1. Field of Invention
The present invention relates generally to the field of semiconductor packaging. More specifically, the present invention is related to a method for enhancing the reliability of stress relief coatings commonly used in plastic semiconductor packaging.
2. Discussion of Prior Art
The performance of many semiconductor devices can be negatively impacted by the plastic packaging process. The typical plastic packaging process results in direct physical contact of the semiconductor device with the plastic mold compound. This contact can cause a fluctuation in the performance and reliability of the product due to thermal coefficient of expansion mismatches between the silicon semiconductor device and the plastic package molding compound. Silicone die coats are excellent stress relief materials for use in semiconductor packages. Unfortunately, silicone die coats when in contact with package bond wires stress those bond wires during thermal cycles due to mismatched coefficient of thermal expansions (CTEs).
Specifically, in high-performance semiconductor packaging structures, a temperature coefficient mismatch occurs due to the uneven expansion of the plastic molding compound as compared to the silicon die whereby localized stress caused by the expansion affects resistor shift values.
During temperature exposure such as solder reflow, a large amount of stress is placed on the ball bond and ball bond neck, as shown by arrows 302.
a-b illustrates the effects of stress on the structure of
The patent to Carl Roberts Jr. (U.S. Pat. No. 5,026,667) teaches the production of integrated circuit chips with reduced stress effects. The '667 patent addresses the need to keep die coating material away from the bond wires. Roberts' invention, while effective in terms of both stress relief and improved package reliability, is limited in terms of the stress buffer coatings which can be used.
Another method to reduce die surface stress is by the use of a polymer coating such as polyimide applied on the entire wafer via lithography processes to create openings for processes such as wire bonding and wafer saw. The paper to Schukert et al. titled “Polyimide Stress Buffers in IC Technology” reviews the properties of such a polyimide layer as a stress relief buffer layer for use with integrated circuits packaged in plastic.
Whatever the precise merits, features, and advantages of the above cited references, none of them achieves or fulfills the purposes of the present invention.
The present invention, therefore, provides a method to enhance reliability of a semiconductor package, wherein the method comprises: (a) constructing a peripheral wall on the semiconductor die, said peripheral wall isolating a stress sensitive area from remaining area of the semiconductor die; and (b) depositing die coat material on the remaining area of the semiconductor die wherein the peripheral wall constrains the flow of the die coat material in the stress sensitive area of said semiconductor die. The peripheral wall, by constraining flow of the die coat material, prevents stress on the bond wires caused by mismatch in coefficient of thermal expansion between the die coat and the semiconductor die.
In another embodiment, the present invention provides for a method to enhance reliability of a semiconductor package, wherein the method comprises: (a) constructing a polymer dam on the semiconductor die wherein the polymer dam isolates a stress sensitive area from the remaining area of the semiconductor die; and (b) depositing die coat material on the remaining area of the semiconductor die such that the polymer dam constraining flow of the die coat material in said stress sensitive area of said semiconductor die. The peripheral wall, by constraining flow of said die material, prevents stress on the bond wires caused by mismatch in coefficient of thermal expansion between the die coat and the semiconductor die.
The present invention, in one embodiment, provides for a semiconductor package having enhanced reliability comprising: (a) a semiconductor die; (b) a peripheral wall formed on the semiconductor die, wherein the peripheral wall isolates a stress sensitive area from the remaining area of the semiconductor die; (c) a die coat material formed on the remaining area of the semiconductor die, wherein the peripheral wall constrains the flow of the die coat material in the stress sensitive area of the semiconductor die; (d) a molding compound enclosing the semiconductor die with the peripheral wall and die coat material. The peripheral wall, by constraining flow of the die coating material, ensures that the die coat material does not come in contact with the bond wires and minimizes stress caused by mismatch in coefficient of thermal expansion between the die coat and the wirebonds.
The present invention, in another embodiment, provides for a semiconductor package having enhanced reliability comprising: (a) a semiconductor die; (b) a polymer dam formed on the semiconductor die, wherein the peripheral wall isolates a stress sensitive area from the remaining area of the semiconductor die; (c) a die coat material formed on the remaining area of the semiconductor die, wherein the polymer dam constrains the flow of the die coat material in the stress sensitive area of the semiconductor die; (d) a molding compound enclosing the semiconductor die with the polymer dam and die coat material. The polymer dam, by constraining flow of the die material, ensures that the die coat material does not come in contact with the bond wires and therefore minimizes stress caused by mismatch in coefficient of thermal expansion between the die coat and the bond wires of the semiconductor device.
a-b illustrate the effects of stress on the structure of
c illustrates the prior art solution of wafer level applied coating.
a-d illustrate various examples of semiconductor packaging made according to the principles of the present invention.
While this invention is illustrated and described in a preferred embodiment, the invention may be produced in many different configurations. There is depicted in the drawings, and will herein be described in detail, a preferred embodiment of the invention, with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and the associated functional specifications for its construction and is not intended to limit the invention to the embodiment illustrated. Those skilled in the art will envision many other possible variations within the scope of the present invention.
The present invention provides for a method of creating die coat perimeter (such as a dam) to enhance semiconductor reliability. The present invention's construction of a peripheral wall (dam) which constrains the flow of die surface stress relieving die coating materials such as silicone gels or other stress relieving materials to ensure it does not come in contact with the bond wires. In one embodiment, the present invention's wall (dam) is constructed using polymers via conventional photolithography wafer fabrication techniques or with screen printing. Polymer materials may include but not limited to Benzocyclobutene (BCB) or polyimide.
The present invention, therefore, provides a method to enhance reliability of a semiconductor package, wherein the method comprises: (a) selecting a stress sensitive area on a semiconductor die; (b) constructing a peripheral wall on the semiconductor die, said peripheral wall isolating said stress sensitive area from remaining area of the semiconductor die; and (c) depositing die coat material on the remaining area of the semiconductor die wherein the peripheral wall constrains the flow of the die coat material in the stress sensitive area of said semiconductor die. The peripheral wall, by constraining flow of the die coat material, prevents stress caused by mismatch in coefficient of thermal expansion between the die coat and the wirebonded silicon semiconductor device.
In another embodiment, the present invention provides for a method to enhance reliability of a semiconductor package, wherein the method comprises: (a) selecting a stress sensitive area on a semiconductor die; (b) constructing a polymer dam on the semiconductor die wherein the polymer dam isolates the stress sensitive area from the remaining area of the semiconductor die; and (c) depositing die coat material on the remaining area of the semiconductor die such that the polymer dam constraining flow of the die coat material in said stress sensitive area of said semiconductor die. The peripheral wall, by constraining flow of said die material, prevents stress caused by mismatch in coefficient of thermal expansion between the die coat and the wirebonds of the silicon semiconductor device.
a-d illustrate various examples of semiconductor packaging made according to the principles of the present invention wherein dam 702 constrains the flow of die coating material (such as silicone gel) into a stress prone region of the die (e.g., areas that have bond wires).
The present invention, in one embodiment, provides for a semiconductor package having enhanced reliability comprising: (a) a semiconductor die; (b) a peripheral wall formed on the semiconductor die, wherein the peripheral wall isolates a stress sensitive area from the remaining area of the semiconductor die; (c) a die coat material formed on the remaining area of the semiconductor die, wherein the peripheral wall constrains the flow of the die coat material in the stress sensitive area of the semiconductor die; (d) a molding compound enclosing the semiconductor die with the peripheral wall and die coat material. The peripheral wall, by constraining flow of the die material, ensures that the die coat material does not come in contact with the stress sensitive area and minimizes stress caused by mismatch in coefficient of thermal expansion between the die coat and the wirebonds of the silicon semiconductor device.
The present invention, in another embodiment, provides for a semiconductor package having enhanced reliability comprising: (a) a semiconductor die; (b) a polymer dam formed on the semiconductor die, wherein the peripheral wall isolates a stress sensitive area from the remaining area of the semiconductor die; (c) a die coat material formed on the remaining area of the semiconductor die, wherein the polymer dam constrains the flow of the die coat material in the stress sensitive area of the semiconductor die; (d) a molding compound enclosing the semiconductor die with the polymer dam and die coat material. The polymer dam, by constraining flow of the die material, ensures that the die coat material does not come in contact with the stress sensitive area and minimizes stress caused by mismatch in coefficient of thermal expansion between the die coat and the wirebonds of the silicon semiconductor device.
A system and method has been shown in the above embodiments for the effective implementation of a die coat perimeter to enhance semiconductor reliability. While various preferred embodiments have been shown and described, it will be understood that there is no intent to limit the invention by such disclosure, but rather, it is intended to cover all modifications falling within the spirit and scope of the invention, as defined in the appended claims. For example, the present invention should not be limited by the shape of the dam, the type of polymer used to form the peripheral wall, the material used in constructing the dam, or the method used to construct the dam.