Die module system

Information

  • Patent Grant
  • 7768796
  • Patent Number
    7,768,796
  • Date Filed
    Thursday, June 26, 2008
    16 years ago
  • Date Issued
    Tuesday, August 3, 2010
    14 years ago
Abstract
A flex circuit is populated on one or both sides with plural integrated circuit die. In a preferred mode, the flex circuit is populated with flip-chip die. One side of the flex circuit has a connective facility implemented in a preferred mode with edge connector contacts. The flex circuit is disposed about a substrate to form a circuit module that may be inserted into an edge connector such as ones typically found on a computer board.
Description
TECHNICAL FIELD

The present invention relates to systems and methods for creating high density circuit modules and, in particular, systems and methods for creating such modules with integrated circuit die.


BACKGROUND

The well-known DIMM (Dual In-line Memory Module) board has been used for years, in various forms, to provide memory expansion. A typical DIMM includes a conventional. PCB (printed circuit board) with memory devices and supporting digital logic devices mounted on both sides. The DIMM is typically mounted in the host computer system by inserting a contact-bearing edge of the DIMM into a card edge connector. Systems that employ DIMMs provide, however, very limited profile space for such devices and conventional DIMM-based solutions have typically provided only a moderate amount of memory expansion.


As bus speeds have increased, fewer devices per channel can be reliably addressed with a DIMM-based solution. For example, 288 ICs or devices per channel may be addressed using the SDRAM-100 bus protocol with an unbuffered DIMM. Using the DDR-200 bus protocol, approximately 144 devices may be address per channel. With the DDR2-400 bus protocol, only 72 devices per channel may be addressed. This constraint has led to the development of the fully-buffered DIMM (FB-DIMM) with buffered C/A and data in which 288 devices per channel may be addressed. With the FB-DIMM, not only has capacity increased, pin count has declined to approximately 69 signal pins from the approximately 240 pins previously required.


There are several known methods to improve the limited capacity of a DIMM or other circuit board. In one strategy, for example, small circuit boards (daughter cards) are connected to the DIMM to provide extra mounting space. The additional connection may cause, however, flawed signal integrity for the data signals passing from the DIMM to the daughter card and the additional thickness of the daughter card(s) increases the profile of the DIMM.


Multiple die packages (MDP) are also used to increase DIMM capacity while preserving profile conformity. This scheme increases the capacity of the memory devices on the DIMM by including multiple semiconductor die in a single device package. The additional heat generated by the multiple die typically requires, however, additional cooling capabilities to operate at maximum operating speed. Further, the MDP scheme may exhibit increased costs because of increased yield loss from packaging together multiple die that are not fully pre-tested.


Stacked packages are yet another strategy used to increase circuit board capacity. This scheme increases capacity by stacking packaged integrated circuits to create a high-density circuit module for mounting on the circuit board. In some techniques, flexible conductors are used to selectively interconnect packaged integrated circuits. Staktek Group L.P., the present assignee, has developed numerous systems for aggregating CSP (chipscale packaged) devices in space saving topologies. The increased component height of some stacking techniques may alter, however, system requirements such as, for example, required cooling airflow or the minimum spacing around a circuit board on its host system.


Whether the application is for general purpose or specialized computing such as, for example, video processing, high capacity circuit modules can benefit from new methods and structures whether such modules are identified electrically, such as the FB-DIMM solution, for example, or by topology, such as SO-DIMMs for example, or by the type of circuitry employed, such as flash memory, for example.


SUMMARY

A flex circuit is populated on one or both sides with plural integrated circuit die. In a preferred mode, the flex circuit is populated with flip-chip die. One side of the flex circuit has a connective facility implemented in a preferred mode with edge connector contacts. The flex circuit is disposed about a substrate to form a circuit module that may be inserted into an edge connector such as typically found on a computer board.


The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.





DESCRIPTION OF DRAWINGS


FIG. 1 is a cross-sectional depiction of a preferred embodiment of a module devised in accordance with the present invention.



FIG. 2 depicts a contact bearing first side of a flex circuit devised in accordance with a preferred embodiment of the present invention.



FIG. 3 depicts the second side of the exemplar populated flex circuit of FIG. 2.



FIG. 4 is a depiction of an embodiment in accordance with the present invention.



FIG. 5 depicts an enlarged area about end of a preferred module devised in accordance with the present invention.



FIG. 6 depicts a first side of a flex circuit for employment in a preferred embodiment of the present invention.



FIG. 7 depicts a second side of the flex circuit depicted in FIG. 6.





Like reference symbols in the various drawings indicate like elements.


DETAILED DESCRIPTION


FIG. 1 depicts a cross-sectional view of a preferred embodiment of a module 10 devised in accordance with the present invention. Module 10 is depicted in FIG. 1 exhibiting CSPs 18 which, in a preferred embodiment, are flip-chip die attached to flex circuit 12. Flip-chip CSPs 18 exhibit CSP contacts 17 for connection to the integrated circuit die of the flip-chip device.


Flex 12 is wrapped about perimeter edge 16A of substrate 14, which in the depicted embodiment, provides the basic shape of a common DIMM board form factor such as that defined by JEDEC standard MO-256. Substrate or support structure 14 typically has first and second lateral sides S1 and S2. Substrate 14 is preferably comprised of metallic material such as, for example, aluminum or a copper alloy. Substrate 14 is shown with multiple extensions 16T which have been shown to provide thermal advantages for module 10. Other embodiments may have greater or lesser numbers of such extensions and some embodiments lack any such an extension.


A preferred module 10 devised with flip-chip die would have a dimension Y2 in the range of between 5.0 mm and 8.00 mm, with a more preferred range of approximately 6.0 mm (+/−10%) and a preferred module 10 devised with flip-chip die would have a dimension X in the range between 25 mm and 36 mm with a more preferred range of approximately 30 mm (+/−10%). Those of skill will note that module 10 may be devised with fewer or more than the 72 ICs 18 depicted populating modules 10 shown in FIGS. 1-4.



FIG. 2 depicts a first side 8 of flex circuit 12 (“flex”, “flex circuitry”, “flexible circuit”) used in constructing a module according to an embodiment of the present invention. Flex circuit 12 is preferably made from one or more conductive layers supported by one or more flexible substrate layers. The construction of flex circuitry is known in the art. The entirety of the flex circuit 12 may be flexible or, as those of skill in the art will recognize, the flexible circuit structure 12 may be made flexible in certain areas to allow conformability to required shapes or bends, and rigid in other areas to provide rigid and planar mounting surfaces.


CSPs 18 on flexible circuit 12 are, in this embodiment, flip-chip devices that are one species of CSP devices of small scale. For purposes of this disclosure, the term chip-scale or “CSP” shall refer to integrated circuitry of any function with an array package providing connection to one or more die through contacts (often embodied as “bumps” or “balls” for example) distributed across a major surface of the package or die. CSP does not refer to leaded devices that provide connection to an integrated circuit within the package through leads emergent from at least one side of the periphery of the package such as, for example, a TSOP.


Where the term CSP is used, the above definition for CSP should be adopted. Consequently, although CSP excludes leaded devices, references to CSP are to be broadly construed to include the large variety of array devices (and not to be limited to memory only) and whether die-sized or other size such as BGA and micro BGA and flip-chip.


Flip-chip devices typify the CSPs 18 of preferred embodiments of the present disclosure. Mounting flip-chip components directly to flex circuitry is becoming better understood. For example, flip chip on flex (FcoF) typically can be implemented with, for example, a no-flow or reflow encapsulant (RE) underfill technology. The process consists of dispensing underfill, placing the die and processing. Soldering is typically performed concurrently with other devices which are present. Underfill may also be preapplied to the die. The amount of encapsulant required is, affected, as those of skill will recognize, by, for example, die size, initial and collapsed bump height, bump count, and layout of the flex circuit 12. There should be enough encapsulant to wet the bumps but not so much that a large excess fillet is created. Because the substrate is encapsulated during soldering, sometimes a significant amount of gas may outflow into the RE causing voids. Consequently out gassing during mounting should be controlled. After application, X-ray inspection is preferred with relatively low acceleration voltages being adequate.


The mechanical qualities of no-flow underfill are not equal to capillary flow material and coefficients of thermal expansion can be higher while elastic moduli lower. However, no-flow technologies are adaptable to contemporary manufacturing and are but one of several techniques known for attachment of flip-chip die to flex circuitry.


While in this embodiment memory flip-chip CSPs are used to provide a memory expansion board or module, various embodiments may include a variety of integrated circuits and other components in a variety of packages. Such variety may include microprocessors, FPGA's, RF transceiver circuitry, digital logic, as a list of non-limiting examples, or other circuits or systems which may benefit from a high-density circuit board or module capability. Circuits 19 depicted between CSPs 18 may be buffers or controllers or other circuitry and in a later Fig., circuit 19 is depicted as the well known advanced memory buffer or “AMB” as part of a module 10 that implements the fully-buffered DIMM electrical design.


The depiction of FIG. 2 shows flex circuit 12 as having first and second fields F1 and F2 for mounting circuit devices. Each of fields F1 and F2 have at least one mounting contact array for CSPs such as the one depicted by reference 11A. Contact arrays such as array 11 are disposed beneath CSPs 18 and circuits 19. An exemplar contact array 11A is shown as is exemplar CSP 18 to be mounted at contact array 11A as depicted. The contact arrays 11A that correspond to an IC plurality may be considered a contact array set.


Field F1 of side 8 of flex circuit 12 is shown populated with first plurality of CSPs ICR1 and second plurality of CSPs ICR2 while second field F2 of side 8 of flex circuit 12 is shown populated with first plurality of CSPs ICR1 and second plurality of CSPs ICR2. Those of skill will recognize that the identified pluralities of CSPs are, when disposed in the configurations depicted, typically described as “ranks”. Between the ranks ICR2 of field F1 and ICR2 of field F2, flex circuit 12 bears a plurality of module contacts allocated in this embodiment into two rows (CR1 and CR2) of module contacts 20. Module contacts 20 are preferably adapted for connection to a circuit board socket such as, for example, an edge connector socket into which module 10 would be inserted. When flex circuit 12 is folded as later depicted, side 8 depicted in FIG. 2 is presented at the outside of module 10. The opposing side 9 of flex circuit 12 is on the inside in several depicted configurations of module 10 and thus side 9 is closer to the substrate 14 about which flex circuit 12 is disposed than is side 8. Other embodiments may have other numbers of ranks and combinations of plural CSPs connected to create the module of the present invention.



FIG. 3 shows side 9 of flex circuit 12 depicting the other side of the flex circuit shown in FIG. 2. Side 9 of flex circuit 12 is shown as being populated with multiple flip-chip CSPs 18. Side 9 includes fields F1 and F2 that each include at least one mounting contact array site for CSPs and, in the depicted case, include multiple contact arrays. Each of fields F1 and F2 include, in the depicted preferred embodiment, two pluralities of ICs identified in FIG. 3 as ICR1 and ICR2. Thus, each side of flex circuit 12 has, in a preferred embodiment, two fields F1 and F2 each of which fields includes two ranks of CSPs ICR1 and ICR2. In later FIG. 4, it will be recognized that fields F1 and F2 will be disposed on different sides of substrate 14 in a completed module 10 when CSPs 18 are identified according to the organizational identification depicted in FIGS. 2 and 3 but those of skill will recognize that the groupings of CSPs 18 shown in FIGS. 2 and 3 are not dictated by the invention but are provided merely as an exemplar organizational strategy to assist in understanding the present invention.


Various discrete components such as termination resistors, bypass capacitors, and bias resistors, in addition to the circuits 19 shown on side 8 of flex circuit 12, may be mounted on either or both of sides 8 and 9 of flex 12. Flex circuit 12 may also depicted with reference to its perimeter edges, two of which are typically long (PElong1 and PElong 2) and two of which are typically shorter (PEshort1 and PEshort2). Other embodiments may employ flex circuits 12 that are not rectangular in shape and may be square in which case the perimeter edges would be of equal size or other convenient shape to adapt to manufacturing particulars. Other embodiments may also have fewer or greater numbers of ranks or pluralities of ICs in each field or on a side of a flex circuit.


Those of skill will understand that the present invention may be implemented with only a single row of module contacts 20 rather than the two rows shown and may, in other embodiments, be implemented as a module bearing ICs on only one side of flex circuit 12 or only one side of flex circuit 12.



FIG. 4 is a view of a module 10 devised in accordance with a preferred embodiment of the present invention. FIG. 4 depicts a module 10 that exhibits a single extension 16T for substrate 14 and shows how flex circuitry 12 is disposed about substrate 14 to place side 8 of flex circuit 12 on the exterior side of module 10.



FIG. 5 is an enlarged view of the area marked ‘A’ in FIG. 1. Edge 16A of substrate 14 is shaped like a male side edge of an edge card connector. While a particular oval-like configuration is shown, edge 16A may take on other shapes devised to mate with various connectors or sockets. The form and function of various edge card connectors are well know in the art. In many preferred embodiments, flex 12 is wrapped around edge 16A of substrate 14 and may be laminated or adhesively connected to substrate 14 with adhesive 30. The depicted adhesive 30 and flex 12 may vary in thickness and are not drawn to scale to simplify the drawing. The depicted substrate 14 has a thickness such that when assembled with the flex 12 and adhesive 30, the thickness measured between module contacts 20 falls in the range specified for the mating connector. In other instances, multiple flex circuits may be employed in a single module 10 or a single flex circuit may connect one or both sets of contacts 20 to the resident CSPs.


While module contacts 20 are shown protruding from the surface of flex circuit 12, other embodiments may have flush contacts or contacts below the surface level of flex 12. Substrate 14 supports module contacts 20 from behind flex circuit 12 in a manner devised to provide the mechanical form required for insertion into a socket. In other embodiments, the thickness or shape of substrate 14 in the vicinity of perimeter edge 16A may differ from that in the body of substrate 14. Substrate 14 in the depicted embodiment is preferably made of a metal such as aluminum or copper or alloys of such metals, as non-limiting examples, or where thermal management is less of an issue, materials such as FR4 (flame retardant type 4) epoxy laminate, PTFE (poly-tetra-fluoro-ethylene) or plastic. In another embodiment, advantageous features from multiple technologies may be combined with use of FR4 having a layer of copper on both sides to provide a substrate 14 devised from familiar materials which may provide heat conduction or a ground plane.


The advanced memory buffer or “AMB” is the new buffer technology particularly for server memory and typically includes a number of features including pass-through logic for reading and writing data and commands and internal serialization capability, a data bus interface, a deserializing and decode logic capability and clocking functions. The functioning of an AMB is the principal distinguishing hard feature of a FB-DIMM module. Those of skill will understand how to implement the connections between ICs 18 and AMB 19 in FB-DIMM circuits implemented by embodiments of the present invention and will recognize that the present invention provides advantages in capacity as well as reduced impedance discontinuity that can hinder larger implementations of FB-DIMM systems. Further, those of skill will recognize that various principles of the present invention can be employed to multiple FB-DIMM circuits on a single substrate or module.



FIG. 6 depicts side 8 of flex circuit 12 populated with plural flip-chip CSPs 18 and an AMB 21. Although AMB 21 is shown on side 8 of the depicted flex circuit, those of skill will recognize that it may be mounted on side 9 of flex circuit 12 although the techniques for space management of packaged devices such as an AMB that are disclosed in co-pending U.S. patent application Ser. No. 11/058,979, filed Feb. 16, 2005 and commonly owned by the present assignee Staktek Group L.P., and which application has been incorporated by reference herein, may be profitably used when the AMB is disposed on what will be the inner side of a module 10.



FIG. 7 depicts side 9 of flex circuit 12 as may be employed in a FB-DIMM instantiation of a preferred embodiment of the present invention.


The present invention may be employed to advantage in a variety of applications and environment such as, for example, in computers such as servers and notebook computers by being placed in motherboard expansion slots to provide enhanced memory capacity while utilizing fewer sockets. Two high rank embodiments or single rank high embodiments may both be employed to such advantage as those of skill will recognize after appreciating this specification.


One advantageous methodology for efficiently assembling a circuit module 10 such as described and depicted herein is as follows. In a preferred method of assembling a preferred module assembly 10, flex circuit 12 is placed flat and both sides populated according to flip-chip to flex assembly techniques known in the art such as those techniques earlier discussed herein, for example. Flex circuit 12 is then folded about end 16A of substrate 14. Flex 12 may be laminated or otherwise attached to substrate 14.


Although the present invention has been described in detail, it will be apparent to those skilled in the art that many embodiments taking a variety of specific forms and reflecting changes, substitutions and alterations can be made without departing from the spirit and scope of the invention. Therefore, the described embodiments illustrate but do not restrict the scope of the claims.

Claims
  • 1. A circuit module comprising: a flexible circuit having a first major side and a second major side, the flexible circuit exhibiting along the first major side, first-side first and second sets of contact site arrays between which is located at least one row of connector contacts, the second major side of the flexible circuit exhibiting second-side first and second sets of contact site arrays, each of the first-side and second-side first and second sets of contact site arrays comprising at least two surface mount arrays;a first plurality of CSPs that populate the at least two surface mount arrays of the first-side first and second sets of contact site arrays and a second plurality of CSPs that populate the at least two surface mount arrays of the second-side first and second sets of contact site arrays, respectively;a substrate comprised from metallic material and having an end about which the flexible circuit is disposed to place the second plurality of CSPs closer to the substrate than are disposed the first plurality of CSPs.
  • 2. The circuit module of claim 1 in which the substrate has at least one extension.
  • 3. The circuit module of claim 1 further comprising an advanced memory buffer disposed on the first side of the flexible circuit.
  • 4. The circuit module of claim 1 further comprising an advanced memory buffer disposed on the second side of the flexible circuit.
  • 5. The circuit module of claim 1 in which the first and second pluralities of CSPs are comprised of memory circuit CSPs.
  • 6. The circuit module of claim 1 connected to a main circuit board employed in a computer.
  • 7. The circuit module of claim 6 in which the computer is a server computer.
  • 8. The circuit module of claim 6 in which the computer is a notebook computer.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 11/157,565, filed Jun. 21, 2005, which is a continuation-in-part of U.S. patent application Ser. No. 11/007,551, filed Dec. 8, 2004 which is a continuation-in-part of U.S. patent application Ser. No. 10/934,027, filed Sep. 3, 2004. U.S. patent application Ser. No. 11/157,565, U.S. patent application Ser. No. 11/007,551, and U.S. patent application Ser. No. 10/934,027 are each commonly owned by Entorian Technologies, L.P., formerly Staktek Group L.P., the assignee of record, and are each hereby incorporated by reference in their entireties into the present application.

US Referenced Citations (331)
Number Name Date Kind
3372310 Kantor Mar 1968 A
3436604 Hyltin Apr 1969 A
3582865 Franck et al Jun 1971 A
3654394 Gordon Apr 1972 A
3704455 Scarbrough Nov 1972 A
3718842 Abbot, III et al. Feb 1973 A
3727064 Bottini Apr 1973 A
3746934 Stein Jul 1973 A
3766439 Issacson Oct 1973 A
3772776 Weisenburger Nov 1973 A
4169642 Mouissie Oct 1979 A
4288841 Gogal Sep 1981 A
4342069 Link Jul 1982 A
4429349 Zachry Jan 1984 A
4437235 McIver Mar 1984 A
4513368 Houseman Apr 1985 A
4547834 Dumont et al. Oct 1985 A
4567543 Miniet Jan 1986 A
4587596 Bunnell May 1986 A
4645944 Uya Feb 1987 A
4656605 Clayton Apr 1987 A
4672421 Lin Jun 1987 A
4682207 Akasaki et al. Jul 1987 A
4696525 Coller et al. Sep 1987 A
4709300 Landis Nov 1987 A
4724611 Hagihara Feb 1988 A
4727513 Clayton Feb 1988 A
4733461 Nakano Mar 1988 A
4739589 Brehm et al. Apr 1988 A
4763188 Johnson Aug 1988 A
4771366 Blake et al. Sep 1988 A
4821007 Fields et al. Apr 1989 A
4823234 Konishi et al. Apr 1989 A
4833568 Berhold May 1989 A
4850892 Clayton et al. Jul 1989 A
4862249 Carlson Aug 1989 A
4911643 Perry et al. Mar 1990 A
4953060 Lauffer et al. Aug 1990 A
4956694 Eide Sep 1990 A
4972580 Nakamura Nov 1990 A
4982265 Watanabe et al. Jan 1991 A
4983533 Go Jan 1991 A
4985703 Kaneyama Jan 1991 A
4992849 Corbett et al. Feb 1991 A
4992850 Corbett et al. Feb 1991 A
5014115 Moser May 1991 A
5014161 Lee et al. May 1991 A
5016138 Woodman May 1991 A
5025306 Johnson et al. Jun 1991 A
5034350 Marchisi Jul 1991 A
5041015 Travis Aug 1991 A
5053853 Haj-Ali-Ahmadi et al. Oct 1991 A
5065277 Davidson Nov 1991 A
5099393 Bentlage et al. Mar 1992 A
5104820 Go et al. Apr 1992 A
5109318 Funari et al. Apr 1992 A
5117282 Salatino May 1992 A
5119269 Nakayama Jun 1992 A
5138430 Gow, 3rd et al. Aug 1992 A
5138434 Wood et al. Aug 1992 A
5140405 King et al. Aug 1992 A
5159535 Desai et al. Oct 1992 A
5173840 Kodai et al. Dec 1992 A
5191404 Wu et al. Mar 1993 A
5208729 Cipolla et al. May 1993 A
5214845 King et al. Jun 1993 A
5219377 Poradish Jun 1993 A
5222014 Lin Jun 1993 A
5224023 Smith et al. Jun 1993 A
5229916 Frankeny et al. Jul 1993 A
5229917 Harris et al. Jul 1993 A
5239198 Lin et al. Aug 1993 A
5241454 Ameen et al. Aug 1993 A
5241456 Marcinkiewiez et al. Aug 1993 A
5247423 Lin et al. Sep 1993 A
5252857 Kane et al. Oct 1993 A
5259770 Bates et al. Nov 1993 A
5261068 Gaskins et al. Nov 1993 A
5268815 Cipolla et al. Dec 1993 A
5276418 Klosowiak et al. Jan 1994 A
5281852 Normington Jan 1994 A
5285398 Janik et al. Feb 1994 A
5289062 Wyland Feb 1994 A
5309986 Itoh May 1994 A
5313097 Haj-Ali-Ahmadi et al. May 1994 A
5347428 Carson et al. Sep 1994 A
5362656 McMahon Nov 1994 A
5375041 McMahon Dec 1994 A
5386341 Olson et al. Jan 1995 A
5394300 Yoshimura Feb 1995 A
5397916 Normington Mar 1995 A
5400003 Kledzik Mar 1995 A
5428190 Stopperan Jun 1995 A
5438224 Papageorge et al. Aug 1995 A
5448511 Paurus et al. Sep 1995 A
5477082 Buckley, III et al. Dec 1995 A
5491612 Nicewarner, Jr. et al. Feb 1996 A
5502333 Bertin et al. Mar 1996 A
5523619 McAllister et al. Jun 1996 A
5523695 Lin Jun 1996 A
5541812 Burns Jul 1996 A
5572065 Burns Nov 1996 A
5600178 Russell Feb 1997 A
5612570 Eide et al. Mar 1997 A
5631193 Burns May 1997 A
5642055 Difrancesco Jun 1997 A
5644161 Burns Jul 1997 A
5646446 Nicewarner et al. Jul 1997 A
5654877 Burns Aug 1997 A
5661339 Clayton Aug 1997 A
5686730 Laudon et al. Nov 1997 A
5688606 Mahulikar et al. Nov 1997 A
5708297 Clayton Jan 1998 A
5714802 Cloud et al. Feb 1998 A
5717556 Yanagida Feb 1998 A
5729894 Rostoker et al. Mar 1998 A
5731633 Clayton Mar 1998 A
5744862 Ishii Apr 1998 A
5751553 Clayton May 1998 A
5754409 Smith May 1998 A
5764497 Mizumo Jun 1998 A
5776797 Nicewarner, Jr. et al. Jul 1998 A
5789815 Tessier et al. Aug 1998 A
5790447 Laudon et al. Aug 1998 A
5802395 Connolly et al. Sep 1998 A
5805422 Otake et al. Sep 1998 A
5828125 Burns Oct 1998 A
5835988 Ishii Nov 1998 A
5869353 Levy et al. Feb 1999 A
5899705 Akram May 1999 A
5917709 Johnson et al. Jun 1999 A
5925934 Lim Jul 1999 A
5926369 Ingraham et al. Jul 1999 A
5949657 Karabatsos Sep 1999 A
5953214 Dranchak et al. Sep 1999 A
5953215 Karabatsos Sep 1999 A
5959839 Gates Sep 1999 A
5963427 Bolleson Oct 1999 A
5973395 Suzuki et al. Oct 1999 A
5995370 Nakamori Nov 1999 A
6002167 Hatano et al. Dec 1999 A
6002589 Perino et al. Dec 1999 A
6008538 Akram et al. Dec 1999 A
6014316 Eide Jan 2000 A
6021048 Smith Feb 2000 A
6025992 Dodge et al. Feb 2000 A
6028352 Eide Feb 2000 A
6028365 Akram et al. Feb 2000 A
6034878 Osaka et al. Mar 2000 A
6038132 Tokunaga et al. Mar 2000 A
6040624 Chambers et al. Mar 2000 A
6049975 Clayton Apr 2000 A
6060339 Akram et al. May 2000 A
6072233 Corisis et al. Jun 2000 A
6078515 Nielsen et al. Jun 2000 A
6084294 Tomita Jul 2000 A
6091145 Clayton Jul 2000 A
6097087 Farnworth et al. Aug 2000 A
6111757 Dell et al. Aug 2000 A
6121676 Solberg Sep 2000 A
RE36916 Moshayedi Oct 2000 E
6157541 Hacke Dec 2000 A
6172874 Bartilson Jan 2001 B1
6178093 Bhatt et al. Jan 2001 B1
6180881 Isaak Jan 2001 B1
6187652 Chou et al. Feb 2001 B1
6205654 Burns Mar 2001 B1
6208521 Nakatsuka Mar 2001 B1
6208546 Ikeda Mar 2001 B1
6214641 Akram Apr 2001 B1
6215181 Akram et al. Apr 2001 B1
6215687 Sugano et al. Apr 2001 B1
6222737 Ross Apr 2001 B1
6222739 Bhakta et al. Apr 2001 B1
6225688 Kim et al. May 2001 B1
6232659 Clayton May 2001 B1
6233650 Johnson et al. May 2001 B1
6234820 Perino et al. May 2001 B1
6262476 Vidal Jul 2001 B1
6262895 Forthun Jul 2001 B1
6265660 Tandy Jul 2001 B1
6266252 Karabatsos Jul 2001 B1
6281577 Oppermann et al. Aug 2001 B1
6288907 Burns Sep 2001 B1
6288924 Sugano et al. Sep 2001 B1
6300679 Mukerji et al. Oct 2001 B1
6316825 Park et al. Nov 2001 B1
6323060 Isaak Nov 2001 B1
6336262 Dalal et al. Jan 2002 B1
6343020 Lin et al. Jan 2002 B1
6347394 Ochoa et al. Feb 2002 B1
6349050 Woo et al. Feb 2002 B1
6351029 Isaak Feb 2002 B1
6357023 Co et al. Mar 2002 B1
6358772 Miyoshi Mar 2002 B2
6360433 Ross Mar 2002 B1
6368896 Farnworth et al. Apr 2002 B2
6370668 Garrett, Jr. et al. Apr 2002 B1
6376769 Chung Apr 2002 B1
6392162 Karabatsos May 2002 B1
6404043 Isaak Jun 2002 B1
6410857 Gonya Jun 2002 B1
6426240 Isaak Jul 2002 B2
6426549 Isaak Jul 2002 B1
6426560 Kawamura et al. Jul 2002 B1
6428360 Hassanzadeh et al. Aug 2002 B2
6433418 Fujisawa et al. Aug 2002 B1
6444921 Wang et al. Sep 2002 B1
6446158 Karabatsos Sep 2002 B1
6449159 Haba Sep 2002 B1
6452826 Kim et al. Sep 2002 B1
6459152 Tomita et al. Oct 2002 B1
6462412 Kamei et al. Oct 2002 B2
6465877 Farnworth et al. Oct 2002 B1
6465893 Khandros et al. Oct 2002 B1
6472735 Isaak Oct 2002 B2
6473308 Forthun Oct 2002 B2
6486544 Hashimoto Nov 2002 B1
6489687 Hashimoto Dec 2002 B1
6502161 Perego et al. Dec 2002 B1
6514793 Isaak Feb 2003 B2
6521984 Matsuura Feb 2003 B2
6528870 Fukatsu et al. Mar 2003 B2
6531772 Akram et al. Mar 2003 B2
6544815 Isaak Apr 2003 B2
6552910 Moon et al. Apr 2003 B1
6552948 Woo et al. Apr 2003 B2
6560117 Moon May 2003 B2
6566746 Isaak et al. May 2003 B2
6572387 Burns et al. Jun 2003 B2
6573593 Syri et al. Jun 2003 B1
6576992 Cady et al. Jun 2003 B1
6588095 Pan Jul 2003 B2
6590282 Wang et al. Jul 2003 B1
6600222 Levardo Jul 2003 B1
6614664 Lee Sep 2003 B2
6627984 Bruce et al. Sep 2003 B2
6629855 North et al. Oct 2003 B1
6646936 Hamamatsu et al. Nov 2003 B2
6660561 Forthun Dec 2003 B2
6661092 Shibata et al. Dec 2003 B2
6677670 Kondo Jan 2004 B2
6683377 Shim et al. Jan 2004 B1
6690584 Uzuka et al. Feb 2004 B2
6699730 Kim et al. Mar 2004 B2
6720652 Akram et al. Apr 2004 B2
6721181 Pfeifer et al. Apr 2004 B1
6721185 Dong et al. Apr 2004 B2
6721226 Woo et al. Apr 2004 B2
6744656 Sugano et al. Jun 2004 B2
6751113 Bhakta et al. Jun 2004 B2
6756661 Tsuneda et al. Jun 2004 B2
6760220 Canter et al. Jul 2004 B2
6762942 Smith Jul 2004 B1
6768660 Kong et al. Jul 2004 B2
6833981 Suwabe et al. Dec 2004 B2
6833984 Belgacem Dec 2004 B1
6839266 Garrett, Jr. et al. Jan 2005 B1
6841868 Akram et al. Jan 2005 B2
6850414 Benisek et al. Feb 2005 B2
6873534 Bhakta et al. Mar 2005 B2
6878571 Isaak et al. Apr 2005 B2
6884653 Larson Apr 2005 B2
6914324 Rapport et al. Jul 2005 B2
6919626 Burns Jul 2005 B2
6956284 Cady et al. Oct 2005 B2
7053478 Roper et al. May 2006 B2
7094632 Cady et al. Aug 2006 B2
7180167 Partridge et al. Feb 2007 B2
7393226 Clayton et al. Jul 2008 B2
7394149 Clayton et al. Jul 2008 B2
20010013423 Dalal et al. Feb 2001 A1
20010001085 Hassanzadeh et al. May 2001 A1
20010006252 Kim et al. Jul 2001 A1
20010015487 Forthun Aug 2001 A1
20010026009 Tsuneda et al. Oct 2001 A1
20010028588 Yamada et al. Oct 2001 A1
20010035572 Isaak Nov 2001 A1
20010040793 Ihaba Nov 2001 A1
20010052637 Akram et al. Dec 2001 A1
20020001216 Sugano et al. Jan 2002 A1
20020006032 Karabatsos Jan 2002 A1
20020030995 Shoji Mar 2002 A1
20020076919 Peters et al. Jun 2002 A1
20020094603 Isaak Jul 2002 A1
20020101261 Karabatsos Aug 2002 A1
20020139577 Miller Oct 2002 A1
20020164838 Moon et al. Nov 2002 A1
20020180022 Emoto Dec 2002 A1
20020185731 Akram et al. Dec 2002 A1
20020196612 Gall et al. Dec 2002 A1
20030002262 Benisek et al. Jan 2003 A1
20030026155 Yamagata Feb 2003 A1
20030035328 Hamamatsu et al. Feb 2003 A1
20030045025 Coyle et al. Mar 2003 A1
20030049886 Salmon Mar 2003 A1
20030064548 Isaak Apr 2003 A1
20030081387 Schulz May 2003 A1
20030081392 Cady et al. May 2003 A1
20030089978 Miyamoto et al. May 2003 A1
20030090879 Doblar et al. May 2003 A1
20030096497 Moore et al. May 2003 A1
20030109078 Takahashi et al. Jun 2003 A1
20030116835 Miyamoto et al. Jun 2003 A1
20030159278 Peddle Aug 2003 A1
20030168725 Warner et al. Sep 2003 A1
20040000708 Rapport et al. Jan 2004 A1
20040012991 Kozaru Jan 2004 A1
20040021211 Damberg Feb 2004 A1
20040099938 Kang et al. May 2004 A1
20040150107 Cha et al. Aug 2004 A1
20040229402 Cady et al. Nov 2004 A1
20040236877 Burton Nov 2004 A1
20050082663 Wakiyama et al. Apr 2005 A1
20050108468 Hazelzet et al. May 2005 A1
20050133897 Baek et al. Jun 2005 A1
20050242423 Partridge et al. Nov 2005 A1
20050263911 Igarashi et al. Dec 2005 A1
20060020740 Bartley et al. Jan 2006 A1
20060050496 Goodwin Mar 2006 A1
20060050497 Goodwin Mar 2006 A1
20060053345 Goodwin Mar 2006 A1
20060091529 Wehrly et al. May 2006 A1
20060095592 Borkenhagen May 2006 A1
20060111866 LeClerg et al. May 2006 A1
20060125067 Wehrly et al. Jun 2006 A1
20070211426 Clayton et al. Sep 2007 A1
20070211711 Clayton Sep 2007 A1
20070212906 Clayton et al. Sep 2007 A1
20070212920 Clayton et al. Sep 2007 A1
20080192428 Clayton et al. Aug 2008 A1
Foreign Referenced Citations (22)
Number Date Country
122-687 (A) Oct 1984 EP
0 298 211 Jan 1989 EP
1 119049 Jul 2001 EP
2 130 025 May 1984 GB
53-85159 Jul 1978 JP
58-96756 (A) Jun 1983 JP
3-102862 Apr 1991 JP
5-29534 (A) Feb 1993 JP
5-335695 (A) Dec 1993 JP
2821315 (B2) Nov 1998 JP
2001077294 (A) Mar 2001 JP
2001085592 (A) Mar 2001 JP
2001332683 (A) Nov 2001 JP
2002009231 (A) Jan 2002 JP
2003037246 Feb 2003 JP
2003086760 (A) Mar 2003 JP
2003086761 (A) Mar 2003 JP
2003309246 (A) Oct 2003 JP
2003347503 (A) Dec 2003 JP
WO03037053 May 2003 WO
WO 03037053 May 2003 WO
WO 2004109802 Dec 2004 WO
Related Publications (1)
Number Date Country
20080278924 A1 Nov 2008 US
Continuations (1)
Number Date Country
Parent 11157565 Jun 2005 US
Child 12147218 US
Continuation in Parts (2)
Number Date Country
Parent 11007551 Dec 2004 US
Child 11157565 US
Parent 10934027 Sep 2004 US
Child 11007551 US