This application is a national phase entry under 35 U.S.C. § 371 of International Patent Application PCT/CN2016/077671, filed Mar. 29, 2016, designating the United States of America and published as International Patent Publication WO 2017/140011 A1 on Aug. 24, 2017, which claims the benefit under Article 8 of the Patent Cooperation Treaty to Chinese Patent Application Serial No. 201610091160.0, filed Feb. 18, 2016.
The present invention belongs to the field of functionalization of metal materials, and particularly relates to a needle tip modified by a nano-carbon material and a preparation method thereof.
With the rapid development of nano-materials and nanotechnology, researchers have prepared a number of new nano-material functionalized needle tips, mainly including carbon nanotube tips, and needle tips modified by one-dimensional/quasi-one-dimensional nano-materials such as nanowires. Nano-material functionalized needle tips have a widespread application in the fields such as scanning probe microscopes, electron emission sources, and biological probes.
At present, the main methods for preparing nano-material functionalized needle tips include in-situ growth method, electrophoresis method, atomic force microscope tip extraction method and microoperation system-based preparation method[1, 2]. The microoperation system allows researchers to use micromanipulator arm to control the precise movement of metal needle tip under optical or electron microscopy, and to attach the specific nano-materials to the front end of the metal needle tip. The microoperation system has relatively high controllability, and thus has become a widely used tool in the process of preparing nano-material functionalized needle tip. The researchers used a micromanipulator arm to control the metal needle tip or an atomic force microscope tip to extract the selected nano-materials. However, up to now, all microoperation system-based methods utilize physical adsorption to adhere nano-materials to the front end of the needle tip, and to increase the contact area at the junction by depositing carbon or tungsten at the contact interface between the nano-material and the needle tip so as to fix nano-materials[3-5]. The nano-material functionalized needle tip prepared by this method has high interface resistance and low mechanical strength, which largely limits the practical application of the nano material functionalized needle tip. In addition, up to now, all the preparation methods of the needle tip cannot directly ensure that the orientation of the one-dimensional/quasi-one-dimensional nano-materials is consistent with the axial direction of the metal needle tip, which becomes a technical difficulty for the wide application of the nano-materials functionalized needle tip[2, 6].
On the other hand, in the field of nano-material functionalized needle tip, one-dimensional/quasi-one-dimensional nano-carbon materials, including carbon nanotubes and conical nano-carbon materials[7], have garnered considerable attention due to their special structure and excellent electrical and mechanical properties. The conical nano-carbon material functionalized needle tip has higher structural stability than the carbon nanotube needle tip, and may have special applications in the fields of scanning probe microscope, electron emission source and the like. However, most of the synthetic conical nano-carbon materials have many structural defects, and the tail of the cone is closely connected with the substrate material, such that they are not suitable for the preparation of nano-functionalized needle tips[8-11]. In related reports, the researchers used a focused ion beam to cut and separate the tail of a conical nano-carbon material from the substrate, and then controlled the metal needle tip to contact with the conical nano-carbon material using a microoperation system so as to obtain a conical nano-carbon material functionalized needle tip. However, in the above-mentioned reports, all the conical nano-carbon materials are fixed on the front end of the metal needle tip by depositing materials such as carbon or tungsten with the aid of electron beam or ion beam, and the conical nano-carbon material and the metal needle tip are connected to each other only by physical force[12]. Till now, there has been no report on the nano-carbon functionalized needle tips interfaced by a metal carbide (covalent bond) interface and with a controlled apex orientation.
In view of the deficiencies of the prior art, one of the objects of the present invention is to provide a conical nano-material functionalized needle tip having good interfacial contact and high bonding strength, with the orientation of the conical nano-material perfectly matched with the axial direction of the metal needle tip.
Another object of the present invention is to provide a preparation method of the conical nano-material functionalized needle tip.
The technical solution for achieving the above object of the present invention is given as follows:
A conical nano-carbon material functionalized needle tip is formed by combining a nano-carbon material with a material of a needle tip by means of a covalent bond; and the material of the needle tip is metal which is one or more selected from tungsten, iron, cobalt, nickel and titanium.
Further, the portion of the needle tip combined with nano-carbon material has a length of 0.1 μm to 10 μm, and the nano-carbon material has a conical shape, of which the inner wall of the conical side is fused with the top of the needle tip, thereby the nano-carbon material being covered on the needle tip. The functionalized needle tip has the characteristic of matched orientation, i.e., the orientation of the nano-carbon material is consistent with the axial direction of the metal needle tip.
The needle is in the shape of a conventional needle, and the vertex angle of the tip can be 10° to 70°. The conical nano-carbon material can completely cover the needle tip, or partially cover the needle tip, with a part of the conical nano-carbon material does not contact the needle tip.
More preferably, the nano-carbon material has a conical shape, the center line of which coincides with the axial center line of the needle body.
The functionalized needle tip of the present invention may be a metal needle tip or a metal plated needle tip that can form metal carbide with carbon. In the preparation method of the functionalized needle tip, the method such as high temperature furnace heating or laser irradiation or electric current heating can be employed to heat the metal needle tip so that the top of the metal needle tip partially melts and reacts with carbon to form metal carbide. As a preference, a technical solution of the preparation method is provided below.
A preparation method of a conical nano-carbon material functionalized needle tip, comprising the steps of:
Wherein, in step 2), the metal form has a spherical or platform-shaped top. The position of the metal form in contact with the needle body is 0.2 μm to 100 μm away from the top of the needle tip.
Here, the invention proposes a manner for obtaining the metal form having a spherical or platform-shaped top:
In the step 2), the other metal form is made from a metal needle (#1) by allowing the metal needle (#1) to approach the side wall of the needle (#2) body at the position 1 to 100 μm away from the top of the needle (#2) tip, and applying a voltage of 20 V to 100 V between the metal needle (#1) and the needle (#2) body such that an arc occurs between the metal needle and the needle body, which causes the top of the metal needle to melt into a spherical shape or a platform shape.
Wherein, in step 2), the electric current passing through the needle body is 0.01 A to 5 A.
Preferably, both materials of the metal form and the top of the needle tip are tungsten; in the step 2), the electric current passing through the needle body is 0.04 A to 4 A.
Wherein, the metal form and the needle body are both fixed on the micromanipulator arm and operated under a microscope.
In the microoperation system, the metal needle tip is fixed on the micromanipulator arm, and precise movement thereof in three dimensions can be achieved under the microscope. Under the control of the microoperation system shown in
The key for preparing a high quality nano-material functionalized needle tip lies in controlling the fusion of the front end of the metal needle tip and the portion of the nano-material adjacent to the metal needle tip to form good interfacial connection between the nano-material and the metal needle tip. Under the action of external energy, the front end of the metal needle tip is more easily to accumulate heat due to its smaller size, so it is easier to be melted than other parts with a larger size. Under certain conditions, only the portion at the top of the metal needle tip, which is adjacent to the nano-material, is melted, the melted metal needle tip is in close contact with the surface of the nano-material and may chemically react therewith at this high temperature to form covalent bond connection, and good interfacial connection is formed between the metal needle tip and the nano-material after cooling. In the present invention, optimal process parameters for preparing the conical nano-carbon material functionalized needle tip will be described.
According to the method described above, the conical nano-carbon material is adhered to the metal needle tip, and the tip of the metal needle tip is in contact with the inner surface of the conical nano-carbon material. Two metal needle tips are moved, and one needle tip having a spherical structure at top is contacted with another needle tip adhered with nano-material to form an electrical pathway (see
The beneficial effects of the invention are provided as follows:
The conical nano material functionalized needle tip prepared by the method of the invention has good interface contact, and the orientation of the conical nano-material is matched with the axial direction of the metal needle tip. At the same time, contamination of nano-materials during the deposition of fixed materials such as carbon or tungsten in other preparation methods is avoided. The conical nano-carbon material functionalized needle tip prepared under optimal conditions has a metal carbide bonded interface. Due to the excellent electrical conductivity and hardness of the metal carbide, the conical nano-carbon material functionalized needle tip prepared by the method of the present invention has better electrical conductivity and higher mechanical strength than the existing functionalized needle tips.
In the figures, 1 is a microscope objective lens, 2 is a micromanipulator arm, 3 is a sample stage, 4 is a metal needle tip, 5 is a metal carbide interface, 6 is a conical nano-carbon material, 7 is a contact interface, and 8 is a conical nano-material adhered on the metal needle tip.
The following preferred Examples are used to illustrate the invention, but not intended to limit the scope of the invention.
The micromanipulator arm used in the Examples was a product from Kleindiek Nanotechnik.
Conical nano-carbon materials were purchased from n-Tec, Norway. The related literature is Krishnan, A. et al. Graphitic cones and the nucleation of curved carbon surfaces. Nature 388, 451-454, doi:Doi 10.1038/41284 (1997)., i.e., the reference 7 cited in the section of Background Art.
The spin coater is a KW-4A type spin coater produced by the Institute of Electronics of the Chinese Academy of Sciences.
The conical nano-carbon material was dispersed in the solvent of dichlorobenzene by ultrasonication, and the conical nano-carbon material in the obtained dispersion liquid was dispersed and deposited on the silicon wafer substrate by a spin coater, and then the silicon wafer substrate was installed on the sample stage 3 of a scanning electron microscope (
The dispersion of the conical nano-carbon material was the same as that in Example 1. In this Example, first, a tungsten needle (#1) was allowed to approach the side wall of the #2 needle tip at the position 10 μm away from the top of the #2 needle tip, and a voltage of 60 V was applied between the #1 tungsten needle and the #2 needle body, so that an arc occurred between the #1 tungsten needle and the #2 needle body, which caused the top of the #1 tungsten needle to melt into a spherical shape.
The tip of the #2 needle was inserted into the top of the conical nano-carbon material (the length of the generatrix of the cone was about 1 and the apex angle was about) 60° and contacted with the conical nano-carbon material 6, so that the conical nano-carbon material 6 was adhered to the top of the tungsten needle tip.
Thereafter, the spherical top of the #1 tungsten needle was directly contacted with the outer surface of the conical nano-carbon on the above tungsten needle tip (#2), with the contact point 0.2 μm away from the top end of the needle tip #2. A voltage was applied to the two tungsten needle tips to generate a current of 0.04 A. The metal tungsten needle tip (#2) was melted in a small area, and the melted tungsten was chemically reacted with the inner surface of the conical nano-carbon in contacted therewith at a high temperature to form tungsten carbide. A functionalized needle tip as shown in
In this Example, a conical nano-carbon material (the apex angle of the cone was about 40°) was adhered to the top of the tungsten needle tip. Thereafter, the spherical top of the other tungsten needle tip (#1) was brought into contact with the above tungsten needle tip (#2), and the contact position was about 3 μm away from the top of the needle tip #2 (
The other operations of this Example were the same as those of Example 2.
In this Example, a conical nano-carbon material (the apex angle of the cone was about 40°) was adhered to the tip of the tungsten needle tip. Thereafter, the spherical top of another tungsten needle tip (#1) was brought into contact with the above tungsten needle tip (#2), and the contact position was about 20 μm away from the top of the needle tip #2 (
The other operations of this Example were the same as those of the Example 2.
A titanium needle (#1) was allowed to approach the side wall of the #2 needle tip at the position 20 μm away from the top of the #2 needle tip, and a voltage of 20 V was applied between the #1 tungsten needle and the #2 needle body, so that an arc occurred between #1 titanium needle and the #2 needle body, which caused the top of the #1 titanium needle to melt into a spherical shape.
The tip of the #2 titanium needle was inserted into the top of the conical nano-carbon material (the length of the generatrix of the cone was about 1 μm, and the apex angle was about 60°) and contacted with the conical nano-carbon material, so that the conical nano-carbon material was adhered to the top of the titanium needle tip.
Thereafter, the spherical top of the #1 titanium needle was directly contacted with the outer surface of the conical nano-carbon on the #2 titanium needle tip, and the contact point was 0.5 μm away from the top end of the needle tip #2. A voltage was applied to the two titanium tips to generate a current of 0.5 A. The #2 needle tip was melted in a small area, and the melted portion chemically reacted with the inner surface of the conical nano-carbon in contact therewith to form titanium carbide. The other operations were the same as those of Example 2.
The obtained conical nano-carbon needle tip has a resistance of 500Ω, and the flexural rigidity of the top of the needle tip is 60 N/m.
The Examples described above are merely preferred embodiments of the present invention, but not intended to limit the scope of the invention. A person skilled in the art may make various modifications and improvements to the technical solutions of the present invention without departing from the designing spirit, and the modifications and improvements all fall within the protection scope defined by the appended claims of the invention.
The invention provides a conical nano-carbon material functionalized needle tip, wherein the conical nano-carbon material functionalized needle tip is formed by combining a nano-carbon material with a material of a needle tip by means of a covalent bond; and the material of the needle tip is a metal which is one or more selected from tungsten, iron, cobalt, nickel and titanium. The invention also provides a method for preparing the conical nano-carbon material functionalized needle tip, wherein the prepared conical nano-carbon needle tip has firm metal carbide interface connection; the orientation of the loaded conical nano-carbon is perfectly matched with the axial direction of the metal needle tip. Due to the excellent electrical conductivity and hardness of the metal carbide, the conical nano-carbon material functionalized needle tip of the present invention has better electrical conductivity and higher mechanical strength than the existing functionalized needle tip.
Number | Date | Country | Kind |
---|---|---|---|
2016 1 0091160 | Feb 2016 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2016/077671 | 3/29/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/140011 | 8/24/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6019086 | Schneider | Feb 2000 | A |
6930313 | Fujieda | Aug 2005 | B2 |
7064341 | Nakayama | Jun 2006 | B2 |
8766522 | Fairchild | Jul 2014 | B1 |
9257257 | Fujita | Feb 2016 | B2 |
20040026629 | Fujieda | Feb 2004 | A1 |
20090038820 | Keefer | Feb 2009 | A1 |
20090082216 | Cohn | Mar 2009 | A1 |
20090126487 | Boiste | May 2009 | A1 |
20100066402 | Fujita | Mar 2010 | A1 |
20110163772 | Kim et al. | Jul 2011 | A1 |
20120077020 | Muramatsu | Mar 2012 | A1 |
20140345985 | Miller | Nov 2014 | A1 |
20150198623 | Dalisdas | Jul 2015 | A1 |
20160231347 | Kaufner | Aug 2016 | A1 |
20190101563 | Endres | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
101049906 | Oct 2007 | CN |
101227940 | Jul 2008 | CN |
102525421 | Jul 2012 | CN |
2005046305 | May 2005 | WO |
2009023579 | Feb 2009 | WO |
Entry |
---|
Zhang, H. et al. An ultrabright and monochromatic electron point source made of a LaB6 nanowire. Nature Nanotech. doi:10.1038/nnano.2015.276 (2015). |
Wilson, N. R. & Macpherson, J. V. Carbon nanotube tips for atomic force microscopy. Nature Nanotechn. 4, 483-491, (2009). |
Slattery, A.D., Blanch, A.J., Quinton, J.S., Gibson, C.T. Efficient attachment of carbon nanotubes to conventional and high-frequency AFM probes enhanced by electron beam processes, Nanotechnol. 24, 235705, (2013). |
Shang, N. G. et al. Fe catalytic growth, microstructure, and low-threshold field emission properties of open ended tubular graphite cones. J. Appl. Phys. 103, (2008). |
Muradov, N. & Schwitter, A. Formation of conical carbon structures on vapor-grown carbon filaments. Nano. Lett. 2, 673-676, (2002). |
Martinez, J., Yuzvinsky, T.D., Fennimore, A.M., Zettl, A., Garcia, R., Bustamante, C. Length control and sharpening of atomic force microscope carbon nanotube tips assisted by an electron beam, Nanotechnol. 16, 2493-2496, (2005). |
Mani, R. C., Li, X., Sunkara, M. K. & Rajan, K. Carbon nanopipettes. Nano. Lett. 3, 671-673, (2003). |
Krishnan, A. et al. Graphitic cones and the nucleation of curved carbon surfaces. Nature 388, 451-454, (1997). |
Houdellier, F. et al. Development of TEM and SEM high brightness electron guns using cold-field emission from a carbon nanotip. Ultramicroscopy 151, 107-115, (2015). |
Gogotsi, Y., Dimovski, S. & Libera, J. A. Conical crystals of graphite. Carbon 40, 2263-2267, (2002). |
De Jonge, N. Carbon Nanotube Electron Sources for Electron Microscopes. Adv. Imag. Elect. Phys. 156, 203-233, (2009). |
De Jonge, N. & Bonard, J. M. Carbon nanotube electron sources and applications. Philos. T. R. Soc. A 362, 2239-2266, (2004). |
International Search Report for PCT Application No. PCT/CN2016/077671 dated Nov. 17, 2016, 7 pages with translation. |
Written Opinion of the International Searching Authority for PCT Application No. PCT/CN2016/077671 dated Nov. 17, 2016, 7 pages with translation. |
Chinese First Office Action for Chinese Application No. 201610091160 dated Jan. 5, 2017, 5 pages. |
Sharma et al., “Field emission from carbon nanotubes grown on a tungsten tip”, Chemical Physics Letters, vol. 344, Issues 3-4, (Aug. 2001) pp. 283-286. |
Number | Date | Country | |
---|---|---|---|
20190107556 A1 | Apr 2019 | US |