formula 5, the R may be the hydrogen atom or the alkyl group having 1 to 4 carbon atom(s), the X may be the single bond, the oxygen atom, —C(═O)—O— or —O—C(═O)—, the P may be the arylene group, the Q may be the oxygen atom or —NR3—, where the R3 may be the hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group, the Z is the chain having 8 or more chain-forming atoms. In another embodiment, the Q of the Formula 5 may be the oxygen atom.
In another embodiment, the first block may be a block represented by Formula 6. Such a first block may be referred to as a 1B block herein.
In Formula 6, R1 and R2 may be each independently hydrogen or an alkyl group having 1 to 4 carbon atom(s), the X may be the single bond, the oxygen atom, the sulfur atom, —S(═O)2—, the carbonyl group, the alkylene group, the alkenylene group, the alkynylene group, —C(═O)—X1— or —X1—C(═O)—, in which the X1 may be the single bond, the oxygen atom, the sulfur atom, —S(═O)2—, the alkylene group, the alkenylene group or the alkynylene group, the T may be the single bond or the arylene group, the Q may be the single bond or the carbonyl group and the Y may be the chain having at least 8 chain-forming atoms.
In the 1B block of Formula 6, X may be the single bond, the oxygen atom, the carbonyl group, —C(═O)—O— or —O—C(═O)—.
As a particular embodiment of the chain Y in the 1B block, the above description regarding Formula 1 may be applied thereto in a similar manner.
In another embodiment, the first block may be a block represented by at least one of the Formulas 4 to 6, in which the electronegativity of at least one chain-forming atom of the chain having 8 or more chain-forming atoms is 3 or more. The electronegativity of the chain-forming atom may be 3.7 or less in another embodiment. Herein, such a block may be referred to as a 1C block. As the atom having the electronegativity of 3 or more, the nitrogen atom or the oxygen atom may be illustrated, but is not limited thereto.
Kinds of another block (hereinafter, may be referred to as a second block) included in the block copolymer along with the first block such as the 1A, 1B or 1C block is not particularly limited.
For example, the second block may be polyvinylpyrrolidone block, polylactic acid block, polyvinylpyridine block, polystyrene block such as polystyrene block or polytrimethylsilylstyrene, polyalkyleneoxide block such as polyethyleneoxide block, or polyolefin block such as polyethylene block or polyisoprene block or polybutadiene block. Such a block used herein may be referred to as a 2A block.
In one embodiment, the second block included along with the first block such as the 1A, 1B or 1C block in the block copolymer may be a block including the aromatic structure comprising at least one halogen atom.
Such a second block may be, for example, represented by the Formula 7 below and may be referred to as a 2B block.
In Formula 7, the B may be a monovalent substituent having an aromatic structure including at least one halogen atom.
Such a second block may be effectively interacted with the above-described first block such that the block copolymer can have an excellent self assembling characteristic.
The aromatic structure of Formula 7 may be, for example, an aromatic structure having 6 to 18 or 6 to 12 carbon atoms.
Further, the halogen atom included in Formula 7 may be, but is not limited to, the fluorine atom or the chloride atom, and appropriately the fluorine atom.
In one embodiment, the B of Formula 7 may be a monovalent substituent having an aromatic structure having 6 to 12 carbon atoms, which is substituted with 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more halogen atoms. The upper limit of the number of halogen atoms is not particular limited, but there may be 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less halogen atoms.
For example, the block represented by the Formula 7, which is the 2B block, may be represented by the Formula 8 below.
In Formula 8, the X2 may be the single bond, the oxygen atom, the sulfur atom, —S(═O)2—, the alkylene group, the alkenylene group, the alkynylene group, —C(═O)—X1— or —X1—C(═O)—, in which the X1 is the single bond, the oxygen atom, the sulfur atom, —S(═O)2—, the alkylene group, the alkenylene group or the alkynylene group, and the W may be an aryl group substituted with at least one halogen atom. In the above, the W may be an aryl group, substituted with at least one halogen atom, for example, an aryl group that has 6 to 12 carbon atoms and that is substituted with 2 or more, 3 or more, 4 or more, or 5 or more halogen atoms.
The 2B block may be, for example, represented by the Formula 9 below.
In Formula 9, the X2 may be the single bond, the oxygen atom, the sulfur atom, —S(═O)2—, the alkylene group, the alkenylene group, the alkynylene group, —C(═O)—X1— or —X1—C(═O)—, in which the X1 is the single bond, the oxygen atom, the sulfur atom, —S(═O)2—, the alkylene group, the alkenylene group or the alkynylene group, and the R1 to R5 may be each independently hydrogen, an alkyl group, a haloalkyl group or a halogen atom. The number of the halogen atom included in the R1 to R5 is 1 or more.
In Formula 9, in another embodiment, the X2 may be the single bond, the oxygen atom, the alkylene group, —C(═O)—O— or —O—C(═O)—.
In Formula 9, the R1 to R5 may be each independently hydrogen, an alkyl group, a haloalkyl group or a halogen atom, and the R1 to R5 may include 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more halogen atom(s) such as fluorine atom(s). The number of the halogen atom(s) such as the fluorine atom(s) included in the R1 to R5 may be, for example, 10 or less, 9 or less, 8 or less, 7 or less, 6 or less.
In one embodiment, the second block may be a block represented by Formula 10. Such a block used herein may be referred to as a 2C block.
In Formula 10, the T and K may be each independently the oxygen atom or the single bond, and the U may be the alkylene group.
In one embodiment, in the 2C block, the U of Formula 10 may be the alkylene group having 1 to 20, 1 to 16, 1 to 12, 1 to 8 or 1 to 4 carbon atom(s).
In another embodiment, the 2C block may be a block of the Formula 10, in which one of the T and K of the Formula 10 is the single bond, and the other of the T and K of the Formula 10 is the oxygen atom. In the above block, the U may be the alkylene group having 1 to 20, 1 to 16, 1 to 12, 1 to 8 or 1 to 4 carbon atom(s).
In still another embodiment, the 2C block may be a block of the Formula 10, in which both of the T and K of the Formula 10 are the oxygen atoms. In the above block, the U may be the alkylene group having 1 to 20, 1 to 16, 1 to 12, 1 to 8 or 1 to 4 carbon atom(s).
In still another embodiment, the second block may be a block including at least one metal atom or metalloid atom. Such a block may be referred to as a 2D block. This block may improve etching selectivity when an etching process is performed with respect to, for example, a film including a self-assembled block copolymer.
The metal atom or metalloid atom in the 2D block may be a silicon atom, an iron atom or a boron atom, but is not particularly limited as long as it may exhibit suitable etching selectivity due to a difference with another atom in the block copolymer.
The 2D block may include 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more halogen atoms, for example, fluorine atoms, along with the metal or metalloid atom. The 2D block may include 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less halogen atoms such as fluorine atoms.
The 2D block may be represented by Formula 11.
In Formula 11, the B may be a monovalent substituent having an aromatic structure including a halogen atom and a substituent having the metal atom or the metalloid atom.
The aromatic structure of Formula 11 may be an aromatic structure having 6 to 12 carbon atoms, for example, an aryl group or an arylene group.
The 2D block of the Formula 11 may be represented by the Formula 12 below.
In Formula 12, the X2 may be the single bond, the oxygen atom, the sulfur atom, —NR1—, —S(═O)2—, the alkylene group, the alkenylene group, the alkynylene group, —C(═O)—X1— or —X1—C(═O)—, in which the R1 is the hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group, and the X1 is the single bond, the oxygen atom, the sulfur atom, —NR2—, —S(═O)2—, the alkylene group, the alkenylene group or the alkynylene group, and the W may be an aryl group including at least one halogen atom and a substituent including the metal atom or the metalloid atom.
In the above, the W may be an aryl group that has 6 to 12 carbon atoms and that includes at least one halogen atom and a substituent including the metal atom or the metalloid atom.
The aryl group may include at least one or 1 to 3 substituents including the metal atom or metalloid atom, and 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more halogen atom(s).
10 or less, 9 or less, 8 or less, 7 or less, or 6 or less halogen atoms may be included therein.
The 2D block of the Formula 12 may be represented by the Formula 13 below.
In Formula 13, the X2 may be the single bond, the oxygen atom, the sulfur atom, —NR1—, —S(═O)2—, the alkylene group, the alkenylene group, the alkynylene group, —C(═O)—X1— or —X1—C(═O)—, in which the R1 may be the hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group, and the X1 may be the single bond, the oxygen atom, the sulfur atom, —NR2—, —S(═O)2—, the alkylene group, the alkenylene group or the alkynylene group, the R1 to R5 may be each independently the hydrogen, the alkyl group, the haloalkyl group, the halogen atom or the substituent including the metal or the metalloid atom, with the provision that at least one of R1 to R5 includes a halogen atom, and at least one of R1 to R5 is the substituent including the metal or the metalloid atom.
In the Formula 13, 1 or more, 1 to 3 or 1 to 2 of the R1 to R5 may be the substituent including the metal or the metalloid atom.
In the Formula 13, in the R1 to R5, 1 or more, 2 or more, 3 or more, 4 or more or 5 or more halogen atom(s) may be included. The number of the halogen atom(s) included in the R1 to R5 may by 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.
The substituent including the metal or the metalloid atom described above may be carboranyl group or silsesquioxanyl group such as polyhedral oligomeric silsesquioxanyl, ferrocenyl group or trialkylsiloxy group. However, they are not particularly limited, as long as they are selected so as to obtain the etching selectivity by including at least one metal or metalloid atom.
In yet another embodiment, the second block may be a block including an atom which is an atom having the electronegativity of 3 or more and which is an atom (hereinafter, referred to as a non-halogenic atom) that is not the halogen atom. Such a block may be referred to as a 2E block. In another embodiment, the electronegativity of the non-halogenic atom in the 2E block may be 3.7 or less.
The non-halogenic atom in the 2E block may be, but is not limited to, a nitrogen atom or an oxygen atom.
The 2E block may include, along with the non-halogenic atom having an electronegativity of 3 or more, 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more halogen atoms, for example, fluorine atoms. The number of the halogen atom(s) such as the fluorine atom(s) in the 2E block may include 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.
The 2E block may be represented by Formula 14.
In Formula 14, the B may be a monovalent substituent having an aromatic structure that includes a substituent including the non-halogenic atom having an electronegativity of 3 or more and that includes the halogen atom.
The aromatic structure of Formula 14 may be an aromatic structure having 6 to 12 carbon atoms, for example, an aryl group or an arylene group.
In another embodiment, the block of the Formula 14 may be represented by the Formula 15 below.
In Formula 15, the X2 may be the single bond, the oxygen atom, the sulfur atom, —S(═O)2—, the alkylene group, the alkenylene group, the alkynylene group, —C(═O)—X1— or —X1—C(═O)—, in which the R1 may be the hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group, and the X1 may be the single bond, the oxygen atom, the sulfur atom, —NR2—, —S(═O)2—, the alkylene group, the alkenylene group or the alkynylene group, and the W may be the aryl group including the substituent including the non-halogenic atom having an electronegativity of 3 or more and at least one halogen atom.
In the above, the W may be an aryl group that has 6 to 12 carbon atoms, that includes the substituent including the non-halogenic atom having the electronegativity of 3 or more and that includes at least one halogen atom.
Such an aryl group may include at least one or 1 to 3 substituents including the non-halogenic atom having the electronegativity of 3 or more. In addition, the aryl group may include 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more halogen atom(s). In the above, the aryl group may include 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less halogen atoms.
In another embodiment, the block of the Formula 15 may be represented by the Formula 16.
In Formula 16, the X2 may be the single bond, the oxygen atom, the sulfur atom, —NR1—, —S(═O)2—, the alkylene group, the alkenylene group, the alkynylene group, —C(═O)—X1— or —X1—C(═O)—, in which the R1 may be hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group, and the X1 may be the single bond, the oxygen atom, the sulfur atom, —NR2—, —S(═O)2—, the alkylene group, the alkenylene group or the alkynylene group, and the R1 to R5 may be each independently hydrogen, the alkyl group, the haloalkyl group, the halogen atom and the substituent including the non-halogenic atom having the electronegativity of 3 or more. In the above, at least one of the R1 to R5 is the halogen atom, and at least one of the R1 to R5 is the substituent including the non-halogenic atom having the electronegativity of 3 or more.
In Formula 16, at least one, 1 to 3, or 1 to 2 of the R1 to R5 may be the above-described substituents including the non-halogenic atom having the electronegativity of 3 or more.
In Formula 16, the R1 to R5 may include 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more halogen atoms. The R1 to R5 may include 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less halogen atoms.
The substituent including the non-halogenic atom having the electronegativity of 3 or more described above may be, but is not limited to, the hydroxyl group, the alkoxy group, the carboxyl group, the amido group, the ethylene oxide group, the nitrile group, the pyridine group or the amino group.
In another embodiment, the second block may include an aromatic structure having a heterocyclic substituent. Such a second block may be referred to as a 2F block herein.
The 2F block may be represented by Formula 17.
In Formula 17, the B may be a monovalent substituent having an aromatic structure that has 6 to 12 carbon atoms and that is substituted with a heterocyclic substituent.
If necessary, the aromatic structure of Formula 17 may include at least one halogen atom.
The block of the Formula 17 may be represented by the Formula 18.
In Formula 18, the X2 may be the single bond, the oxygen atom, the sulfur atom, —NR1—, —S(═O)2—, the alkylene group, the alkenylene group, the alkynylene group, —C(═O)—X1— or —X1—C(═O)—, in which the R1 may be hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group, and the X1 may be the single bond, the oxygen atom, the sulfur atom, —NR2—, —S(═O)2—, the alkylene group, the alkenylene group or the alkynylene group, and the W may be an aryl group that has 6 to 12 carbon atoms and that has the heterocyclic substituent.
The block of the Formula 18 may be represented by Formula 19.
In Formula 19, the X2 may be the single bond, the oxygen atom, the sulfur atom, —NR1—, —S(═O)2—, the alkylene group, the alkenylene group, the alkynylene group, —C(═O)—X1— or —X1—C(═O)—, in which the R1 may be hydrogen, the alkyl group, the alkenyl group, the alkynyl group, the alkoxy group or the aryl group, and the X1 may be the single bond, the oxygen atom, the sulfur atom, —NR2—, —S(═O)2—, the alkylene group, the alkenylene group or the alkynylene group, and the R1 to R5 may be each independently hydrogen, the alkyl group, the haloalkyl group, the halogen atom or the heterocyclic substituent. In the above, at least one of the R1 to R5 is the heterocyclic substituent.
In Formula 19, at least one, for example, 1 to 3 or 1 to 2 of the R1 to R5 may be the heterocyclic substituent, and the other(s) may be the hydrogen atom, the alkyl group or the halogen atom; or the hydrogen atom or the halogen atom; or the hydrogen atom.
The above-described heterocyclic substituent may be, but is not limited to, a substituent derived from phthalimide, a substituent derived from thiopene, a substituent derived from thiazole, a substituent derived from carbazole or a substituent derived from imidazole.
The block copolymer of the present application may include at least one of the above-described first blocks, and at least one of the above-described second blocks. Such a block copolymer may include 2 or 3 blocks, or 3 or more blocks. In one embodiment, the block copolymer may be a diblock copolymer including any one of the first blocks and any one of the second blocks.
The block copolymer may have, for example, a number average molecular weight (Mn) in a range from approximately 3,000 to 300,000. The term “number average molecular weight” as used herein may refer to a converted value with respect to the standard polystyrene measured by the GPC (Gel Permeation Chromatography). Unless defined otherwise, the term “molecular weight” as used herein may refer to the number average molecular weight. The molecular weight (Mn), in another embodiment, may be, for example, 3000 or more, 5000 or more, 7000 or more, 9000 or more, 11000 or more, 13000 or more or 15000 or more. The molecular weight (Mn), in another embodiment, may be, for example, 250000 or less, 200000 or less, 180000 or less, 160000 or less, 140000 or less, 120000 or less, 100000 or less, 90000 or less, 80000 or less, 70000 or less, 60000 or less, 50000 or less, 40000 or less, 30000 or less, or 25000 or less. The block copolymer may have the polydispersity (Mw/Mn) in a range from 1.01 to 1.60. In another embodiment, the polydispersity may be about 1.1 or more, about 1.2 or more, about 1.3 or more, or about 1.4 or more.
In the above range, the block copolymer may exhibit an appropriate self assembling property. The number average molecular weight and the like of the block copolymer may be controlled considering the objected self assembled structure.
If the block copolymer at least includes the first and second blocks, a ratio of the first block, for example, the block including the chain in the block copolymer may be in a range of 10 mole % to 90 mole %.
The present application relates to a polymer layer including the block copolymer. The polymer layer may be used in various applications. For example, it can be used in a biosensor, a recording media such as a flash memory, a magnetic storage media or the pattern forming method or an electric device or an electronic device, and the like.
In one embodiment, the block copolymer in the polymer layer may be forming a periodic structure including a sphere, a cylinder, a gyroid, or a lamella by the self assembly.
For example, in one segment of the first block or the second block or other block linked to the above block via a covalent bond in the block copolymer, other segment may be forming the regular structure such as lamella form, cylinder form and the like.
The present application relates also to a method for forming a polymer layer by using the block copolymer. The method may include forming a polymer layer including the block copolymer on a substrate in a self-assembled state. For example, the method may include forming a layer of the block copolymer or a coating solution in which the block copolymer is diluted in suitable solvent on the substrate by a coating and the like, and if necessary, then aging or heat-treating the layer.
The aging or the heat treatment may be performed based on, for example, a phase transition temperature or glass transition temperature of the block copolymer, and for example, may be performed at a temperature higher than the glass transition temperature or phase transition temperature. A time for the heat treatment is not particularly limited, and the heat treatment may be performed for approximately 1 minute to 72 hours, but may be changed if necessary. In addition, the temperature of the heat treatment of the polymer layer may be, for example, 100° C. to 250° C., but may be changed in consideration of the block copolymer used herein.
The formed layer may be aged in a non-polar solvent and/or a polar solvent at the room temperature for approximately 1 minute to 72 hours.
The present application relates also to a pattern-forming method. The method may include selectively removing the first or second block of the block copolymer from a laminate comprising a substrate and a polymer layer that is formed on a surface of the substrate and that includes a self-assembled block copolymer. The method may be a method for forming a pattern on the above substrate. For example, the method may include forming the polymer layer on the substrate, selectively removing one block or two or more blocks of the block copolymer that is in the polymer layer; and then etching the substrate. By the above method, for example, nano-scaled micropattern may be formed. Further, according to shapes of the block copolymer in the polymer layer, various shapes of pattern such as nano-rod or nano-hole can be formed by the above method. If necessary, in order to form a pattern, the block copolymer may be mixed with another copolymer or homopolymer. A kind of the substrate applied to this method may be selected without particular limitation, and, for example, silicon oxide and the like may be applied.
For example, according to the method, a nano-scale pattern of silicon oxide having a high aspect ratio may be formed. For example, various types of patterns such as a nanorod or nanohole pattern may be formed by forming the polymer layer on the silicon oxide, selectively removing any one block of the block copolymer in a state where the block copolymer in the polymer layer is formed in a predetermined structure, and etching the silicon oxide in various methods, for example, reactive ion etching. In addition, according to the above method, a nano pattern having a high aspect ratio can be formed.
For example, the pattern may be formed to a scale of several tens of nanometers, and such a pattern may be applied in various uses including a next-generation information electronic magnetic recording medium.
For example, a pattern in which nano structures, for example, nanowires, having a width of approximately 3 to 40 nm are disposed at an interval of approximately 6 to 80 nm may be formed by the above-described method. In another embodiment, a structure in which nanoholes having a width, for example, a diameter of approximately 3 to 40 nm are disposed at an interval of approximately 6 to 80 nm can be implemented.
In addition, in this structure, nanowires or nanoholes may be formed to have a high aspect ratio.
In this method, a method of selectively removing any one block of the block copolymer is not particularly limited, and for example, a method of removing a relatively soft block by irradiating a suitable electromagnetic wave, for example, ultra violet rays to a polymer layer may be used. In this case, conditions for ultra violet radiation may be determined according to a type of the block of the block copolymer, and ultra violet rays having a wavelength of approximately 254 nm may be irradiated for 1 to 60 minutes.
In addition, followed by the ultra violet radiation, the polymer layer may be treated with an acid to further remove a segment degraded by the ultra violet rays.
In addition, the etching of the substrate using the polymer layer from which a block is selectively removed may be performed by reactive ion etching using CF4/Ar ions, and followed by the above process, and removing the polymer layer from the substrate by oxygen plasma treatment may be further performed.
The present application may provide the block copolymers and their application. The block copolymer has an excellent self assembling property and phase separation and various required functions can be freely imparted thereto as necessary.
Hereinafter, the present application will be described in detail with reference to Examples and Comparative Examples, but the scope of the present application is not limited to the following examples.
1. NMR Analysis
The NMR analysis was performed at the room temperature by using a NMR spectrometer including a Varian Unity Inova (500 MHz) spectrometer having a triple resonance 5 mm probe. A sample to be analyzed was used after diluting it in solvent (CDCl3) for the NMR analysis to a concentration of approximately 10 mg/ml and a chemical shift (δ) was expressed in ppm.
<Abbreviation>
br=wide signal, s=singlet, d=doublet, dd=double doublet, t=triplet, dt=double triplet, q=quadruplet, p=quintuplet, m=multiplet
2. GPC (Gel Permeation Chromatograph)
The number average molecular weight and the polydispersity were measured by the GPC (Gel Permeation Chromatograph). In a 5 mL vial, a block copolymer or a macroinitiator to be measured of Example or Comparative Example and then diluted to a concentration of about 1 mg/mL. Then, the standard sample for a calibration and a sample to be analyzed were filtered by a syringe filter (pore size: 0.45 μm) and then analyzed. ChemStation from the Agilent technologies, Co. was used as an analysis program. The number average molecular weight (Mn) and the weight average molecular weight (Mw) were obtained by comparing an elution time of the sample with a calibration curve and then the polydispersity (PDI) was obtained from their ratio (Mw/Mn). The measuring condition of the GPC was as below.
<GPC Measuring Condition>
Device: a 1200 series from Agilent technologies, Co.
Column: two of PLgel mixed B from Polymer laboratories, Co. were used
Solvent: THF
Temperature of the column: 35° C.
Concentration of Sample: 1 mg/mL, 200 L injection
Standard Sample: Polystyrene (Mp: 3900000, 723000, 316500, 52200, 31400, 7200, 3940, 485)
A compound (DPM-C12) of the Formula A below was synthesized by the below method. To a 250 mL flask, hydroquinone (10.0 g, 94.2 mmole) and 1-bromododecane (23.5 g, 94.2 mmole) were added and dissolved in 100 mL acetonitrile, an excessive amount of potassium carbonate was added thereto and then the mixture was reacted at 75° C. for approximately 48 hours under nitrogen. After the reaction, remaining potassium carbonate and acetonitrile used for the reaction were removed. The work up was performed by adding a mixed solvent of dichloromethane (DCM) and water, and separated organic layers were collected and dehydrated through MgSO4. Subsequently, a white solid intermediate was obtained with a yield of approximately 37% using DCM through column chromatography.
<NMR Analysis Result of the Intermediate>
1H-NMR (CDCl3): δ6.77 (dd, 4H); 54.45 (s, 1H); δ3.89 (t, 2H); δ1.75 (p, 2H); δ1.43 (p, 2H); δ1.33-1.26 (m, 16H); 60.88 (t, 3H)
The synthesized intermediate (9.8 g, 35.2 mmole), methacrylic acid (6.0 g, 69.7 mmole), dicyclohexylcarbodiimide (DCC; 10.8 g, 52.3 mmole) and p-dimethylaminopyridine (DMPA; 1.7 g, 13.9 mmol) were put into a flask, 120 ml of methylenechloride was added, and a reaction was performed at the room temperature for 24 hours under nitrogen. After the reaction was completed, a urea salt produced in the reaction was removed through a filter, and remaining methylenechloride was also removed. Impurities were removed using hexane and DCM (dichloromethane) as mobile phases though column chromatography, and the obtained product was recrystallized in a mixed solvent of methanol and water (mixed in 1:1 weight ratio), thereby obtaining a white solid product (DPM-C12)(7.7 g, 22.2 mmol) with a yield of 63%.
<NMR Analysis Result with Respect to DPM-C12>
1H-NMR (CDCl3): δ7.02 (dd, 2H); δ6.89 (dd, 2H); δ6.32 (dt, 1H); δ5.73 (dt, 1H); δ3.94 (t, 2H); δ2.05 (dd, 3H); δ1.76 (p, 2H); δ1.43 (p, 2H); 1.34-1.27 (m, 16H); δ0.88 (t, 3H)
In the above, the R is a linear alkyl having 12 carbon atoms.
A compound (DPM-C8) of the Formula B below was synthesized according to the method of Preparation Example 1, except that 1-bromooctane was used instead of the 1-bromododecane. The NMR analysis result with respect to the above compound is as below.
<NMR Analysis Result with Respect to DPM-C8>
1H-NMR (CDCl3): δ7.02 (dd, 2H); δ6.89 (dd, 2H); δ6.32 (dt, 1H); δ5.73 (dt, 1H); δ3.94 (t, 2H); δ2.05 (dd, 3H); δ1.76 (p, 2H); δ1.45 (p, 2H); 1.33-1.29 (m, 8H); δ0.89 (t, 3H)
In the above, the R is a linear alkyl having 8 carbon atoms.
A compound (DPM-C10) of the Formula C below was synthesized according to the method of Preparation Example 1, except that 1-bromodecane was used instead of the 1-bromododecane. The NMR analysis result with respect to the above compound is as below.
<NMR Analysis Result with Respect to DPM-C10>
1H-NMR (CDCl3): δ7.02 (dd, 2H); δ6.89 (dd, 2H); δ6.33 (dt, 1H); δ5.72 (dt, 1H); δ3.94 (t, 2H); δ2.06 (dd, 3H); δ1.77 (p, 2H); δ1.45 (p, 2H); 1.34-1.28 (m, 12H); 60.89 (t, 3H)
In the above, the R is a linear alkyl having 10 carbon atoms.
A compound (DPM-C14) of the Formula D below was synthesized according to the method of Preparation Example 1, except that 1-bromotetradecane was used instead of the 1-bromododecane. The NMR analysis result with respect to the above compound is as below.
<NMR Analysis Result with Respect to DPM-C14>
1H-NMR (CDCl3): δ7.02 (dd, 2H); δ6.89 (dd, 2H); δ6.33 (dt, 1H); δ5.73 (dt, 1H); δ3.94 (t, 2H); δ2.05 (dd, 3H); δ1.77 (p, 2H); δ1.45 (p, 2H); 1.36-1.27 (m, 20H); δ0.88 (t, 3H.)
In the above, the R is a linear alkyl having 14 carbon atoms.
A compound (DPM-C16) of the Formula E below was synthesized according to the method of Preparation Example 1, except that 1-bromohexadecane was used instead of the 1-bromododecane. The NMR analysis result with respect to the above compound is as below.
<NMR Analysis Result with Respect to DPM-C16>
1H-NMR (CDCl3): δ7.01 (dd, 2H); δ6.88 (dd, 2H); δ6.32 (dt, 1H); δ5.73 (dt, 1H); δ3.94 (t, 2H); δ2.05 (dd, 3H); δ1.77 (p, 2H); δ1.45 (p, 2H); 1.36-1.26 (m, 24H); δ0.89 (t, 3H)
In the above, the R is a linear alkyl having 16 carbon atoms.
A compound (DPM-N2) of the Formula F below was synthesized by the below method. To a 500 mL flask, Pd/C (palladium on carbon) (1.13 g, 1.06 mmole) and 200 mL of 2-propanol were added and then ammonium formate dissolved in 20 mL of water was added, and then the Pd/C was activated by performing a reaction at the room temperature for 1 minute. Then, 4-aminophenol (1.15 g, 10.6 mmole) and lauric aldehyde (1.95 g, 10.6 mmole) were added thereto and the mixture was reacted at the room temperature for 1 minute by stirring it under nitrogen. After the reaction, the Pd/C was removed and the 2-propanol used for the reaction was removed, and then the mixture was extracted by water and methylene chloride so as to remove unreacted products. An organic layer was collected and dehydrated through MgSO4. A crude product was purified by a column chromatography (mobile phase: hexane/ethyl acetate) and thereby a colorless solid intermediate (1.98 g, 7.1 mmole) was obtained (yield: 67 weight %).
<NMR Analysis Result of the Intermediate>
1H-NMR (DMSO-d): δ6.69 (dd, 2H); δ6.53 (dd, 2H); δ3.05 (t, 2H); δ1.59 (p, 2H); δ1.40-1.26 (m, 16H); δ0.88 (t, 3H)
The synthesized intermediate (1.98 g, 7.1 mmole), methacrylic acid (0.92 g, 10.7 mmole), dicyclohexylcarbodiimide (DCC; 2.21 g, 10.7 mmole) and p-dimethylaminopyridine (DMPA; 0.35 g, 2.8 mmol) were put into a flask, 100 ml of methylenechloride was added, and a reaction was performed at the room temperature for 24 hours under nitrogen. After the reaction was completed, a urea salt produced during the reaction was removed through a filter, and remaining methylenechloride was also removed. Impurities were removed using hexane and DCM (dichloromethane) as mobile phases though column chromatography, and the obtained product was recrystallized in a mixed solvent (methanol:water=3:1 (weight ratio)) of methanol and water, thereby obtaining a white solid product (DPM-N2)(1.94 g, 5.6 mmole) with a yield of 79%.
<NMR Analysis Result with Respect to DPM-N2>
1H-NMR (CDCl3): δ6.92 (dd, 2H); δ6.58 (dd, 2H); δ6.31 (dt, 1H); δ5.70 (dt, 1H); δ3.60 (s, 1H); 63.08 (t, 2H); δ2.05 (dd, 3H); δ1.61 (p, 2H); δ1.30-1.27 (m, 16H); δ0.88 (t, 3H)
In the above, the R is a linear alkyl having 12 carbon atoms.
A compound (DPM-C4) of the Formula G below was synthesized according to the method of Preparation Example 1, except that 1-bromobutane was used instead of the 1-bromododecane. The NMR analysis result with respect to the above compound is as below.
<NMR Analysis Result with Respect to DPM-C4>
1H-NMR (CDCl3): δ7.02 (dd, 2H); δ6.89 (dd, 2H); δ6.33 (dt, 1H); δ5.73 (dt, 1H); δ3.95 (t, 2H); δ2.06 (dd, 3H); δ1.76 (p, 2H); δ1.49 (p, 2H); δ0.98 (t, 3H)
In the above, the R is a linear alkyl having 4 carbon atoms.
2.0 g of the compound (DPM-C12) of Preparation Example 1, 64 mg of RAFT (Reversible Addition-Fragmentation chain transfer) reagent (cyanoisopropyl dithiobenzoate), 23 mg of AIBN (azobisisobutyronitrile) and 5.34 mL of benzene were added to a 10 mL flask and then were stirred at the room temperature for 30 minutes and then the RAFT (reversible addition fragmentation chain transfer) polymerization was performed at 70° C. for 4 hours. After the polymerization, the reacted solution was precipitated in 250 mL of methanol that was an extraction solvent, was vacuum filtered and dried so as to obtain pink macroinitiator. The yield of the macroinitiator was about 86%, and its number average molecular weight (Mn) and polydispersity (Mw/Mn) were 9,000 and 1.16, respectively.
0.3 g of the macroinitiator, 2.7174 g of pentafluorostyrene and 1.306 mL of benzene were added to a 10 mL Schlenk flask and then were stirred at the room temperature for 30 minutes and then the RAFT (reversible addition fragmentation chain transfer) polymerization was performed at 115° C. for 4 hours. After the polymerization, the reacted solution was precipitated in 250 mL of methanol that was an extraction solvent, was vacuum filtered and dried so as to obtain light pink block copolymer. The yield of the block copolymer was about 18%, and its number average molecular weight (Mn) and polydispersity (Mw/Mn) were 16,300 and 1.13, respectively. The block copolymer includes the first block derived from the compound (DPM-C12) of Preparation Example 1 and the second block derived from the pentafluorostyrene.
A block copolymer was prepared by the same method as in Example 1 except that a macroinitiator prepared by using the compound (DPM-C8) of Preparation Example 2 instead of the compound (DPM-C12) of Preparation Example 1 and pentafluorostyrene were used. The block copolymer includes the first block derived from the compound (DPM-C8) of Preparation Example 2 and the second block derived from the pentafluorostyrene.
A block copolymer was prepared by the same method as in Example 1 except that a macroinitiator prepared by using the compound (DPM-C10) of Preparation Example 3 instead of the compound (DPM-C12) of Preparation Example 1 and pentafluorostyrene were used. The block copolymer includes the first block derived from the compound (DPM-C10) of Preparation Example 3 and the second block derived from the pentafluorostyrene.
A block copolymer was prepared by the same method as in Example 1 except that a macroinitiator prepared by using the compound (DPM-C14) of Preparation Example 4 instead of the compound (DPM-C12) of Preparation Example 1 and pentafluorostyrene were used. The block copolymer includes the first block derived from the compound (DPM-C14) of Preparation Example 4 and the second block derived from the pentafluorostyrene.
A block copolymer was prepared by the same method as in Example 1 except that a macroinitiator prepared by using the compound (DPM-C16) of Preparation Example 5 instead of the compound (DPM-C12) of Preparation Example 1 and pentafluorostyrene were used. The block copolymer includes the first block derived from the compound (DPM-C16) of Preparation Example 5 and the second block derived from the pentafluorostyrene.
Synthesis of a Monomer
3-Hydroxy-1,2,4,5-tetrafluorostyrene was synthesized according to the below method. Pentafluorostyrene (25 g, 129 mmole) was added to a mixed solution of 400 mL of tert-butanol and potassium hydroxide (37.5 g, 161 mmole); and then was subjected to a reflux reaction for 2 hours. The product after the reaction was cooled to the room temperature, 1200 mL of water was added and the remaining butanol used for the reaction was volatilized. The adduct was extracted 3 times by diethyl ether (300 mL), an aqueous layer was acidified by 10 weight % of hydrochloric acid solution until its pH became 3, and thereby target product was precipitated. Precipitated product was extracted 3 times by diethyl ether (300 mL) and an organic layer was collected. The organic layer was dehydrated by MgSO4 and solvent was removed. Crude product was purified in a column chromatograph by using hexane and DCM (dichloromethane) as mobile phase and thereby colorless liquid 3-hydroxy-1,2,4,5-tetrafluorostyrene (11.4 g) was obtained. Its NMR analysis result is as below.
<NMR Analysis Result>
1H-NMR (DMSO-d): δ11.7 (s, 1H); δ6.60 (dd, 1H); δ5.89 (d, 1H); δ5.62 (d, 1H)
Synthesis of a Block Copolymer
In benzene, AIBN (azobisisobutyronitrile), RAFT (reversible addition fragmentation chain transfer) reagent (2-cyano-2-propyl dodecyl trithiocarbonate) and the compound (DPM-C12) of Preparation Example 1 were dissolved in a weight ratio of 50:1:0.2 (DPM-C12:RAFT reagent:AIBN) (Concentration: 70 weight %), and then a macroinitiator (a number average molecular weight: 14000, polydispersity: 1.2) was prepared by reacting the mixture for 4 hours at 70° C. under nitrogen. Then, in benzene, the synthesized macroinitiator, 3-hydroxy-1,2,4,5-tetrafluorostyrene (TFS-OH) and AIBN (azobisisobutyronitrile) were dissolved in a weight ratio of 1:200:0.5 (the macroinitiator:TFS-OH:AIBN) (Concentration: 30 weight %), and then a block copolymer (a number average molecular weight: 35000, polydispersity: 1.2) was prepared by reacting the mixture for 6 hours at 70° C. under nitrogen. The block copolymer includes the first block derived from the compound of Preparation Example 1 and the second block derived from the 3-hydroxy-1,2,4,5-tetrafluorostyrene.
Synthesis of a Monomer
The compound of the Formula H below was synthesized according to the below method. Phthalimide (10.0 g, 54 mmole) and chloromethylstyrene (8.2 g, 54 mmole) were added to 50 mL of DMF (dimethyl formamide) and then were reacted for 18 hours at 55° C. under nitrogen. After the reaction, 100 mL of ethyl acetate and 100 mL of distilled water were added to the reacted product, and then an organic layer was collected and then washed by brine solution. Collected organic layer was treated by MgSO4 and thereby water was removed and then solvent was finally removed and then re-crystallized by pentane so as to obtain white solid target compound (11.1 g). Its NMR analysis result is as below.
<NMR Analysis Result>
1H-NMR (CDCl3): δ7.84 (dd, 2H); δ7.70 (dd, 2H); δ7.40-7.34 (m, 4H); δ6.67 (dd, 1H); δ5.71 (d, 1H); δ5.22 (d, 1H); δ1.83 (s, 2H)
Synthesis of a Block Copolymer
In benzene, AIBN (azobisisobutyronitrile), RAFT (reversible addition fragmentation chain transfer) reagent (2-cyano-2-propyl dodecyl trithiocarbonate) and the compound (DPM-C12) of Preparation Example 1 were dissolved in a weight ratio of 50:1:0.2 (DPM-C12:RAFT reagent:AIBN) (Concentration: 70 weight %), and then a macroinitiator (a number average molecular weight: 14000, polydispersity: 1.2) was prepared by reacting the mixture for 4 hours at 70° C. under nitrogen. Then, in benzene, the synthesized macroinitiator, the compound (TFS-PhIM) of Formula H and AIBN (azobisisobutyronitrile) were dissolved in a weight ratio of 1:200:0.5 (the macroinitiator:TFS-PhIM:AIBN) (Concentration: 30 weight %), and then a block copolymer (a number average molecular weight: 35000, polydispersity: 1.2) was prepared by reacting the mixture for 6 hours at 70° C. under nitrogen. The block copolymer includes the first block derived from the compound of Example 1 and the second block derived from the compound of Formula H.
In a 10 mL flask (Schlenk flask), 0.8662 g of the compound (DPM-C12) of the Preparation Example 1, 0.5 g of a macroinitiator (Macro-PEO)(poly(ethylene glycol)-4-cyano-4-(phenylcarbonothioylthio)pentanoate, a weight average molecular weight (Mw): 10,000, Sigma Aldrich) to the both end portions of which RAFT (Reversible Addition-Fragmentation chain Transfer) reagents were linked, 4.1 mg of AIBN (azobisisobutyronitrile) and 3.9 mL of anisole were added and then were stirred at the room temperature under a nitrogen for 30 minutes and then the RAFT (Reversible Addition-Fragmentation chain Transfer) polymerization was performed for 12 hours in a silicone oil container of 70° C. After the polymerization, the reacted solution was precipitated in 250 mL of methanol that is an extraction solvent, and then was subjected to a vacuum filtration and dried, a pale pink block copolymer (Yield: 30.5%, a number average molecular weight (Mn): 34300, polydispersity (Mw/Mn): 1.60) was obtained. The block copolymer includes the first block derived from the compound of Preparation Example 1 and the second block of the polyethyleneoxide.
In a 10 mL flask (Schlenk flask), 2.0 g of the compound (DPM-C12) of the Preparation Example 1, 25.5 mg of RAFT (Reversible Addition-Fragmentation chain Transfer) reagents (cyanoisopropyl dithiobenzoate), 9.4 mg of AIBN (azobisisobutyronitrile) and 5.34 mL of benzene were added and then were stirred at the room temperature under a nitrogen for 30 minutes and then the RAFT (Reversible Addition-Fragmentation chain Transfer) polymerization was performed for 4 hours in a silicone oil container of 70° C. After the polymerization, the reacted solution was precipitated in 250 mL of methanol that is an extraction solvent, and then was subjected to a vacuum filtration and dried, a pink macroinitiator to both ends of which the RAFT (Reversible Addition-Fragmentation chain Transfer) reagents were linked was obtained. The yield, a number average molecular weight (Mn) and polydispersity (Mw/Mn) of the macroinitiator were 81.6 weight %, 15400 and 1.16 respectively. In a 10 mL flask (Schlenk flask), 1.177 g of styrene, 0.3 g of the macroinitiator and 0.449 mL of benzene were added and then were stirred at the room temperature under a nitrogen for 30 minutes and then the RAFT (Reversible Addition-Fragmentation chain Transfer) polymerization was performed for 4 hours in a silicone oil container of 115° C. After the polymerization, the reacted solution was precipitated in 250 mL of methanol that is an extraction solvent, and then was subjected to a vacuum filtration and dried, a pale pink novel block copolymer was prepared. The yield, a number average molecular weight (Mn) and polydispersity (Mw/Mn) of the block copolymer were 39.3 weight %, 31800 and 1.25 respectively. The block copolymer includes the first block derived from the compound of Preparation Example 1 and the second block of the polystyrene.
In a 10 mL flask (Schlenk flask), 0.33 g of the macroinitiator prepared in Example 9, 1.889 g of 4-trimethylsilylstyrene, 2.3 mg of AIBN (azobisisobutyronitrile) and 6.484 mL of benzene were added and then were stirred at the room temperature under a nitrogen for 30 minutes and then the RAFT (Reversible Addition-Fragmentation chain Transfer) polymerization was performed for 24 hours in a silicone oil container of 70° C. After the polymerization, the reacted solution was precipitated in 250 mL of methanol that is an extraction solvent, and then was subjected to a vacuum filtration and dried, a pale pink novel block copolymer was prepared. The yield, a number average molecular weight (Mn) and polydispersity (Mw/Mn) of the block copolymer were 44.2 weight %, 29600 and 1.35 respectively. The block copolymer includes the first block derived from the compound of Preparation Example 1 and the second block of the poly(4-trimethylsilylstyrene).
Synthesis of a Monomer
The compound of the Formula I below was synthesized according to the below method. Pentafluorostyrene (25 g, 129 mmole) was added to a mixed solution of 400 mL of tert-butanol and potassium hydroxide (37.5 g, 161 mmole); and then was subjected to a reflux reaction for 2 hours. The product after the reaction was cooled to the room temperature, 1200 mL of water was added and the remaining butanol used for the reaction was volatilized. The adduct was extracted 3 times by diethyl ether (300 mL), an aqueous layer was acidified by 10 weight % of hydrochloric acid solution until its pH became 3, and thereby target product was precipitated. Precipitated product was extracted 3 times by diethyl ether (300 mL) and an organic layer was collected. The organic layer was dehydrated by MgSO4 and solvent was removed. Crude product was purified in a column chromatograph by using hexane and DCM (dichloromethane) as mobile phase and thereby a colorless liquid intermediate (3-hydroxy-1,2,4,5-tetrafluorostyrene) (11.4 g) was obtained. Its NMR analysis result is as below.
<NMR Analysis Result>
1H-NMR (DMSO-d): δ11.7 (s, 1H); δ6.60 (dd, 1H); δ5.89 (d, 1H); δ5.62 (d, 1H)
The intermediate (11.4 g, 59 mmole) was dissolved in DCM (dichloromethane) (250 mL) and then imidazole (8.0 g, 118 mmole), DMPA (p-dimethylaminopyridine (0.29 g, 2.4 mmole) and tert-butylchlorodimethylsilane (17.8 g, 118 mmole) were added thereto. The mixture was reacted by stirring it at the room temperature for 24 hours and the reaction was terminated by adding 100 mL of brine and then additional extraction was performed by DCM. A collected organic layer of DCM was dehydrated by MgSO4 and solvent was removed so as to obtain crude product. Colorless liquid target product (10.5 g) was obtained after purification in a column chromatograph by using hexane and DCM as mobile phase. NMR result of the target product is as below.
<NMR Analysis Result>
1H-NMR (CDCl3): δ6.62 (dd, 1H); δ6.01 (d, 1H); δ5.59 (d, 1H); δ1.02 (1, 9H), δ0.23 (t, 6H)
Synthesis of a Block Copolymer
In benzene, AIBN (azobisisobutyronitrile), RAFT (reversible addition fragmentation chain transfer) reagent (2-cyano-2-propyl dodecyl trithiocarbonate) and the compound (DPM-C12) of Preparation Example 1 were dissolved in a weight ratio of 50:1:0.2 (DPM-C12:RAFT reagent:AIBN) (Concentration: 70 weight %), and then a macroinitiator (a number average molecular weight: 14000, polydispersity: 1.2) was prepared by reacting the mixture for 4 hours at 70° C. under nitrogen. Then, in benzene, the synthesized macroinitiator, the compound (TFS-S) of Formula I and AIBN (azobisisobutyronitrile) were dissolved in a weight ratio of 1:200:0.5 (the macroinitiator:TFS-S:AIBN) (Concentration: 30 weight %), and then a block copolymer (a number average molecular weight: 35000, polydispersity: 1.2) was prepared by reacting the mixture for 6 hours at 70° C. under nitrogen. The block copolymer includes the first block derived from the compound of Preparation Example 1 and the second block derived from the compound of Formula I.
In benzene, AIBN (azobisisobutyronitrile), RAFT (reversible addition fragmentation chain transfer) reagent (2-cyano-2-propyl dodecyl trithiocarbonate) and the compound (DPM-N1) of Preparation Example 6 were dissolved in a weight ratio of 26:1:0.5 (DPM-C12:RAFT reagent:AIBN) (Concentration: 70 weight %), and then a macroinitiator (a number average molecular weight: 9700, polydispersity: 1.2) was prepared by reacting the mixture for 4 hours at 70° C. under nitrogen. Then, in benzene, the synthesized macroinitiator, pentafluorostyrene (PFS) and AIBN (azobisisobutyronitrile) were dissolved in a weight ratio of 1:600:0.5 (the macroinitiator:PFS:AIBN) (Concentration: 30 weight %), and then a block copolymer (a number average molecular weight: 17300, polydispersity: 1.2) was prepared by reacting the mixture for 6 hours at 115° C. under nitrogen. The block copolymer includes the first block derived from the compound of Preparation Example 6 and the second block derived from the pentafluorostyrene.
A block copolymer was prepared by the same method as in Example 1 except that a macroinitiator prepared by using the compound (DPM-C4) of Preparation Example 7 instead of the compound (DPM-C12) of Preparation Example 1 and pentafluorostyrene were used. The block copolymer includes the first block derived from the compound (DPM-C4) of Preparation Example 7 and the second block derived from the pentafluorostyrene.
A block copolymer was prepared by the same method as in Example 1 except that a macroinitiator prepared by using 4-methoxyphenyl methacrylate instead of the compound (DPM-C12) of Preparation Example 1 and pentafluorostyrene were used. The block copolymer includes the first block derived from the 4-methoxyphenyl methacrylate and the second block derived from the pentafluorostyrene.
A block copolymer was prepared by the same method as in Example 1 except that a macroinitiator prepared by using dodecyl methacrylate instead of the compound (DPM-C12) of Preparation Example 1 and pentafluorostyrene were used. The block copolymer includes the first block derived from the dodecyl methacrylate and the second block derived from the pentafluorostyrene.
Self assembled polymer layers were prepared by using block copolymers of Examples 1 to 12 and Comparative Examples 1 to 3 and the results were observed. Specifically, each block copolymer was dissolved in solvent to a concentration of 1.0 weight % and then was spin-coated on a silicone wafer for 60 seconds by a speed of 3000 rpm. Then, self assembling was performed by a solvent annealing or a thermal annealing. The used solvents and aging methods were stated in the Table 1 below. Then, the self assembling properties were evaluated by subjecting each polymer layer to a SEM (scanning electron microscope) or AFM (atomic force microscopy) analysis.
Number | Date | Country | Kind |
---|---|---|---|
10-2013-0151865 | Dec 2013 | KR | national |
10-2013-0151866 | Dec 2013 | KR | national |
10-2013-0151867 | Dec 2013 | KR | national |
10-2013-0159994 | Dec 2013 | KR | national |
10-2014-0131964 | Sep 2014 | KR | national |
10-2014-0175404 | Dec 2014 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2014/012028 | 12/8/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/084125 | 6/11/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3976672 | Strunk et al. | Aug 1976 | A |
5115056 | Mueller et al. | May 1992 | A |
5202402 | Funaki et al. | Apr 1993 | A |
5234604 | Liao et al. | Aug 1993 | A |
5391626 | Machida et al. | Feb 1995 | A |
5418290 | Machida et al. | May 1995 | A |
5554695 | Machida et al. | Sep 1996 | A |
5728431 | Bergbreiter et al. | Mar 1998 | A |
6314225 | Wang | Nov 2001 | B1 |
6531547 | Visger et al. | Mar 2003 | B1 |
6546282 | Inoue et al. | Apr 2003 | B1 |
6953649 | Prat et al. | Oct 2005 | B2 |
7538159 | Wang et al. | May 2009 | B2 |
8163189 | Iyoda et al. | Apr 2012 | B2 |
8211737 | Russell et al. | Jul 2012 | B2 |
8791042 | Ronan et al. | Jul 2014 | B2 |
9495991 | Han et al. | Nov 2016 | B2 |
20030143343 | Kawabata et al. | Jul 2003 | A1 |
20040049836 | Ashraf et al. | Mar 2004 | A1 |
20040110856 | Young et al. | Jun 2004 | A1 |
20040143032 | Auschra et al. | Jul 2004 | A1 |
20040242787 | Chun et al. | Dec 2004 | A1 |
20060166033 | Poetsch et al. | Jul 2006 | A1 |
20070142559 | Wang et al. | Jun 2007 | A1 |
20070166648 | Ponoth et al. | Jul 2007 | A1 |
20070219338 | Takeda et al. | Sep 2007 | A1 |
20080105854 | Huh et al. | May 2008 | A1 |
20080193658 | Millward | Aug 2008 | A1 |
20080286333 | Kangas et al. | Nov 2008 | A1 |
20080311402 | Jung et al. | Dec 2008 | A1 |
20090114108 | Oya et al. | May 2009 | A1 |
20090240001 | Regner | Sep 2009 | A1 |
20090253867 | Takahashi et al. | Oct 2009 | A1 |
20090306295 | Mays et al. | Dec 2009 | A1 |
20100086801 | Russell et al. | Apr 2010 | A1 |
20100098876 | Hanson | Apr 2010 | A1 |
20100102415 | Millward et al. | Apr 2010 | A1 |
20100120985 | Konishi et al. | May 2010 | A1 |
20100155988 | Keil et al. | Jun 2010 | A1 |
20100206057 | Batchelder et al. | Aug 2010 | A1 |
20100210742 | Iyoda et al. | Aug 2010 | A1 |
20100216312 | Yamamoto et al. | Aug 2010 | A1 |
20100266957 | Harada et al. | Oct 2010 | A1 |
20100285276 | Kim et al. | Nov 2010 | A1 |
20100286351 | Yoshida et al. | Nov 2010 | A1 |
20100305230 | Li et al. | Dec 2010 | A1 |
20110186544 | Endou et al. | Aug 2011 | A1 |
20110253946 | Huh et al. | Oct 2011 | A1 |
20110294070 | Hatakeyama et al. | Dec 2011 | A1 |
20120052446 | Jaycox et al. | Mar 2012 | A1 |
20120116024 | Iyoda et al. | May 2012 | A1 |
20120214094 | Mikoshiba et al. | Aug 2012 | A1 |
20130078576 | Wu et al. | Mar 2013 | A1 |
20130183828 | Nakamura et al. | Jul 2013 | A1 |
20130189504 | Nealey et al. | Jul 2013 | A1 |
20130209693 | Vogel et al. | Aug 2013 | A1 |
20130209755 | Hustad et al. | Aug 2013 | A1 |
20130248488 | Han et al. | Sep 2013 | A1 |
20130284698 | Ogihara | Oct 2013 | A1 |
20130306594 | Hustad et al. | Nov 2013 | A1 |
20140011916 | Lee et al. | Jan 2014 | A1 |
20140127456 | Regner | May 2014 | A1 |
20140141375 | Cho et al. | May 2014 | A1 |
20140238954 | Matsumiya et al. | Aug 2014 | A1 |
20140370442 | Ober et al. | Dec 2014 | A1 |
20150064630 | Wuister et al. | Mar 2015 | A1 |
20150085042 | Keoshkerian et al. | Mar 2015 | A1 |
20150197663 | Mizutani et al. | Jul 2015 | A1 |
20150228298 | Han et al. | Aug 2015 | A1 |
20160204653 | Lee | Jul 2016 | A1 |
20160257838 | Senzaki et al. | Sep 2016 | A1 |
20160280823 | Kim et al. | Sep 2016 | A1 |
20160280831 | Park et al. | Sep 2016 | A1 |
20160280832 | Kim et al. | Sep 2016 | A1 |
20160280833 | Lee et al. | Sep 2016 | A1 |
20160280834 | Kim et al. | Sep 2016 | A1 |
20160280835 | Lee et al. | Sep 2016 | A1 |
20160304653 | Kim et al. | Oct 2016 | A1 |
20160304654 | Lee et al. | Oct 2016 | A1 |
20160304655 | Lee et al. | Oct 2016 | A1 |
20160311958 | Kim et al. | Oct 2016 | A1 |
20160311959 | Lee et al. | Oct 2016 | A1 |
20160311960 | Lee et al. | Oct 2016 | A1 |
20160333221 | Mumtaz et al. | Nov 2016 | A1 |
20170008992 | Lee et al. | Jan 2017 | A1 |
20170058071 | Lee et al. | Mar 2017 | A1 |
20170210938 | Ku et al. | Jul 2017 | A1 |
20170219922 | Ku et al. | Aug 2017 | A1 |
20170226235 | Park et al. | Aug 2017 | A1 |
20170226258 | Lee et al. | Aug 2017 | A1 |
20170226260 | Lee et al. | Aug 2017 | A1 |
20170226261 | Lee et al. | Aug 2017 | A1 |
20170247492 | Choi et al. | Aug 2017 | A1 |
20170306074 | Lee et al. | Oct 2017 | A1 |
20170313869 | Lee et al. | Nov 2017 | A1 |
20180170023 | Park et al. | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
1333790 | Jan 2002 | CN |
1337974 | Feb 2002 | CN |
101215362 | Jul 2008 | CN |
101443371 | May 2009 | CN |
101492520 | Jul 2009 | CN |
101578232 | Nov 2009 | CN |
101688047 | Mar 2010 | CN |
101799626 | Aug 2010 | CN |
101977839 | Feb 2011 | CN |
102172491 | Sep 2011 | CN |
102439076 | May 2012 | CN |
102967918 | Mar 2013 | CN |
103025827 | Apr 2013 | CN |
103180783 | Jun 2013 | CN |
103289285 | Sep 2013 | CN |
103562245 | Feb 2014 | CN |
105899556 | Aug 2016 | CN |
105899557 | Aug 2016 | CN |
105899559 | Aug 2016 | CN |
105899560 | Aug 2016 | CN |
105934454 | Sep 2016 | CN |
105934456 | Sep 2016 | CN |
105960422 | Sep 2016 | CN |
105980342 | Sep 2016 | CN |
106459326 | Feb 2017 | CN |
1141056 | Aug 2010 | EP |
2781550 | Sep 2014 | EP |
3078654 | Oct 2016 | EP |
3078691 | Oct 2016 | EP |
3078692 | Oct 2016 | EP |
3078694 | Oct 2016 | EP |
3203497 | Aug 2017 | EP |
3214102 | Sep 2017 | EP |
3225641 | Oct 2017 | EP |
898065 | Jun 1962 | GB |
01260360 | Oct 1989 | JP |
H01-260360 | Oct 1989 | JP |
H5320281 | Dec 1993 | JP |
H0665333 | Mar 1994 | JP |
H10245427 | Sep 1998 | JP |
H110237143 | Sep 1998 | JP |
H11143523 | Feb 1999 | JP |
2000053734 | Feb 2000 | JP |
2000281737 | Oct 2000 | JP |
2000285751 | Oct 2000 | JP |
3121116 | Dec 2000 | JP |
2001513125 | Aug 2001 | JP |
2001294617 | Oct 2001 | JP |
2002145973 | May 2002 | JP |
2003536105 | Dec 2003 | JP |
2004026688 | Jan 2004 | JP |
2004323773 | Nov 2004 | JP |
2005015508 | Jan 2005 | JP |
2005097442 | Apr 2005 | JP |
2005148205 | Jun 2005 | JP |
2005530030 | Oct 2005 | JP |
2005531618 | Oct 2005 | JP |
2007070453 | Mar 2007 | JP |
2007077292 | Mar 2007 | JP |
2007246600 | Sep 2007 | JP |
200855579 | Mar 2008 | JP |
2009057519 | Mar 2009 | JP |
200986354 | Apr 2009 | JP |
2009203439 | Sep 2009 | JP |
2010507803 | Mar 2010 | JP |
2010115832 | May 2010 | JP |
2010145158 | Jul 2010 | JP |
2010202723 | Sep 2010 | JP |
2010275349 | Dec 2010 | JP |
4625901 | Feb 2011 | JP |
2012001787 | Jan 2012 | JP |
2012012577 | Jan 2012 | JP |
2012093699 | May 2012 | JP |
2012174984 | Sep 2012 | JP |
201368882 | Apr 2013 | JP |
2013512323 | Apr 2013 | JP |
2013514449 | Apr 2013 | JP |
2013121430 | Jun 2013 | JP |
2013219334 | Oct 2013 | JP |
2013232501 | Nov 2013 | JP |
201412807 | Jan 2014 | JP |
2014070154 | Apr 2014 | JP |
2014102503 | Jun 2014 | JP |
2014162504 | Sep 2014 | JP |
2015000896 | Jan 2015 | JP |
2016539239 | Dec 2016 | JP |
2016540863 | Dec 2016 | JP |
2017502116 | Jan 2017 | JP |
2017505356 | Feb 2017 | JP |
2017530236 | Oct 2017 | JP |
2017530238 | Oct 2017 | JP |
2017533302 | Nov 2017 | JP |
20010101356 | Nov 2001 | KR |
100622353 | Sep 2006 | KR |
20090015742 | Feb 2009 | KR |
100935863 | Jan 2010 | KR |
20100033962 | Mar 2010 | KR |
20100070380 | Jun 2010 | KR |
20100123920 | Nov 2010 | KR |
20110018678 | Feb 2011 | KR |
20110086834 | Aug 2011 | KR |
20110097707 | Aug 2011 | KR |
20110102998 | Sep 2011 | KR |
20110112501 | Oct 2011 | KR |
101102680 | Jan 2012 | KR |
20120119998 | Nov 2012 | KR |
20130094264 | Aug 2013 | KR |
20130113596 | Oct 2013 | KR |
20130128346 | Nov 2013 | KR |
20140063790 | May 2014 | KR |
20150066488 | Jun 2015 | KR |
20150067065 | Jun 2015 | KR |
20150067070 | Jun 2015 | KR |
1020150067069 | Jun 2015 | KR |
201323461 | Jun 2013 | TW |
201428046 | Jul 2014 | TW |
201536823 | Oct 2015 | TW |
201538548 | Oct 2015 | TW |
9837136 | Aug 1998 | WO |
2007055371 | May 2007 | WO |
2012144735 | Oct 2012 | WO |
2013069544 | May 2013 | WO |
2013120051 | Aug 2013 | WO |
2013158527 | Oct 2013 | WO |
2014050905 | Apr 2014 | WO |
2014090178 | Jun 2014 | WO |
2014124795 | Aug 2014 | WO |
2015084121 | Jun 2015 | WO |
2015084122 | Jun 2015 | WO |
2015084123 | Jun 2015 | WO |
2015084124 | Jun 2015 | WO |
2015084125 | Jun 2015 | WO |
2015084126 | Jun 2015 | WO |
2015084127 | Jun 2015 | WO |
2015087005 | Jun 2015 | WO |
2016052994 | Apr 2016 | WO |
2016052999 | Apr 2016 | WO |
2016053005 | Apr 2016 | WO |
2016053007 | Apr 2016 | WO |
2016053011 | Apr 2016 | WO |
Entry |
---|
Tenneti et al. Hierarchical Nanostructures of Mesogen Jacketed Bent-Core Liquid Crystalline Block Copolymers, Proceedings Published 2007 by the American Chemical Society. |
Tenneti et al. “Competition between liquid crystallinity and block copolymer self-assembly in core-shell rod-coil block copolymers”, Soft Matter, 2008, 4, 458-461 (2008). |
Hua et al. “Temperature-induced phase-transitions of methoxyoligo(oxyethylene) styrene-based block copolymers in aqueous solution”, Soft Matter, 2013, 9, 8897. |
Khazimullis et al. “Gel formation in a mixture of a block copolymer and a nematic liquid crystal”, Physical Review E 84, 021710 (2011). |
Lee et al, electronic translation of KR 1020160038705, Apr. 2016. |
International Search Report from PCT/KR2014/012023, dated Mar. 10, 2015. |
IPO Search Report from Taiwan Application No. 103142955, dated Jan. 15, 2016. |
International Search Report from PCT/KR2014/012024, dated Mar. 17, 2015. |
IPO Search Report from Taiwan Application No. 103142805, dated Dec. 11, 2015. |
IPO Search Report from Taiwan Application No. 103142784, dated Jan. 27, 2016. |
International Search Report from PCT/KR2014/012026, dated Mar. 17, 2015. |
International Search Report from PCT/KR2014/012027, dated Mar. 17, 2015. |
International Search Report from PCT/KR2014/012028, dated Mar. 17, 2015. |
IPO Search Report from Taiwan Application No. 103142798, dated Dec. 16, 2015. |
International Search Report from PCT/KR2014/012029, dated Mar. 17, 2015. |
IPO Search Report from Taiwan Application No. 103142780, dated Dec. 15, 2015. |
International Search Report from PCT/KR2014/012030, dated Mar. 17, 2015. |
International Search Report from PCT/KR2014/012031, dated Feb. 12, 2015. |
IPO Search Report from Taiwan Application No. 103142956 dated Jan. 20, 2016. |
International Search Report from PCT/KR2014/012032, dated Feb. 12, 2015. |
IPO Search Report from Taiwan Application No. 103142777, dated Dec. 15, 2015. |
International Search Report from PCT/KR2014/012033, dated Feb. 12, 2015. |
IPO Search Report from Taiwan Application No. 103142963, dated Dec. 10, 2015. |
International Search Report from PCT/KR2014/012034, dated Feb. 12, 2015. |
IPO Search Report from Taiwan Application No. 103142745, dated Dec. 14, 2015. |
International Search Report from PCT/KR2014/012035, dated Feb. 12, 2015. |
Akiba, Isamu, et al., “Self-Assembly of Amphiphilic Block Copolymers Containing Poly(n-octadecyl acrylate) Block in Aqueous Solution.” IOP Conference Series: Materials Science and Engineering, 2010, vol. 14, No. 1, pp. 1-8. |
IPO Search Report from Taiwan Application No. 103142794, dated Dec. 15, 2015. |
IPO Search Report from Taiwan Application No. 103142786, dated Jan. 11, 2016. |
International Search Report from PCT/KR2014/012036, dated Mar. 17, 2015. |
U.S. Appl. No. 15/101,794, filed Jun. 3, 2016. |
U.S. Appl. No. 15/101,827, filed Jun. 3, 2016. |
U.S. Appl. No. 15/101,915, filed Jun. 5, 2016. |
U.S. Appl. No. 15/101,812, filed Jun. 3, 2016. |
U.S. Appl. No. 15/102,089, filed Jun. 6, 2016. |
U.S. Appl. No. 15/102,139, filed Jun. 6, 2016. |
U.S. Appl. No. 15/102,149, filed Jun. 6, 2016. |
U.S. Appl. No. 15/102,156, filed Jun. 6, 2016. |
U.S. Appl. No. 15/173,671, filed Jun. 5, 2016. |
U.S. Appl. No. 15/173,670, filed Jun. 5, 2016. |
U.S. Appl. No. 15/173,673, filed Jun. 5, 2016. |
U.S. Appl. No. 15/173,674, filed Jun. 5, 2016. |
U.S. Appl. No. 15/173,676, filed Jun. 5, 2016. |
International Search Report from PCT/KR2015/010338 dated Jan. 14, 2016. |
U.S. Appl. No. 15/515,821, filed Mar. 30, 2017. |
U.S. Appl. No. 15/514,929, filed Mar. 28, 2017. |
U.S. Appl. No. 15/514,939, filed Mar. 28, 2017. |
U.S. Appl. No. 15/514,959, filed Mar. 28, 2017. |
U.S. Appl. No. 151514,967, filed Mar. 28, 2017. |
U.S. Appl. No. 15/515,290, filed Mar. 29, 2017. |
U.S. Appl. No. 15/515,812, filed Mar. 30, 2017. |
U.S. Appl. No. 15/515,818, filed Mar. 30, 2017. |
U.S. Appl. No. 15/515,293, filed Mar. 29, 2017. |
U.S. Appl. No. 15/515,432, filed Mar. 29, 2017. |
International Search Report from PCT/KR2015/010313, dated Nov. 23, 2015. |
International Search Report from PCT/KR2015/010335 dated Jan. 13, 2016. |
IPO Search Report from Taiwan Application No. 104132186, dated Aug. 18, 2016. |
International Search Report from PCT/KR2015/010334, dated Jan. 13, 2016. |
International Search Report from PCT/KR2015/010323, dated Jan. 13, 2016. |
International Search Report from PCT/KR2015/010320, dated Jan. 13, 2016. |
International Search Report from PCT/KR2015/010322, dated Jan. 13, 2016. |
International Search Report from PCT/KR2015/010327, dated Jan. 12, 2016. |
International Search Report from PCT/KR2015/010330 dated Jan. 11, 2016. |
Park et al., “Block Copolymer Lithography: Periodic Arrays of—10 11 Holes in 1 Square Centimeter”, Science 276, p. 1401-1404, May 30, 1997. |
International Search Report from PCT/KR2015/010332 dated Jan. 13, 2016. |
Anonymous., “Solid surface energy data (SFE) for common polymers”, surface-tension.de, Feb. 2017, Retreived from the Internet: URL:http://www.surface-tension.de/solid-surface-energy.htm, XP002775246. |
Cummins et al., “Solvothermal Vapor Annealing of Lamellar Poly(styrene)-block-poly(D,L-lactide) Block Copolymer Thin Films for Directed Self-Assembly Application”, ACS Applied Materials & Interfaces, Mar. 2016, vol. 8, No. 12, pp. 8295-8304, XP055419698. |
Extended European Search Report for Application No. EP14867808.9 dated Nov. 10, 2017. |
Extended European Search Report for Application No. EP14868022.6 dated Nov. 6, 2017. |
Extended European Search Report for Application No. EP14868320.4 dated Nov. 20, 2017. |
Extended European Search Report for Application No. EP14868480.6 dated Nov. 2, 2017. |
Hvilsted et al., “Novel Fluorinated Polymer Materials Based on 2,3,5,6-Tetrafluoro-4-methoxyystyrene” In: “Advances in Controlled/Living Radical Polymerization”, American Chemical Society, Jun. 26, 2003, vol. 854, pp. 236-249, XP055421064. |
Mahajan et al., “Synthesis and Characterization of Amphiphilic Poly(ethylene oxide)-block-poly(hexylmethacrylate Copolymers”, Macromolecular Chemistry and Physics, Wiley-Vch Verlag, Weinheim, DE, Jan. 2003, vol. 204, pp. 1047-1055, XP003030406. |
Pochan et al., “Morphologies of microphase-seperated conformationally asymmetric diblock copolymers”, Journal of Polymer Science Part B: Polymer Physics, Nov. 2017, vol. 35, No. 16, pp. 2629-2643, XP055417266. |
Zhuang et al., “Synthesis of A-B type block copolymers using 1-phenylethyl dithiobenzoate as Reversible Addition-Fragmentation Chain Transfer agent”, Database CA [online], Chemical Abstracts Service, Columbus, OH, XP002775247. |
Palacios et al., Constructing Robust and Functional Micropattems on Polystyrene Surfaces by Using Deep UV Irradiation, American Chemical Society, Langmuir, 29(8) pp. 2756-2763, Feb. 2013. |
Database CA [Online] Chemical Abstracts Service OHI0 US; Zou, Yue: “Fluorosurfactant capable of preventing unevenness in photoresist coating and its preparation by anionic polymerization”, XP002771143 retrieved from STN Database accession No. 2011:1148166 abstract & CN 102 172 491 A (Jiangsu Johnny Material Technology Co Ltd) Sep. 7, 011 (Sep. 7, 2011) Columbus, No. 2011:1148166. |
European Search Report for Application No. EP14867501 dated Jul. 14, 2017. |
Kago K et al: “X-ray reflectivity of polymer assembly at air-water interface” Supramolecular Science Butterworth-Heinemann Oxford GB vol. 5 No. 3-4, Jul. 1, 1998 (Jul. 1, 1998)pp. 349-355 XP027388373 ISSN: 0968-5677 [retrieved on Jul. 1, 1998] abstract. |
Lutz Funk et al: “Novel Amphiphilic Styrene-Based Block Copolymers for Induced Surface Reconstruction”. Macromolecular Chemistry and Physics., vol. 209, No. 1, Jan. 4, 2008 (Jan. 4, 2008), XP055382259 DE ISSN: 1022-1352 D0I: 10.1002/macp.200700312 scheme 1, monomers M1, M4 table 2. |
Mori H et al: “Synthesis and Surface Characterization of Hydrophilic-Hydrophobic Block Copolymers Containing Poly(2, 3-Dihydroxypropyl Methacrylate)” Macromolecules American Chemical Society US vol. 27 No. 15 Jul. 18, 1994 (Jul. 18, 1994) pp. 4093-4100 XP000456650 ISSN: 0024-9297 D01: 10.1021/MA00093A010 abstract. |
CN Search Report for Application No. 201480071920.0 dated Aug. 2, 2017. |
CN Search Report for Application No. CN201480072884.X dated Aug. 3, 2017. |
CN Search Report for Application No. CN2014800740447 dated Aug. 1, 2017. |
Extended European Search Report for Application No. EP14867273 dated Aug. 10, 2017. |
International Search Report from PCT/KR2014/012025, dated Mar. 17, 2015. |
IPO Search Report from Taiwan Application No. 103142790, dated Dec. 15, 2015. |
IPO Search Report from Tawain Application No. 103142782, dated Dec. 11, 2015. |
Yoshida, E. et al. Polymer Journal vol. 31 (5) pp. 429-434 (1999). |
Mariana Beija et al: “Fluorescence Anisotropy of Hydrophobic Probes in poly(N-decylacrylamide) block-poly( N, N-diethylacrylamide) Block Copolymer Aqueous Solutions: Evidence of Premicellar Aggregates” Journal of Physical Chemistry Part B: Condensed Matter, Materials, Surfaces, Interfaces & Bi0physical, vol. 114, No. 31, Aug. 12, 2010 (Aug. 12, 2010), 9977-9986, XP055394763, US ISSN: 1520-6106, D0I: 10.1021/jp101613y abstract Scheme 1, PDcA11-block-PDEA295; p. 9978. |
Riedel et al., Synthesis, post-modification and self-assembled thin films of pentafluorostyrene containing block copolymers, European Polymer Journal 47 (2011) 675-684. |
EESR for EP Application No. 15847536.8 dated Aug. 23, 2018, 6 pages. |
Chinese Search Report for Application No. 201480072759.9 dated Jan. 24, 2018. |
Beng H. Tan et al., “Synthesis and Self-Assembly of pH-Responsive Amphiphilic Poly (dimethylaminoethylmethacrylate)-block-Poly(pentafluorostyrene) Block Copolymer in Aqueous Solution”, Macromolecular Rapid Communications, 2009, vol. 30, pp. 1002-1008. |
Chinese Search Report for Application No. 2014800727599 dated Jan. 8, 2018. |
Chinese Search Report for Application No. 2014800741401 dated Mar. 9, 2018. |
Chinese Search Report for Application No. 201480074156.2 dated Apr. 3, 2018. |
Chinese Search Report for CN Application No. 201480071920.0, dated May 4, 2018. |
Chinese Search Report for CN Application No. 201480072800.2, dated Apr. 10, 2018. |
Chinese Search Report for CN Application No. 201480074044.7 dated Jun. 7, 2018. |
Chinese Search Report for CN Application No. 201480074045.1, dated Apr. 11, 2018. |
Extended European Seach Report including Written Opinion for EP Application No. 15847574.9, dated May 3, 2018. |
Extended European Search Report including Written Opinion for EP Application No. 15845928.9, dated May 2, 2018. |
Extended European Search Report including Written Opinion for EP Application No. 15847598.8, dated May 11, 2018. |
Extended European Search Report including Written Opinion for EP15845720.0 dated May 4, 2018. |
Extended European Search Report with Written Opinion for EP15846832.2 dated May 3, 2018. |
Frank S. Bates et al., “Block Copolymer Thermodyanmics: Theory and Experiment”, Annu. Rev. Phys. Chem., 1990, vol. 41, pp. 525-557. |
Funk, L. et al., “Novel Amphiphilic Styrene-Based Block Copolymers for Induced Surface Reconstruction,” Macromolecular Chemistry and Physics, vol. 209, No. 1, Jan. 4, 2008, pp. 52-63, XP055382259, DE, ISSN: 1022-1352, DOI: 10.1002/macp.200700312. |
G.R. Strobl, “The Physics of Polymers: Concepts for Understanding Their Structures and Behavior”, Springer (Abstract Only). |
Haeng-Dong Koh et al., “Location-controlled parallel and vertical orientation by dewetting-induced block copolymer directed self-assembly,” Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, vol. 1, No. 25, Jan. 1, 2013, pp. 4020-4024 XP055469744. |
Ma J et al., “Synthesis and Solution-State Assembly or Buld State Thiol-ene Crosslinking of Pyrrolidinone- and Alkene-Functionalized Amphiphilic Block Fluorocopoplymers: From Functional Nanoparticles to Anti-Fouling Coatings”, Australian Journal of Chemistry: An International Journal for Chemical Sci, Jan. 1, 2010, pp. 1159-1163, vol. 63, No. 8,C S I R O Publishing, Australia. |
Mori H. et al., “Synthesis and Surface Characterization of Hydrophilic-Hydrophobic Block Copolymers Containing Poly(2,3-dihydroxypropyl methacrylate),” Macromolecules, American Chemical Society, US, vol. 27, No. 15, Jul. 18, 1994, pp. 4093-9297; XP000456650, DOI: 10.2021/MA00093A010. |
S. Chavda et al., “Synthesis of stimuli responsive PEG47-b-PAA126-b-PSt32 triblock copolymer and its self-assembly in aqueous solutions”, European Polymer Journal, Sep. 2012, vol. 49, pp. 209-216. |
Sachin Borkar et al., “New Highly Fluorinated Styrene-Based Materials with Low Surface Energy Prepared by ATRP”, Macromolecules, Jan. 2004, vol. 37, pp. 788-794. |
Segalman R.A. et al., “Graphoepitaxy of Spherical Domain Block Copolymer Films,” Advanced Materials, Wiley—VCH Verlag GmbH & Co. KGAA, DE, vol. 13, No. 15, Aug. 3, 2001, pp. 1152-1155; XP001129643, ISSN: 0935-9648, DOI: 10.1002/1521-4095(200108)13:15<1152: AID-A DMA1152>3.0.CO; 2-5. |
Supplementary European Search Report for EP15847157 dated Mar. 21, 2018. |
C.M. Bates et al., “Polymeric Cross-Linked Surface Treatments for Controlling Block Copolymer Orientation in Thin Films”, Langmuir Article, American Chemical Society, Jan. 7, 2011, vol. 27, No. 5, pp. 1-7. |
Extended European Search Report including Written Opinion for Application No. EP15845665.7 dated Jun. 27, 2018. |
Katja Nilles et al., “RAFT Polymerization of Activated 4-Vinylbenzoates”., Journal of Polymer Science: Part A: Polymer Chemistry, Jan. 1, 2009, vol. 47, pp. 1696-1705. |
Truelsen et al., “Synthesis by ATRP of triblock copolymers with densely grafted styrenic end blocks from a polyisobutylene macroinitiator”, Marcomol. Rapid. Commun., Jul. 2, 1999, vol. 21, No. 2, pp. 1-5. |
Chakrabarty, et al., “Tailor-Made Polyfluoroacrylate and its Block Copolymer by RAFT Polymerization in Miniemulsion; Improved Hydrophobicity in the Core-Shell Block Copolymer”, Journal of Colloid and Interface Science, vol. 408, Oct. 2013, pp. 66-74. |
Gregory, et al., “Complex Polymer Architectures via RAFT Polymerization: From Fundamental Process to Extending the Scope Using Click Chemistry and Nature's Building Blocks”, Progress in Polymer Science, vol. 37, No. 1, Jan. 2012, pp. 38-105. |
Number | Date | Country | |
---|---|---|---|
20160311959 A1 | Oct 2016 | US |