Electromigration immune through-substrate vias

Information

  • Patent Grant
  • 9153558
  • Patent Number
    9,153,558
  • Date Filed
    Thursday, August 2, 2012
    12 years ago
  • Date Issued
    Tuesday, October 6, 2015
    9 years ago
Abstract
A through-substrate via (TSV) structure includes at least two electrically conductive via segments embedded in a substrate and separated from each other by an electrically conductive barrier layer therebetween. The length of each individual conductive via segment is typically equal to, or less than, the Blech length of the conductive material so that the stress-induced back flow force, generated by each conductive barrier layer, cancels the electromigration force in each conductive via segment. Consequently, the TSV structures are immune to electromigration, and provide reliable electrical connections among a chips stacked in 3 dimensions.
Description
BACKGROUND

The present invention relates to the field of semiconductor structures, and particularly to electromigration immune through-substrate vias and methods of manufacturing the same.


A metal structure includes a lattice of metal ions and non-localized free electrons. The metal ions are formed from metal atoms that donate some of their electrons to a common conduction band of the lattice, and the non-localized free electrons move with relatively small resistance within the lattice under an electric field. Normal metal lines, excluding superconducting materials at or below a superconducting temperature, have finite conductivity, which is caused by interaction of electrons with crystalline imperfections and phonons which are thermally induced lattice vibrations.


When electrical current flows in the metal line, the metal ions are subjected to an electrostatic force due to the charge of the metal ion and the electric field to which the metal ion is exposed to. Further, as electrons scatter off the lattice during conduction of electrical current, the electrons transfer momentum to the metal ions in the lattice of the conductor material. The direction of the electrostatic force is in the direction of the electric field, i.e., in the direction of the current, and the direction of the force due to the momentum transfer of the electrons is in the direction of the flow of the electrons, i.e., in the opposite direction of the current. However, the force due to the momentum transfer of the electrons is generally greater than the electrostatic force. Thus, metal ions are subjected to a net force in the opposite direction of the current, or in the direction of the flow of the electrons.


High defect density, i.e., smaller grain size of the metal, or high temperature typically increases electron scattering. The amount of momentum transfer from the electrons to the conductor material increases with electron scattering. Such momentum transfer, if performed sufficiently cumulatively, may cause the metal ions to dislodge from the lattice and move physically. The mass transport caused by the electrical current, or the movement of the conductive material due to electrical current, is termed electromigration in the art.


In applications where high direct current densities are used, such as in metal interconnects of semiconductor devices, electromigration causes a void in a metal line or in a metal via. Such a void results in a locally increased resistance in the metal interconnect, or even an outright circuit “open.” In this case, the metal line or the metal via no longer provides a conductive path in the metal interconnect. Formation of voids in the metal line or the metal via can thus result in a product failure in semiconductor devices. Further, accumulation of electromigrated materials as extrusions or hillocks outside the volume of the original metal structures can result in electrical “shorts” with adjacent metal structures.


Electromigration is a function of current density and temperature, and accelerates at high current densities and high temperatures. In addition, electromigration is a function of the grain size and the geometry of the metal line. Specifically, the width of the metal line relative to the grain size can have a significant effect on electromigration. If the width of the metal line becomes smaller than the grain size itself, all grain boundaries are perpendicular to the current flow. Such a structure is also known as a “bamboo structure.” Formation of a bamboo structure results in a longer path for mass transport, thereby reducing the atomic flux and electromigration failure rate.


Further, the length of the metal line can have a significant effect on electromigration. If the length of the metal line is less than a critical length known as the “Blech length,” the metal line is immune to electromigration because the electromigration force is balanced by a stress-induced back-flow of atoms.


In recent years, “three dimensional silicon” (3DSi) structures have been proposed to enable joining of multiple silicon chips and/or wafers that are mounted on a package or a system board. The 3DSi structures increase the density of active circuits that are integrated in a given space. Such 3DSi structures employ through-substrate vias (TSVs) to provide electrical connection among the multiple silicon chips and/or wafers. The length of the TSVs is substantially equal to the thickness of each silicon chip or wafer. Because the thickness of silicon chips and wafers are on the order of 100 microns, the length of the TSVs exceeds the Blech length. See I. A. Blech, J. Appl. Phys. 47, 1203 (1976). Thus, the TSVs as known in the prior art are inherently subject to electromigration, and can fail during operation of the semiconductor chips.


BRIEF SUMMARY

A through-substrate via (TSV) structure is provided that includes at least two electrically conductive via segments embedded in a substrate. The at least two electrically conductive via segments are separated from each other by an electrically conductive barrier layer therebetween. The length of each individual conductive via segment is typically equal to, or less than, the Blech length of the conductive material so that the stress-induced back flow force, generated by each conductive barrier layer, cancels the electromigration force in each conductive via segment. Consequently, the TSV structures are immune to electromigration, and provide reliable electrical connections among chips stacked in 3 dimensions.


According to an aspect of the present invention, a semiconductor structure includes a first substrate. The first substrate includes at least one through-substrate via (TSV) structure extending from a first surface located on one side of the first substrate to a second surface located on an opposite side of the first substrate. Each of the at least one TSV structure includes a plurality of conductive via segments that are vertically spaced from one another by at least one conductive liner portion.


According to another aspect of the present invention, a method of forming a semiconductor structure is provided, which includes: forming at least one trench having substantially vertical sidewalls in a first substrate; filling the at least one trench with a conductive liner material and a conductive via segment material, wherein the conductive liner material constitutes a conductive liner located on sidewalls of the at least one trench and the conductive via segment material fills each cavity in the at least one trench; and performing at least once a set of processing steps. The set of processing steps may include: recessing a portion of a material that fills each upper portion of the at least one trench; depositing another conductive liner material on exposed sidewalls of each of the at least one trench; and depositing another conductive via segment material in each of the at least one trench. By performing the set of processing steps at least once, at least one through-substrate via (TSV) structure is formed in the first substrate.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS


FIG. 1 is a vertical cross-sectional view of a first exemplary semiconductor structure before forming at least one trench in a first substrate according to a first embodiment of the present invention.



FIG. 2 is a vertical cross-sectional view of the first exemplary semiconductor structure after forming at least one trench in the first substrate according to the first embodiment of the present invention.



FIG. 3 is a vertical cross-sectional view of the first exemplary semiconductor structure after depositing a first conductive liner and a first conductive fill material layer according to the first embodiment of the present invention.



FIG. 4 is a vertical cross-sectional view of the first exemplary semiconductor structure after removing the first conductive liner and the conductive fill material layer from above a first surface of the first substrate according to the first embodiment of the present invention.



FIG. 5 is a vertical cross-sectional view of the first exemplary semiconductor structure after recessing the first conductive liner and at least one first conductive via fill portion from an upper portion of each of the at least one trench in the first substrate according to the first embodiment of the present invention.



FIG. 6 is a vertical cross-sectional view of the first exemplary semiconductor structure after depositing a second conductive liner and a second conductive via fill portion according to the first embodiment of the present invention.



FIG. 7 is a vertical cross-sectional view of the first exemplary semiconductor structure after removing the second conductive liner and the second conductive via fill portion from above the first surface of the first substrate according to the first embodiment of the present invention.



FIG. 8 is a vertical cross-sectional view of the first exemplary semiconductor structure after formation of a back-end-of-line metal interconnect layer according to the first embodiment of the present invention.



FIG. 9 is a vertical cross-sectional view of the first exemplary semiconductor structure after formation of an array of conductive bonding material portions on a second surface of the first substrate according to the first embodiment of the present invention.



FIG. 10 is a vertical cross-sectional view of the first exemplary semiconductor structure after bonding a second substrate to the first substrate through the array of conductive bonding material portions according to the first embodiment of the present invention.



FIG. 11 is a vertical cross-sectional view of a second exemplary semiconductor structure after bonding a second substrate to the first substrate through the array of conductive bonding material portions according to a second embodiment of the present invention.



FIG. 12 is a vertical cross-sectional view of a third exemplary semiconductor structure after bonding a packaging substrate to the first substrate through the array of conductive bonding material portions according to a third embodiment of the present invention.





DETAILED DESCRIPTION

As stated above, the present invention relates to electromigration immune through-substrate vias and methods of manufacturing the same, which are now described in detail with accompanying figures. Throughout the drawings, the same reference numerals or letters are used to designate like or equivalent elements. The drawings are not necessarily drawn to scale.


As used herein, a “conductive through-substrate via (TSV) structure” is a conductive structure that extends through a substrate, i.e., at least from a top surface of the substrate to a bottom surface of the substrate.


As used herein, a surface is “substantially planar” if the surface is intended to be planar and the non-planarity of the surface is limited by imperfections inherent in the processing steps that are employed to form the surface.


As used herein, a “mounting structure” is any structure to which a semiconductor chip can be mounted by making electrical connections thereto. A mounting structure can be a packaging substrate, an interposer structure, or another semiconductor chip.


Referring to FIG. 1, a first exemplary semiconductor structure according to a first embodiment of the present invention includes a first substrate 100. The first substrate 100 can include a first handle substrate 112 and a first semiconductor-device-containing layer 118 that can include at least one semiconductor device such as a field effect transistor, a bipolar transistor, a diode, a thyristor, and a memory cell. The first semiconductor-device-containing layer 118 can include semiconductor devices for a semiconductor chip. The first substrate 100 typically has a first substantially planar surface 111 on one side and a second substantially planar surface 119 on an opposite side. The thickness of the first substrate 100 is typically from 100 microns to 1,000 microns, although lesser and greater thicknesses can also be employed.


A lower portion of the first semiconductor-device-containing layer 118 can include a semiconductor material layer 114. The semiconductor material layer 114 includes a semiconductor material that can be selected from, but is not limited to, silicon, germanium, silicon-germanium alloy, silicon carbon alloy, silicon-germanium-carbon alloy, gallium arsenide, indium arsenide, indium phosphide, III-V compound semiconductor materials, II-VI compound semiconductor materials, organic semiconductor materials, and other compound semiconductor materials. The semiconductor material layer 114 can include a single crystalline material. For example, the semiconductor material layer 114 can be a single crystalline silicon layer. The semiconductor material layer 114 can be doped with dopants of a first conductivity type, which can be p-type or n-type. The dopant concentration of the semiconductor material layer can be from 1.0×1014/cm3 to 1.0×1017/cm3, although lesser and greater dopant concentration can also be employed. An upper portion of the first semiconductor-device-containing layer 118 can include a lower level metal interconnect layer 116, which includes at least one dielectric material layer embedding metal interconnect structures such as metal vias and metal lines as well as a gate structure of a field effect transistor and/or an emitter structure of a bipolar transistor.


The first handle substrate 112 can be a semiconductor substrate including a semiconductor material or an insulator substrate including an insulator material. The first handle substrate 112 typically includes a material that can be removed from the second substantially planar surface 119, for example, by polishing, grinding, and/or an etch.


Referring to FIG. 2, a photoresist 117 is applied to the first substantially planar surface 111 and lithographically patterned to form at least one opening therein. Preferably, a plurality of openings is formed in the photoresist 117 by lithographic methods. The shape of each opening can be circular, oval, square, rectangular, or polygonal. The lateral dimensions of the shape of each opening in the photoresist 117 can be from about 0.3 microns to 100 microns, and typically from 1 micron to 10 microns, although lesser and greater dimensions can also be employed.


The pattern in the photoresist 117 can be transferred through the first semiconductor-device-containing layer 118 and into an upper portion of the first handle substrate by an anisotropic etch employing the photoresist 117 as an etch mask. At least one trench 113 extends from the first substantially planar surface 111 into the first substrate 100 after the anisotropic etch. The at least one trench 113 can have substantially vertical sidewalls. The at least one trench can be a plurality of trenches arranged as an array.


The depth d0 of the at least one trench 113 as measured from the first substantially planar surface 111 to a horizontal bottom surface of the at least one trench 113 can be substantially equal to the final thickness of the first substrate 100 after planarization to be subsequently performed. The depth d0 of the at least one trench 113 can be from 10 microns to 300 microns, and typically from 50 microns to 150 microns, although lesser and greater depths can also be employed. The photoresist 117 is subsequently removed, for example, by ashing.


Referring to FIG. 3, a first conductive liner material is deposited on a bottom surface and sidewalls of each of the at least one trench 113, for example, by electroplating, electroless plating, chemical vapor deposition (CVD), and/or physical vapor deposition (PVD) to form a first conductive liner 130L. The first conductive liner 130L includes a single piece of a contiguous metallic material that prevents diffusion of conductive materials that are subsequently deposited thereupon. The first conductive liner 130L typically contacts the entirety of the bottom surfaces and sidewalls of the at least one trench 113. The first conductive liner 130L can be composed of an elemental transition metal, a nitride of an elemental transition metal, or an alloy thereof. For example, the first conductive liner 130L can be composed of a material selected from titanium (Ti), tantalum (Ta), ruthenium (Ru), tungsten (W), titanium-nitride (TiN), tantalum-nitride (TaN), ruthenium nitride (RuN), tungsten nitride (WN), and alloys thereof. In one embodiment, the first conductive liner 130L is substantially conformal, i.e., has the same thickness throughout. The thickness of the first conductive liner 130L can be from 1 nm to 60 nm, and typically from 3 nm to 20 nm, although lesser and greater thicknesses can also be employed.


A first conductive fill material is deposited on the first conductive liner 130L, for example, by electroplating, electroless plating, chemical vapor deposition (CVD), and/or physical vapor deposition (PVD) to form a first conductive fill material layer 140L. The first conductive fill material layer 140L includes a single piece of a contiguous metallic material having high electrical conductivity. The first conductive fill material layer 140L either completely or partially fills each of the remaining cavities in the at least one trench 113. The first conductive fill material layer 140L can be composed of an elemental metal, a nitride of an elemental metal, or an alloy thereof. For example, the first conductive fill material layer 140L can be composed of a material selected from tungsten (W), copper (Cu), aluminum (Al), silver (Ag), gold (Au), and alloy thereof.


The first conductive fill material and the first conductive liner material are selected such that the first conductive liner material prevents diffusion of the first conductive fill material therethrough. The depth d0 can exceed the Blech length of the first conductive fill material for projected maximum current density therethrough in a vertical direction.


Referring to FIG. 4, the portions of the first conductive liner 130L from FIG. 3 and the first conductive fill material layer 140L from FIG. 3 are removed from above the first substantially planar surface 111 of the first substrate 100, for example, by chemical mechanical planarization (CMP), a recess etch, or a combination thereof. The first substantially planar surface 111 of the first substrate 100 is substantially coplanar with top surfaces of the remaining portions of the first conductive liner 130L and the first conductive fill material layer 140L in the case where the first conductive fill material layer 140L completely fills each of the remaining cavities in the at least one trench 113. If a plurality of trenches is present in the first substrate 100, each trench includes a first conductive liner portion 130 and a first conductive via fill portion 140, a portion of which becomes conductive via segment of a through-substrate via structure to be subsequently formed. Each first conductive liner portion 130 is a remaining portion of the first conductive liner 130L, and each first conductive via fill portion 140 is a remaining portion of the first conductive fill material layer 140L after the planarization.


Referring to FIG. 5, a second photoresist 157 is applied to the topmost surface of the first substrate 100 and is lithographically patterned to form openings above each of the at least one trench 113 from FIG. 2. The at least one first conductive via fill portion 140 and the at least one first conductive liner portion 130 are removed by a recess etch, either concurrently or consecutively, to a first recess depth r1 from the first substantially planar surface 111 from an upper portion of each of the at least one trench. In one case, the upper portion of a first conductive via fill portion 140 and an upper portion of a first conductive liner portion 130 are removed concurrently by a metal etch to the first recess depth r1 in each of the at least one trench. Alternately, an upper portion of a first conductive via fill portion 140 is removed selective to a first conductive liner portion 130 to the first recess depth r1 in each of the at least one trench, and exposed portions of the first conductive liner portion 130 can be subsequently removed by another metal etch.


The recess depth r1 is selected such that a first vertical distance d1 of the remaining portions of the first conductive liner portion 130 and the first conductive via fill portion 140 is less than the Blech length of the material of the first conductive via fill portion 140 at a projected maximum current density that the first conductive via fill portion 140 is expected to be subsequently subjected to.


Referring to FIG. 6, a second conductive liner material is deposited on the topmost surfaces of each of the first conductive liner portion 130, the first conductive via fill portion 140, the first substantially planar surface 111, and exposed sidewalls of each of the at least one trench 113 from FIG. 2, for example, by electroplating, electroless plating, chemical vapor deposition (CVD), and/or physical vapor deposition (PVD) to form a second conductive liner 150L. The second conductive liner 150L includes a single piece of a contiguous metallic material that prevents diffusion of the material of the first conductive via fill portion 140 and additional conductive materials to be subsequently deposited thereupon. The second conductive liner 150L contacts the entirety of the topmost surfaces of the first conductive liner portion 130 and the first conductive via fill portion 140. The second conductive liner 150L can be composed of the material that can be employed for the first conductive liner 130L as described above. In one embodiment, the second conductive liner 150L is substantially conformal. The thickness of the second conductive liner 150L can be from 1 nm to 60 nm, and typically from 3 nm to 20 nm, although lesser and greater thicknesses can also be employed.


A second conductive fill material is deposited on the second conductive liner 150L, for example, by electroplating, electroless plating, chemical vapor deposition (CVD), and/or physical vapor deposition (PVD) to form a second conductive fill material layer 160L. The second conductive fill material layer 160L includes a single piece of a contiguous metallic material having high electrical conductivity. The second conductive fill material layer 160L completely fills each of the remaining cavities in the at least one trench. The second conductive fill material layer 160L can be composed of any material that can be employed for the first conductive fill material layer 140L as described above.


The second conductive liner material is selected such that the second conductive liner material prevents diffusion of the second conductive fill material and diffusion of the first conductive fill material of the first conductive via fill portion 140. The depth, as measured from the horizontal plane of the first substantially planar surface 111, of the interface(s) between a bottom surface of the second conductive liner 150L and the top surfaces of the first conductive liner portion 130 and the first conductive via fill portion 140 is herein referred to as a second vertical distance d2.


Referring to FIG. 7, the portions of the second conductive liner 150L from FIG. 6 and the second conductive fill material layer 160L from FIG. 6 are removed from above the first substantially planar surface 111 of the first substrate 100, for example, by chemical mechanical planarization (CMP), a recess etch, or a combination thereof. The first substantially planar surface 111 of the first substrate 100 is substantially coplanar with top surfaces of the remaining portions of the second conductive liner 150L and the second conductive fill material layer 160L. If a plurality of trenches is present in the first substrate 100, each trench includes a first conductive liner portion 130, a first conductive via fill portion 140, a second conductive liner portion 150, and a second conductive via fill portion 160. Each second conductive liner portion 150 is a remaining portion of the second conductive liner 150L, and each second conductive via fill portion 160 is a remaining portion of the second conductive fill material layer 160L after the planarization.


If the second vertical distance d2 is less than the Blech length of the material of the second conductive via fill portion 160 at the projected maximum current density that the second conductive via fill portion 160 is expected to be subsequently subjected to, each set of a first conductive liner portion 130, a first conductive via fill portion 140, a second conductive liner portion 150, and a second conductive via fill portion 160 within a trench constitutes a through-substrate via (TSV) structure 180. The first conductive via fill portion 130 is a first conductive via segment in each of the at least one TSV structure 180, and the second conductive via fill portion 150 is a second conductive via segment in each of the at least one TSV structure 180. Each of the at least one TSV structure 180 extends from the first substantially planar surface 111 through the first semiconductor-device-containing layer 118 and into an upper portion of the first substrate 100.


If the second vertical distance d2 is greater than the Blech length of the material of the second conductive via fill portion 160 at the projected maximum current density that the second conductive via fill portion 160 is expected to be subsequently subjected to, the processing steps of FIGS. 5-7 are repeatedly performed (N−1) more times until a TSV structure 180 is formed in each of the at least one trench to form a number (N+1) of vertically stacked set of a conductive liner portion and a conductive via fill portion embedded therein. N is an integer greater than 1. The vertical distance between a topmost surface and a bottommost surface of each set of a conductive liner portion and a conductive via fill portion embedded therein is less than the Blech length of the material of the conductive via fill portion of that set.


In general, a set of processing steps corresponding to FIGS. 5-7 can be employed to form each set of a conductive liner portion and a conductive via fill portion embedded therein. The set of processing steps typically includes recessing a portion of a material that fills each upper portion of the at least one trench, depositing a conductive liner material on exposed sidewalls of each of the at least one trench, and depositing a conductive via segment material in each of the at least one trench. The conductive liner material can be any material that can be employed for the first conductive liner portion 130. The conductive via segment material can be any material that can be employed for the first conductive via fill portion 140. Each remaining portion of a deposited and recessed conductive liner material constitutes a conductive liner portion that is structurally equivalent to the second conductive liner portion 150. Each remaining portion of a deposited and receded conductive via segment material constitutes a conductive via segment, which is a conductive via fill portion that is structurally equivalent to the second conductive via fill portion 160 and embedded within one of the conductive liner portions. Each conductive via segment within one of the at least one TSV structure 180 has a vertical length that is less than the Blech length thereof for a maximum current density that the one of the at least one TSV structure 180 is configured to flow within the first substrate 100.


A Blech length, or LBlech, of a conductive material is generally determined by the equation of LBlech=(jL)th/j, wherein (jL)th is the Blech threshold of the conductive material, and j is a current density passing through the conductive material in a direction where the Blech length is measured. For most conductive materials including Cu, Au, Ag, and Al, (jL)th is a constant known in the art. For example, the Blech threshold (jL)th is typically around 200 milliamp per micrometer (mA/μm) for copper. The current density can be measured, for example, in a unit of milliamp per micrometer square (mA/μm2). Therefore, for a current density of for example 20 mA/μm2 passing vertically through a TSV segment consisting essentially of copper, the Blech length may typically be found around 10 micrometers (μm).


The first conductive via fill portion 140, the second conductive via fill portion 160, and the conductive via segment(s), if present, can be the same conductive material. In this case, the Blech lengths for each of the first conductive via fill portion 140, the second conductive via fill portion 160, and the conductive via segment(s), if present, are the same, and can be determined by circuit design of the semiconductor chip that is manufactured in the first substrate 100.


Specifically, the Blech length for each TSV structure 180 can be calculated by employing the following steps:

    • (1) determining a cross-sectional area per through-substrate via from a design of a semiconductor chip that is manufactured in the first substrate 100 for each of the at least one TSV structure 180,
    • (2) determining a maximum current from the design for each of the at least one TSV structure 180, and
    • (3) determining the Blech length for each of the at least one TSV structure 180, wherein the Blech length is determined by LBlech=ATSV×(jL)th/ITSV, wherein LBlech is the Blech length, ATSV is the cross-sectional area of the applicable TSV structure 180, (jL)th is a critical current density-length product for a material constituting the plurality of conductive via segments with the applicable TSV structure 180, and ITSV is the maximum current rated for the applicable TSV structure 180.


Because each of the at least one trench 113 (See FIG. 2) has a substantially same depth d0, the minimal number of repetitions for performing of the set of processing steps can be determined. Specifically, min(LBlech), i.e., the minimum of all LBlech, is determined by comparing the numbers for LBlech among all of the at least one TSV structures 180 and selecting the smallest number among them. Then, d0/min(LBlech) is calculated. If d0/min(LBlech) is an integer, the integer N that satisfies the equation (N+1)=d0/min(LBlech) is the minimal number of repetitions for performing of the set of processing steps. If d0/min(LBlech) is not an integer, the value of d0/min(LBlech) is rounded up to the next nearest integer, which is herein referred to INT{d0/min(LBlech)}. The integer N that satisfies the equation (N+1)=INT{d0/min(LBlech)} is the minimal number of repetitions for performing of the set of processing steps. Once the smallest integer (N+1) that is equal to or greater than d0/min(LBlech) is determined, the integer N is the minimal number of repetitions for performing of the set of processing steps can be determined. In general, each of the first conductive via fill portion 140, the second conductive via fill portion 160, and the conductive via segment(s), if present, has a vertical length that is less than the min(LBlech) of all of the at least one TSV structures 180.


The first conductive liner portion 130 and the first conductive via fill portion 140 collectively constitute a first TSV segment (130, 140). The second conductive liner portion 150 and the second conductive via fill portion 160 collectively constitute a second TSV segment (150, 160). Likewise, each pair of conductive liner portion and a conductive via segment embedded therein, if present, constitutes an i-th TSV segment, wherein i is an integer greater than 2 and is less than M, wherein M is the total number of TSV segments in each of the at least one TSV structure 180. Each of the first, second, and i-th TSV segment has a vertical dimension (or height) that is smaller than a Blech length of electromigration for the material of the corresponding conductive via segment.


Referring to FIG. 8, a first back-end-of-line (BEOL) metal interconnect layer 190 is formed on the first substantially planar surface 111 of the first substrate 100. The first BEOL metal interconnect layer 190 typically includes at least one dielectric material layer and at least one metal interconnect structure embedded therein. The at least one metal interconnect structure can provide electrical connection between the at least one semiconductor device embedded in the first semiconductor-device-containing layer 118 and the at least one TSV structure 180 by providing a conductive path therebetween. The at least one metal interconnect structure embedded in the first BEOL metal interconnect layer 190 can include metal lines that provide conductive paths in horizontal directions, i.e., in directions parallel to the first substantially planar surface 111, and metal vias that provide conductive paths in the vertical direction, i.e., in the direction perpendicular to the first substantially planar surface 111.


Referring to FIG. 9, the first substrate 100 can be thinned from the bottom. Specifically, a lower portion of the first substrate 100 can be removed from the second substantially planar surface 119 of the first substrate 100, for example, by polishing or grinding of the material of the first substrate 100 until the at least one TSV structure 180 is exposed. The first TSV segment (130, 140) of the at least one TSV structure 180 is exposed on the second substantially planar surface 119, which moves closer to the first substantially planar surface 111 during the thinning process. The vertical distance between the first substantially planar surface 111 and the second substantially planar surface 119 can be substantially the same as the depth d0 of the at least one trench 113 at the processing step of FIG. 2.


Each TSV structure 180 extends from the first substantially planar surface 111 located on one side of the first substrate 100 to the second substantially planar surface 119 located on the opposite side of the first substrate 100. Each of the at least one TSV structure 180 includes a plurality of conductive via segments (140, 160) that are vertically spaced from one another by at least one conductive liner portion such as the second conductive liner portion 150. The at least one TSV structure 180 can be an array of TSV structures, which can be arranged as a one-dimensional array, i.e., a linear array, or a two-dimensional array.


Each vertically adjacent pair of the plurality of conductive via segments (140, 160) is spaced from each other by a conductive liner portion, e.g., the second conductive liner portion 150, among the at least one conductive liner portion (130, 150). The bottom surface of one of the vertically adjacent pair of conductive via segments is in contact with an upper surface of the conductive liner portion, and a top surface of the other of the vertically adjacent pair of conductive via segments is in contact with a lower surface of the conductive liner portion. For example, the bottom surface of the second conductive via fill portion 160, which is a second conductive via segment, is in contact with an upper surface of the second conductive liner portion 150, and a top surface of the first conductive via fill portion 140, which is a first conductive via segment, is in contact with a lower surface of the second conductive liner portion 150.


Further, such a conductive liner portion extends upward from a periphery of the upper surface and laterally surrounds, and contacts sidewalls of, the one of the vertically adjacent pair of conductive via segments. For example, the second conductive liner portion 150 extends upward from a periphery of the upper surface of the second conductive liner portion 150 and laterally surrounds, and contacts sidewalls of, the second conductive via fill portion 160, which is the second conductive via segment.


The lower surface of the conductive liner portion is in contact with another conductive liner portion that laterally surrounds, and contacts sidewalls of, the other of the vertically adjacent pair of conductive via segments. For example, the lower surface of the second conductive liner portion 150 is in contact with the first conductive liner portion 130 that laterally surrounds, and contacts sidewalls of, the first conductive via fill portion 140, which is the first conductive via segment.


As discussed above, each conductive via segment, such as the first and second conductive via fill portions (140, 160), within one of the at least one TSV structure 180 has a vertical length that is less than any Blech length for the maximum current density that the each of the at least one TSV structure 180 is configured to flow within the first substrate 100 in the vertical direction between the first substantially planar surface 111 and the second substantially planar surface 119.


If the at least one TSV structure 180 is an array of TSV structures 180, an array of conductive bonding material portions 300 can be formed on the second substantially planar surface 119 of the first substrate 100. The array of conductive bonding material structures 300 is located directly on the second substantially planar surface 119 of the first substrate 100. Each of the array of conductive bonding material structures 300 contacts a bottom surface of a TSV structure 180 within the array of TSV structures.


The array of conductive bonding material structures 300 can be a bonding layer including an array of C4 balls, which are solder balls that can be reflowed for the purposes of bonding. Alternately, the array of conductive bonding material structures 300 can be a bonding layer including an array of conductive bonding pads that are formed by patterning a metal layer of a constant thickness into isolated shapes, each underlying one of the at least one TSV structure 180.


Referring to FIG. 10, a mounting structure is bonded to the array of conductive bonding material structures 300. The mounting structure can be an assembly of a second substrate 200 and a second BEOL metal interconnect layer 290 located thereupon. The array of conductive bonding material structures 300 provides a plurality of electrical connections between the at least one semiconductor device in the first semiconductor-device-containing layer 118 and the conductive structures located in the second substrate 200 and the second BEOL metal interconnect layer 290 to provide three-dimensional chip integration.


The second substrate 200 can include a second handle substrate 212 and a second semiconductor-device-containing layer 218 that typically includes at least another semiconductor device. The second semiconductor-device-containing layer 218 can include semiconductor devices for another semiconductor chip. The thickness of the second substrate 200 is typically from 100 microns to 1,000 microns, although lesser and greater thicknesses can also be employed.


A lower portion of the second semiconductor-device-containing layer 218 can include a second semiconductor material layer 214. The second semiconductor material layer 214 can be any semiconductor material that can be used for the semiconductor material layer 114 in the first substrate 100. The second semiconductor material layer 214 can include a single crystalline material. An upper portion of the second semiconductor-device-containing layer 218 can include a second lower level metal interconnect layer 216, which includes at least one dielectric material layer embedding metal interconnect structures such as metal vias and metal lines as well as a gate structure of a field effect transistor and/or an emitter structure of a bipolar transistor.


The second BEOL metal interconnect layer 290 typically includes at least one dielectric material layer and at least one metal interconnect structure embedded therein. The at least one metal interconnect structure can provide electrical connection between the at least another semiconductor device embedded in the second semiconductor-device-containing layer 218 and the array of conductive bonding material structures 300 by providing a conductive path therebetween. The at least one metal interconnect structure embedded in the second BEOL metal interconnect layer 290 can include metal lines that provide conductive paths in horizontal directions and metal vias that provide conductive paths in the vertical direction.


Referring to FIG. 11, a second exemplary semiconductor structure according to a second embodiment of the present invention is derived from the first exemplary semiconductor structure by employing a second substrate 200 including at least another TSV structure 280, which can be a second plurality of TSV structures. The second plurality of TSV structures 280 in the second substrate 200 can be formed employing the same processing steps as illustrated in FIGS. 2-9. Each of the at least another TSV structure 280 extends from the third substantially planar surface 211 to a fourth substantially planar surface 219 that are located on opposite sides second substrate 200. Each of the at least another TSV structure 280 includes another plurality of conductive via segments that are vertically spaced from one another by at least another conductive liner portion. The at least another TSV structure 280 in the second substrate 200 is formed before forming the second BEOL metal interconnect layer 290 and bonding of the first substrate 100 to the assembly of the second substrate 200 and the second BEOL metal interconnect layer 290 through the array of conductive bonding material structures 300.


Another array of conductive bonding material structures (not shown) can be formed on the fourth substantially planar surface 219 to enable additional vertical electrical connection with another mounting structure (not shown).


Referring to FIG. 12, a third exemplary semiconductor structure according to a third embodiment of the present invention is derived from the first exemplary semiconductor structure by employing a packaging substrate 400 instead of a second substrate 200. The packaging substrate 400 can be a ceramic substrate or a laminar substrate comprising a dielectric material.


The array of conductive bonding material structures 300 provides a plurality of electrical connections between the at least one semiconductor device in the first semiconductor-device-containing layer 118 and the conductive structures located in the packaging substrate 400 to provide three-dimensional chip integration.


Further, any mounting structure can be employed instead of a second substrate 200 or a packaging substrate to provide a three-dimensional integration of semiconductor chips as needed. Because the length of each conductive via segment does not exceed the Blech length, each of the at least one TSV structure 180 and the at least another TSV structure (see FIG. 11) is immune to electromigration. By eliminating electromigration from failure mechanisms of the at least one TSV structure 180 and the at least another TSV structure, the reliability of three dimensional integrated chips is increased significantly.


While the present invention has been particularly shown and described with respect to preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in forms and details can be made without departing from the spirit and scope of the present invention. It is therefore intended that the present invention not be limited to the exact forms and details described and illustrated, but fall within the scope of the appended claims.

Claims
  • 1. A method of forming a semiconductor structure comprising: forming at least one trench in a first substrate;filling said at least one trench with a conductive liner material and a conductive via segment material, wherein said conductive liner material constitutes a conductive liner located on sidewalls of said at least one trench and said conductive via segment material completely or partially fills each cavity in said at least one trench; andperforming at least once a set of processing steps including: recessing a portion of a material that fills each upper portion of said at least one trench;depositing another conductive liner material on exposed sidewalls of each of said at least one trench; anddepositing another conductive via segment material in each of said at least one trench,
  • 2. The method of claim 1, wherein said at least one trench extends from a first surface located on one side of said first substrate into said first substrate, wherein said method further comprises removing a portion of said first substrate from a surface located on an opposite side of said first substrate from said first surface, whereby said at least one TSV structure is exposed on a second surface of said first substrate after removal of said portion of said first substrate, and wherein said second surface is located on an opposite side of said first surface.
  • 3. The method of claim 2, wherein said at least one TSV structure is an array of TSV structures, and said method further comprises forming an array of conductive bonding material structures on said second surface of said first substrate, wherein each of said array of conductive bonding material structures contacts a bottom surface of a TSV structure within said array of TSV structures.
  • 4. The method of claim 3, further comprising bonding a second substrate or a packaging substrate to said first substrate through said array of conductive bonding material, wherein said array of TSV structures and said array of conductive bonding material structures provide a plurality of electrical connections between at least one semiconductor device in said first substrate and conductive structures located within said second substrate or within said packaging substrate.
  • 5. The method of claim 1, wherein said TSV structure extends from a first surface located on one side of said first substrate to a second surface located on an opposite side of said first substrate, each of said at least one TSV structure comprising a plurality of conductive via segments that are vertically spaced from one another by at least one conductive liner portion.
  • 6. The method of claim 5, wherein each vertically adjacent pair of said plurality of conductive via segments is spaced from each other by a conductive liner portion among said at least one conductive liner portion, wherein a bottom surface of one of said vertically adjacent pair of conductive via segments is in contact with an upper surface of said conductive liner portion and a top surface of the other of said vertically adjacent pair of conductive via segments is in contact with a lower surface of said conductive liner portion.
  • 7. The method of claim 5, wherein said recessing of said portion of said material is set such that each conductive via segment within one of said at least one TSV structure has a vertical length that is less than a Blech length thereof for a maximum current density that said one of said at least one TSV structure is configured to flow within said first substrate.
  • 8. The method of claim 7, further comprising: determining a cross-sectional area per through-substrate via from a design of a semiconductor chip that is manufactured in said first substrate for each of said at least one TSV structure;determining a maximum current from said design for each of said at least one TSV structure;determining said Blech length for each of said at least one TSV structure, wherein said Blech length is determined by LBlech=ATSV×(jL)th/ITSV, wherein LBlech is said Blech length, ATSV is said cross-sectional area, (jL)th is a critical current density-length product for a material constituting said plurality of conductive via segments, and ITSV is said maximum current.
  • 9. The method of claim 8, wherein each of said at least one trench has a substantially same depth d0, and said method further comprises setting a total number of repetitions for performing of said set of processing steps at a positive integer N, wherein said (N+1) is a smallest integer that is equal to or greater than d0/min(LBlech), wherein min(LBlech) is a minimum of all Blech lengths of said at least one TSV.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 12/702,463, filed Feb. 9, 2010 the entire content and disclosure of which is incorporated herein by reference.

US Referenced Citations (182)
Number Name Date Kind
4933743 Thomas et al. Jun 1990 A
5091339 Carey Feb 1992 A
5108785 Lincoln et al. Apr 1992 A
5117276 Thomas et al. May 1992 A
5247196 Kimura Sep 1993 A
5312773 Nagashima May 1994 A
5313100 Ishii et al. May 1994 A
5439731 Li et al. Aug 1995 A
5457879 Gurtler et al. Oct 1995 A
5585674 Geffken et al. Dec 1996 A
5595937 Mikagi Jan 1997 A
5619008 Chawla et al. Apr 1997 A
5719085 Moon et al. Feb 1998 A
5902118 Hubner May 1999 A
5915167 Leedy Jun 1999 A
5929524 Drynan et al. Jul 1999 A
5930667 Oda Jul 1999 A
5956843 Mizumoto et al. Sep 1999 A
5977780 Herrmann Nov 1999 A
6008114 Li Dec 1999 A
6083788 Lian et al. Jul 2000 A
6132853 Noddin Oct 2000 A
6133640 Leedy Oct 2000 A
6156626 Bothra Dec 2000 A
6208545 Leedy Mar 2001 B1
6259160 Lopatin et al. Jul 2001 B1
6369446 Tanaka Apr 2002 B1
6376353 Zhou et al. Apr 2002 B1
6383920 Wang et al. May 2002 B1
6395633 Cheng et al. May 2002 B1
6400008 Farnworth Jun 2002 B1
6417561 Tuttle Jul 2002 B1
6420261 Kudo Jul 2002 B2
6479382 Naem Nov 2002 B1
6501115 Yoshida et al. Dec 2002 B2
6501177 Lopatin et al. Dec 2002 B1
6528409 Lopatin et al. Mar 2003 B1
6531377 Knorr et al. Mar 2003 B2
6551857 Leedy Apr 2003 B2
6555415 Hedler Apr 2003 B2
6563224 Leedy May 2003 B2
6583051 Lopatin et al. Jun 2003 B2
6597067 Biery et al. Jul 2003 B1
6599778 Pogge et al. Jul 2003 B2
6632706 Leedy Oct 2003 B1
6649511 Achuthan et al. Nov 2003 B1
6713872 Tanaka Mar 2004 B2
6787460 Lee et al. Sep 2004 B2
6806578 Howell et al. Oct 2004 B2
6806579 Cowley et al. Oct 2004 B2
6809269 Fuller et al. Oct 2004 B2
6812127 Oshima et al. Nov 2004 B2
6846725 Nagarajan et al. Jan 2005 B2
6953745 Ahn et al. Oct 2005 B2
6964922 Lee et al. Nov 2005 B2
7062850 Atakov et al. Jun 2006 B2
7074709 Young Jul 2006 B2
7078352 Beyer et al. Jul 2006 B2
7115973 Naem Oct 2006 B1
7138295 Leedy Nov 2006 B2
7138714 Nguyen et al. Nov 2006 B2
7193239 Leedy Mar 2007 B2
7279411 Agarwala et al. Oct 2007 B2
7294897 Akram et al. Nov 2007 B2
7371654 Sato et al. May 2008 B2
7439624 Yang et al. Oct 2008 B2
7470612 Choi et al. Dec 2008 B2
7474004 Leedy Jan 2009 B2
7504732 Leedy Mar 2009 B2
7534696 Jahnes et al. May 2009 B2
7538353 Huang et al. May 2009 B2
7592700 Sunohara et al. Sep 2009 B2
7671470 Yang et al. Mar 2010 B2
7705466 Leedy Apr 2010 B2
7754561 Eun Jul 2010 B2
7767493 Trezza et al. Aug 2010 B2
7795735 Hsu et al. Sep 2010 B2
7808111 Trezza Oct 2010 B2
7839163 Feng et al. Nov 2010 B2
7872351 Kim et al. Jan 2011 B2
7906404 DeNatale et al. Mar 2011 B2
7939941 Chiou et al. May 2011 B2
8026610 Murayama Sep 2011 B2
8053900 Yu et al. Nov 2011 B2
8084866 Hiatt et al. Dec 2011 B2
8198174 Hsu et al. Jun 2012 B2
8242604 Volant et al. Aug 2012 B2
8304863 Filippi et al. Nov 2012 B2
8486805 Zhao et al. Jul 2013 B2
20010000884 Miller et al. May 2001 A1
20010006255 Kwon et al. Jul 2001 A1
20010018230 Jimarez et al. Aug 2001 A1
20020014698 Umemura Feb 2002 A1
20020058380 Parekh et al. May 2002 A1
20020102840 Tsai et al. Aug 2002 A1
20020130415 Hasunuma et al. Sep 2002 A1
20020132465 Leedy Sep 2002 A1
20020157864 Koyama et al. Oct 2002 A1
20020182855 Agarwala et al. Dec 2002 A1
20030173608 Leedy Sep 2003 A1
20030184987 Coomer et al. Oct 2003 A1
20040067638 Hau-Riege Apr 2004 A1
20040155274 DeBoer et al. Aug 2004 A1
20040201095 Palmer et al. Oct 2004 A1
20050017369 Clayton et al. Jan 2005 A1
20050029010 Ahn et al. Feb 2005 A1
20050035459 Yu et al. Feb 2005 A1
20050139954 Pyo Jun 2005 A1
20050186799 Wu et al. Aug 2005 A1
20060024950 Choi et al. Feb 2006 A1
20060043535 Hiatt Mar 2006 A1
20060121690 Pogge et al. Jun 2006 A1
20060160354 Zhang et al. Jul 2006 A1
20070039753 Kim et al. Feb 2007 A1
20070057384 Alam et al. Mar 2007 A1
20070080461 Lu et al. Apr 2007 A1
20070205515 Agarwala et al. Sep 2007 A1
20080073747 Chao et al. Mar 2008 A1
20080081386 Raravikar et al. Apr 2008 A1
20080093664 Yun et al. Apr 2008 A1
20080206984 Sparks et al. Aug 2008 A1
20080220565 Hsu et al. Sep 2008 A1
20080233710 Hsu et al. Sep 2008 A1
20080257591 Ikeda Oct 2008 A1
20080284006 Hong et al. Nov 2008 A1
20090014843 Kawashita et al. Jan 2009 A1
20090014891 Chang et al. Jan 2009 A1
20090039527 Chan et al. Feb 2009 A1
20090051011 Usami Feb 2009 A1
20090067210 Leedy Mar 2009 A1
20090130846 Mistuhashi May 2009 A1
20090174082 Leedy Jul 2009 A1
20090175104 Leedy Jul 2009 A1
20090194886 Hiatt Aug 2009 A1
20090195125 Matsugi Aug 2009 A1
20090218700 Leedy Sep 2009 A1
20090219742 Leedy Sep 2009 A1
20090219743 Leedy Sep 2009 A1
20090219744 Leedy Sep 2009 A1
20090219772 Leedy Sep 2009 A1
20090230501 Leedy Sep 2009 A1
20090242932 Luryi Oct 2009 A1
20090283871 Chang et al. Nov 2009 A1
20090283872 Lin et al. Nov 2009 A1
20090302299 Chang Dec 2009 A1
20090317944 Kim Dec 2009 A1
20090321945 Besling Dec 2009 A1
20100007001 Wang et al. Jan 2010 A1
20100019310 Sakamoto Jan 2010 A1
20100032811 Ding et al. Feb 2010 A1
20100033273 Hanke et al. Feb 2010 A1
20100047963 Wang et al. Feb 2010 A1
20100093143 Ide et al. Apr 2010 A1
20100129981 Smith May 2010 A1
20100130003 Lin et al. May 2010 A1
20100144094 Chen et al. Jun 2010 A1
20100155940 Kawashita et al. Jun 2010 A1
20100171224 Leedy Jul 2010 A1
20100171225 Leedy Jul 2010 A1
20100172197 Leedy Jul 2010 A1
20100173453 Leedy Jul 2010 A1
20100182040 Feng et al. Jul 2010 A1
20100187670 Lin et al. Jul 2010 A1
20100237471 Pagaila et al. Sep 2010 A1
20100261318 Feng et al. Oct 2010 A1
20100264551 Farooq et al. Oct 2010 A1
20100297848 Breitwisch et al. Nov 2010 A1
20100308435 Nowak et al. Dec 2010 A1
20100327445 Filippi et al. Dec 2010 A1
20110031633 Hsu et al. Feb 2011 A1
20110034021 Feng et al. Feb 2011 A1
20110045669 Nakao et al. Feb 2011 A1
20110074040 Frank et al. Mar 2011 A1
20110097895 Hong et al. Apr 2011 A1
20110121427 Stupar et al. May 2011 A1
20110169135 Nakao Jul 2011 A1
20110198609 Huang Aug 2011 A1
20110248396 Liu et al. Oct 2011 A1
20120018863 Oganesian et al. Jan 2012 A1
20120280403 Pagaila et al. Nov 2012 A1
20120298413 Mori Nov 2012 A1
20130175673 Jin et al. Jul 2013 A1
Foreign Referenced Citations (13)
Number Date Country
1525485 Apr 1998 CN
101188235 Apr 1998 CN
98803836 Jun 2004 CN
0975472 Apr 1998 EP
1986233 Apr 1998 EP
10-543031 Apr 1998 JP
2008028407 Aug 2007 JP
2008166831 Jul 2008 JP
2008166832 Jul 2008 JP
2008172254 Jul 2008 JP
10-0639752 Oct 2006 KR
10-0785821 Dec 2007 KR
412854 Nov 2000 TW
Non-Patent Literature Citations (2)
Entry
Notice of Allowance dated Aug. 9, 2012 received in a related U.S. Patent Application, namely U.S. Appl. No. 12/702,463.
Blech, I. A., “Electromigration in Thin Aluminum Films on Titanium Nitride” Journal of Applied Physics (Apr. 1976) pp. 1203-1208, vol. 47, No. 4.
Related Publications (1)
Number Date Country
20120292763 A1 Nov 2012 US
Continuations (1)
Number Date Country
Parent 12702463 Feb 2010 US
Child 13565416 US