An Application Data Sheet is filed concurrently with this specification as part of the present application. Each application that the present application claims benefit of or priority to as identified in the concurrently filed Application Data Sheet is incorporated by reference herein in their entireties and for all purposes.
This invention pertains to semiconductor substrate processing apparatuses for processing semiconductor substrates, and may find particular use in plasma-enhanced chemical vapor depositions processing apparatuses operable to deposit thin films.
Semiconductor substrate processing apparatuses are used to process semiconductor substrates by techniques including etching, physical vapor deposition (PVD), chemical vapor deposition (CVD), plasma-enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD), plasma-enhanced atomic layer deposition (PEALD), pulsed deposition layer (PDL), plasma-enhanced pulsed deposition layer (PEPDL), and resist removal. One type of semiconductor substrate processing apparatus is a plasma processing apparatus that includes a reaction chamber containing upper and lower electrodes wherein a radio frequency (RF) power is applied between the electrodes to excite a process gas into plasma for processing semiconductor substrates in the reaction chamber.
Disclosed herein is a semiconductor substrate processing apparatus for processing semiconductor substrates, comprising a vacuum chamber including a processing zone in which a semiconductor substrate may be processed; a process gas source in fluid communication with the vacuum chamber for supplying a process gas into the vacuum chamber; a showerhead module through which process gas from the process gas source is supplied to the processing zone of the vacuum chamber; and a substrate pedestal module including a platen made of ceramic material having an upper surface configured to support a semiconductor substrate thereon during processing; a stem made of ceramic material having an upper stem flange that supports the platen; and coplanar electrodes embedded in the platen, the electrodes including an outer RF electrode and inner electrostatic clamping electrodes, the outer RF electrode including a ring-shaped electrode and at least one radially extending lead extending from the ring-shaped electrode to a central portion of the platen, wherein the ceramic material of the platen and the electrodes comprise a unitary body made in a single sintering step.
According to an embodiment, the platen includes first and second D-shaped electrostatic clamping electrodes inward of the ring-shaped electrode, the radially extending lead extending diagonally across the platen and connected to the ring-shaped electrode at two locations 180° apart with the first and second D-shaped electrodes on opposite sides of the radially extending lead. The platen can include a first terminal at a center of the platen, a second terminal radially offset from the first terminal, and a third terminal radially offset from the first terminal, the first terminal electrically connected to the radially extending lead of the ring-shaped electrode, the second terminal electrically connected to the first D-shaped electrode and the third terminal electrically connected to the second D-shaped electrode. The first, second and third terminals can extend axially through openings in the platen and the second and third terminals can be aligned along a diagonal line passing through the location of the first terminal.
In another arrangement, the platen can include first, second, third and fourth electrostatic clamping electrodes inward of the ring-shaped electrode, the at least one radially extending feed strip comprising two feed strips extending diagonally across the platen, each of the feed strips connected to the ring-shaped electrode at two locations 180° apart, the feed strips intersecting at the center of the platen with the first, second, third and fourth electrostatic clamping electrodes located between the diagonally extending feed strips.
The platen can be made of any suitable ceramic material and the electrodes can be made of any suitable electrically conductive material. For example, the platen can be made of aluminum nitride and the electrodes can be made of tungsten. The platen can include three through holes configured to receive lift pins and the platen can have a diameter of at least 300 mm.
In the embodiment wherein the electrostatic clamping electrodes are D-shaped electrodes, the ring-shaped electrode can be separated from the D-shaped electrodes by a first continuous wall of ceramic material extending around the first D-shaped electrode and a second continuous wall of ceramic material extending around the second D-shaped electrode. The first and second walls of ceramic material can have the same width with the width of the first and second walls of ceramic material being less than a width of the radially extending lead.
Also disclosed herein is an electrostatic chuck useful for processing semiconductor substrates in a vacuum chamber including a processing zone in which a semiconductor substrate may be processed. The electrostatic chuck comprises a platen made of ceramic material having an upper surface configured to support a semiconductor substrate thereon during processing and coplanar electrodes embedded in the platen. The electrodes include an outer RF electrode and inner electrostatic clamping electrodes, the outer RF electrode including a ring-shaped electrode and at least one radially extending lead extending from the ring-shaped electrode to a central portion of the platen, wherein the ceramic material of the platen and the electrodes comprise a unitary body made in a single sintering step.
In the following detailed description, numerous specific embodiments are set forth in order to provide a thorough understanding of the apparatus and methods disclosed herein. However, as will be apparent to those skilled in the art, the present embodiments may be practiced without these specific details or by using alternate elements or processes. In other instances, well-known processes, procedures, and/or components have not been described in detail so as not to unnecessarily obscure aspects of embodiments disclosed herein. As used herein the term “about” refers to ±10%.
As indicated, present embodiments provide apparatus and associated methods for processing a semiconductor substrate in a semiconductor substrate processing apparatus such as a chemical vapor deposition apparatus or a plasma-enhanced chemical vapor deposition apparatus. The apparatus and methods are particularly applicable for use in conjunction with high temperature processing of semiconductor substrates such as a high temperature deposition processes wherein a semiconductor substrate being processed is heated to temperatures greater than about 550° C., such as about 550° C. to about 650° C. or more.
Embodiments disclosed herein are preferably implemented in a plasma-enhanced chemical deposition apparatus (i.e. PECVD apparatus, PEALD apparatus, or PEPDL apparatus), however, they are not so limited.
The power and frequency of RF energy supplied by matching network 114 to the interior of the vacuum chamber 102 is sufficient to generate plasma from the process gas. In an embodiment both the high-frequency RF generator 110 and the low-frequency RF generator 112 are used, and in an alternate embodiment, just the high-frequency RF generator 110 is used. In a process, the high-frequency RF generator 110 may be operated at frequencies of about 2-100 MHz; in a preferred embodiment at 13.56 MHz or 27 MHz. The low-frequency RF generator 112 may be operated at about 50 kHz to 2 MHz; in a preferred embodiment at about 350 to 600 kHz. The process parameters may be scaled based on the chamber volume, substrate size, and other factors. Similarly, the flow rates of process gas, may depend on the free volume of the vacuum chamber or processing zone.
An upper surface of the substrate pedestal module 106 supports a semiconductor substrate 108 during processing within the vacuum chamber 102. The substrate pedestal module 106 can include a chuck to hold the semiconductor substrate and/or lift pins to raise and lower the semiconductor substrate before, during and/or after the deposition and/or plasma treatment processes. In an alternate embodiment, the substrate pedestal module 106 can include a carrier ring to raise and lower the semiconductor substrate before, during and/or after the deposition and/or plasma treatment processes. The chuck may be an electrostatic chuck, a mechanical chuck, or various other types of chuck as are available for use in the industry and/or research. Details of a lift pin assembly for a substrate pedestal module including an electrostatic chuck can be found in commonly-assigned U.S. Pat. No. 8,840,754, which is incorporated herein by reference in its entirety. Details of a carrier ring for a substrate pedestal module can be found in commonly-assigned U.S. Pat. No. 6,860,965, which is incorporated herein by reference in its entirety. A backside gas supply 116 is operable to supply a heat transfer gas or purge gas through the substrate pedestal module 106 to a region below a lower surface of the semiconductor substrate during processing. The substrate pedestal module 106 includes the lower RF electrode therein wherein the lower RF electrode is preferably grounded during processing, however in an alternate embodiment, the lower RF electrode may be supplied with RF energy during processing.
To process a semiconductor substrate in the vacuum chamber 102 of the semiconductor substrate plasma processing apparatus 100, process gases are introduced from a process gas source 118 into the vacuum chamber 102 via inlet 120 and showerhead module 104 wherein the process gas is formed into plasma with RF energy such that a film may be deposited onto the upper surface of the semiconductor substrate. In an embodiment, multiple source gas lines 122 may be connected to a heated manifold 124. The gases may be premixed or supplied separately to the chamber. Appropriate valving and mass flow control mechanisms are employed to ensure that the correct gases are delivered through the showerhead module 104 during semiconductor substrate processing. During the processing, a backside heat transfer gas or purge gas is supplied to a region below a lower surface of the semiconductor substrate supported on the substrate pedestal module 102. Preferably, the processing is at least one of chemical vapor deposition processing, plasma-enhanced chemical vapor deposition processing, atomic layer deposition processing, plasma-enhanced atomic layer deposition processing, pulsed deposition layer processing, or plasma-enhanced pulsed deposition layer processing.
In certain embodiments, a system controller 126 is employed to control process conditions during deposition, post deposition treatments, and/or other process operations. The controller 126 will typically include one or more memory devices and one or more processors. The processor may include a CPU or computer, analog and/or digital input/output connections, stepper motor controller boards, etc.
In certain embodiments, the controller 126 controls all of the activities of the apparatus. The system controller 126 executes system control software including sets of instructions for controlling the timing of the processing operations, frequency and power of operations of the low-frequency RF generator 112 and the high-frequency RF generator 110, flow rates and temperatures of precursors and inert gases and their relative mixing, temperature of a semiconductor substrate 108 supported on an upper surface of the substrate pedestal module 106 and a plasma exposed surface of the showerhead module 104, pressure of the vacuum chamber 102, and other parameters of a particular process. Other computer programs stored on memory devices associated with the controller may be employed in some embodiments.
High temperature chucks typically include a ceramic pedestal and a smaller diameter ceramic stem joined to the underside of the platen. See, for example, commonly-assigned U.S. Patent Publication Nos. 2016/0340781; 2016/0336213; and 2016/0333475, each of which is hereby incorporated by reference in its entirety.
The platen 300 can be used as a high temperature electrostatic chuck of a substrate support module for sequential processing of individual semiconductor wafers wherein the platen 300 is a unitary body made in a single sintering step to provide coplanar electrostatic clamping and RF electrodes and one or more heaters below the coplanar electrodes. As mentioned above, in prior platen designs, an embedded power distribution circuit below the RF and electrostatic clamping electrodes included power distribution electrode arms which created undesirable inductance effects during wafer processing. By eliminating the power distribution electrode arms, it is possible to eliminate out-of-plane inductors and simplify the manufacturing process by conducting a single sintering step. In addition, by providing a feed strip 302 which extends diagonally across the outer ring-shaped electrode 302, it is possible to minimize adverse effects of disturbances to the RF field above the wafer being processed.
The pedestal 300 and stem 322 are preferably of ceramic material and a bottom surface of the pedestal 300 can be joined to a flange at an upper end of the stem 322 such as by brazing, friction welding, diffusion bonding, or other suitable technique. The interior of the stem 322 can include power supply leads, one or more thermocouple leads, and one or more gas supply tubes which supply an inert gas such as argon (Ar) or a heat transfer gas such as helium (He) which is delivered via suitable fluid passages to an underside of a semiconductor substrate located on support surface.
The power leads can be one or more feed rods which supply radio-frequency (RF), direct current (DC) and/or alternating current (AC) to electrodes embedded in the pedestal 300. The pedestal 300 is preferably a unitary body of sintered ceramic material such as aluminum oxide (alumina), yttria, aluminum nitride, boron nitride, silicon oxide, silicon carbide, silicon nitride, titanium oxide, zirconium oxide, or other suitable material or combination of materials. Each electrode preferably has a planar configuration and is preferably made of an electrically conductive metallic material (e.g., tungsten, molybdenum, tantalum, niobium, cobalt) or electrically conductive non-metallic material (e.g., aluminum oxide-tantalum carbide, aluminum oxide-silicon carbide, aluminum nitride-tungsten, aluminum nitride-tantalum, yttrium oxide-molybdenum). The electrodes can be formed from powder materials which are co-fired with the ceramic material of the pedestal. For example, the electrodes can be formed of conductive paste which is co-fired with layers of the ceramic material forming the body of the pedestal. For example, the paste can include conductive metal powder of nickel (Ni), tungsten (W), molybdenum (Mo), titanium (Ti), manganese (Mn), copper (Cu), silver (Ag), palladium (Pd), platinum (Pt), rhodium (Rh), Alternatively, the electrodes can be formed from a deposited material having a desired electrode pattern or a deposited film which is etched to form a desired electrode pattern. Still yet, the electrodes can comprise preformed grids, plates, wire mesh, or other suitable electrode material and/or configuration. In an embodiment, the electrodes include at least one electrostatic clamping electrode which is powered by a DC power source to provide DC chucking voltage (e.g., about 200 to about 2000 volts), at least one RF electrode powered by a RF power source to provide RF bias voltage (e.g., one or more frequencies of about 400 KHz to about 60 MHz at power levels of about 50 to about 3000 watts) and/or at least one electrode powered by DC and RF power sources via suitable circuitry.
The platen can be made by arranging coplanar electrodes in ceramic material and conducting a single sintering step to embed the electrodes in the sintered ceramic material. Examples of techniques for manufacturing ceramic chucks can be found in commonly-assigned U.S. Pat. Nos. 5,880,922; 6,483,690; and 8,637,194, the disclosures of which are hereby incorporated by reference. For example, the outer ring-shaped electrode with integral radially extending lead and the ESC electrodes can be screen printed on a green sheet of aluminum nitride, a green sheet of aluminum nitride or other suitable dielectric material can be placed over the screen printed electrodes, and the resulting compact can be heated pressed and sintered to form the platen. Terminals in holes extending into the underside of the sintered ceramic material can be bonded to each of the electrodes and the stem can be bonded to the underside of the platen.
During processing of a semiconductor substrate such as deposition of films on a silicon wafer supported on the platen 300, the platen 300 may cycle between temperatures ranging from about 20° C. to 500° c. and higher. For processing a 300 mm wafer, the platen 300 can have a thickness of up to about 1 inch and a diameter of about 15 inches, the stem 322 can have a diameter of about 3 inches and the distance between the bottom of the stem 322 and the upper surface of the platen 300 can be about 5 inches. The tubes 330, 336 can have a diameter of about 4 mm, a length of about 7 to 8 inches. The inside of the stem 322 accommodates components such as electrical feeds such as palladium/rhodium (Pd/Rh) coated stainless steel or nickel (Ni) rods.
The feed rods 338 can be solid metal rods such as nickel (Ni) rods arranged at circumferentially spaced apart locations inward of an inner surface of the stem 322, and the two outer electrically conductive feed rods 336 (which can optionally be hollow rods to deliver gas to the upper surface of platen 300) are electrically connected to electrostatic clamping electrodes 304, 306. The solid feed rods 338 can supply power to resistance heaters 340a, 340b embedded in the platen 300 at a location below the electrostatic clamping electrodes 304, 306. Electrical connections between the central tube 330 and feed strip 302a, between the feed rods 336 and the electrodes 304, 306, and between the feed rods 338 and the heaters 340a, 340b can include solid terminals/studs/sockets as disclosed in commonly-assigned U.S. Pat. No. 9,088,085, the disclosure of which is hereby incorporated by reference. During manufacture of the platen 300, the tube 330 and feed rods 336, 338 can be bonded to the platen 300 and electrodes 302, 304, 306 via suitable sintering and/or brazing techniques.
While the substrate pedestal module of the semiconductor substrate processing apparatus has been described in detail with reference to specific embodiments thereof, it will be apparent to those skilled in the art that various changes and modifications can be made, and equivalents employed, without departing from the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4692836 | Suzuki | Sep 1987 | A |
5463526 | Mundt | Oct 1995 | A |
5507874 | Su et al. | Apr 1996 | A |
5560780 | Wu et al. | Oct 1996 | A |
5633073 | Cheung et al. | May 1997 | A |
5737178 | Herchen | Apr 1998 | A |
5812362 | Ravi | Sep 1998 | A |
5829791 | Kotsubo et al. | Nov 1998 | A |
5841624 | Xu et al. | Nov 1998 | A |
5942282 | Tada et al. | Aug 1999 | A |
6066836 | Chen et al. | May 2000 | A |
6072685 | Herchen | Jun 2000 | A |
6081414 | Flanigan et al. | Jun 2000 | A |
6104596 | Hausmann | Aug 2000 | A |
6151203 | Shamouilian et al. | Nov 2000 | A |
6213478 | Nishikawa | Apr 2001 | B1 |
6221221 | Al-Shaikh et al. | Apr 2001 | B1 |
6239403 | Dible et al. | May 2001 | B1 |
6261977 | Tsai et al. | Jul 2001 | B1 |
6403491 | Liu et al. | Jun 2002 | B1 |
6466881 | Shih et al. | Oct 2002 | B1 |
6592709 | Lubomirsky | Jul 2003 | B1 |
6776892 | Ritzdorf et al. | Aug 2004 | B1 |
6858265 | Redeker et al. | Feb 2005 | B2 |
6879051 | Singh et al. | Apr 2005 | B1 |
7625227 | Henderson et al. | Dec 2009 | B1 |
9213021 | Plant et al. | Dec 2015 | B2 |
9850573 | Sun | Dec 2017 | B1 |
10079154 | Le et al. | Sep 2018 | B1 |
10147610 | Lingampalli | Dec 2018 | B1 |
10403535 | Ye et al. | Sep 2019 | B2 |
10431467 | Lingampalli | Oct 2019 | B2 |
10937684 | Horiuchi | Mar 2021 | B2 |
11086233 | Topping et al. | Aug 2021 | B2 |
11183368 | French | Nov 2021 | B2 |
11289355 | Gomm | Mar 2022 | B2 |
11469084 | Thomas et al. | Oct 2022 | B2 |
20010019472 | Kanno et al. | Sep 2001 | A1 |
20010027972 | Yamaguchi | Oct 2001 | A1 |
20030051665 | Zhao et al. | Mar 2003 | A1 |
20030180459 | Redeker et al. | Sep 2003 | A1 |
20040074869 | Wang et al. | Apr 2004 | A1 |
20040137169 | Carollo | Jul 2004 | A1 |
20050042881 | Nishimoto et al. | Feb 2005 | A1 |
20050183669 | Parkhe et al. | Aug 2005 | A1 |
20050191827 | Collins et al. | Sep 2005 | A1 |
20050213279 | Hayakawa | Sep 2005 | A1 |
20050274324 | Takahashi et al. | Dec 2005 | A1 |
20060005930 | Ikeda et al. | Jan 2006 | A1 |
20060011611 | Goto | Jan 2006 | A1 |
20060081558 | Collins et al. | Apr 2006 | A1 |
20060120011 | Handa et al. | Jun 2006 | A1 |
20060158821 | Miyashita | Jul 2006 | A1 |
20060237442 | Goto et al. | Oct 2006 | A1 |
20060280875 | Tomita et al. | Dec 2006 | A1 |
20070141729 | Dhindsa et al. | Jun 2007 | A1 |
20070223173 | Fujisawa | Sep 2007 | A1 |
20070253139 | Nakano et al. | Nov 2007 | A1 |
20070256786 | Zhou et al. | Nov 2007 | A1 |
20080009417 | Lou et al. | Jan 2008 | A1 |
20080029032 | Sun et al. | Feb 2008 | A1 |
20080037195 | Himori et al. | Feb 2008 | A1 |
20080062609 | Himori | Mar 2008 | A1 |
20080167720 | Melkent | Jul 2008 | A1 |
20080236493 | Sakao | Oct 2008 | A1 |
20080258411 | Miura et al. | Oct 2008 | A1 |
20090284894 | Cooke | Nov 2009 | A1 |
20090314208 | Zhou et al. | Dec 2009 | A1 |
20100039747 | Sansoni et al. | Feb 2010 | A1 |
20100104852 | Fletcher et al. | Apr 2010 | A1 |
20100126847 | Dhindsa et al. | May 2010 | A1 |
20100323124 | Vartabedian et al. | Dec 2010 | A1 |
20110031217 | Himori | Feb 2011 | A1 |
20110096461 | Yoshikawa et al. | Apr 2011 | A1 |
20120044609 | Cooke et al. | Feb 2012 | A1 |
20120164834 | Jennings | Jun 2012 | A1 |
20120247678 | Takahashi et al. | Oct 2012 | A1 |
20130070384 | Cooke et al. | Mar 2013 | A1 |
20130087447 | Bodke et al. | Apr 2013 | A1 |
20130126206 | Zhou et al. | May 2013 | A1 |
20130155569 | Suuronen et al. | Jun 2013 | A1 |
20140048720 | Hayakawa et al. | Feb 2014 | A1 |
20140087587 | Lind | Mar 2014 | A1 |
20140118880 | He et al. | May 2014 | A1 |
20140154465 | Sun et al. | Jun 2014 | A1 |
20140159325 | Parkhe et al. | Jun 2014 | A1 |
20140177123 | Thach et al. | Jun 2014 | A1 |
20140203526 | Banda et al. | Jul 2014 | A1 |
20140334060 | Parkhe et al. | Nov 2014 | A1 |
20140355169 | Maeta et al. | Dec 2014 | A1 |
20140356538 | Schmitt et al. | Dec 2014 | A1 |
20150044947 | Lu et al. | Feb 2015 | A1 |
20150116889 | Yamasaki et al. | Apr 2015 | A1 |
20150179412 | Chhatre et al. | Jun 2015 | A1 |
20150228528 | Behdjat | Aug 2015 | A1 |
20150241783 | Carcasi et al. | Aug 2015 | A1 |
20150311043 | Sun et al. | Oct 2015 | A1 |
20150311105 | Sadjadi et al. | Oct 2015 | A1 |
20150311108 | Horiuchi | Oct 2015 | A1 |
20150323050 | Ohno | Nov 2015 | A1 |
20150371876 | Terauchi et al. | Dec 2015 | A1 |
20160002779 | Lin | Jan 2016 | A1 |
20160064264 | Kulshreshtha et al. | Mar 2016 | A1 |
20160090650 | Qian et al. | Mar 2016 | A1 |
20160111315 | Parkhe | Apr 2016 | A1 |
20160196984 | Lill et al. | Jul 2016 | A1 |
20160281230 | Varadarajan et al. | Sep 2016 | A1 |
20160333475 | Gomm et al. | Nov 2016 | A1 |
20160336210 | Cooke et al. | Nov 2016 | A1 |
20160336213 | Gomm et al. | Nov 2016 | A1 |
20160340781 | Thomas et al. | Nov 2016 | A1 |
20160343600 | Parkhe | Nov 2016 | A1 |
20160372307 | Yang et al. | Dec 2016 | A1 |
20170018411 | Sriraman et al. | Jan 2017 | A1 |
20170040148 | Augustino et al. | Feb 2017 | A1 |
20170103908 | Lew et al. | Apr 2017 | A1 |
20170110358 | Sadjadi et al. | Apr 2017 | A1 |
20170110385 | Kawajiri et al. | Apr 2017 | A1 |
20170140970 | Boyd, Jr. et al. | May 2017 | A1 |
20170256431 | Parkhe | Sep 2017 | A1 |
20180025891 | Marakhtanov et al. | Jan 2018 | A1 |
20180061684 | Parkhe | Mar 2018 | A1 |
20180096869 | Yoshida et al. | Apr 2018 | A1 |
20180112311 | Fenwick et al. | Apr 2018 | A1 |
20180308738 | Tobe | Oct 2018 | A1 |
20180318890 | Yasseri et al. | Nov 2018 | A1 |
20180350568 | Mitsumori | Dec 2018 | A1 |
20180350649 | Gomm | Dec 2018 | A1 |
20190019713 | Hidaka et al. | Jan 2019 | A1 |
20190067076 | Zvokelj | Feb 2019 | A1 |
20190071778 | Thomas et al. | Mar 2019 | A1 |
20190115241 | Vellore et al. | Apr 2019 | A1 |
20190136373 | Yeh et al. | May 2019 | A1 |
20190157052 | Doan et al. | May 2019 | A1 |
20190218663 | Funakubo et al. | Jul 2019 | A1 |
20190221406 | Funakubo et al. | Jul 2019 | A1 |
20190237341 | Yu et al. | Aug 2019 | A1 |
20190237353 | Thomas et al. | Aug 2019 | A1 |
20190267268 | Abel et al. | Aug 2019 | A1 |
20190276366 | Sun et al. | Sep 2019 | A1 |
20190294050 | Topping et al. | Sep 2019 | A1 |
20190341289 | Parkhe | Nov 2019 | A1 |
20190355556 | Takahashi | Nov 2019 | A1 |
20200013590 | Liu et al. | Jan 2020 | A1 |
20200043703 | French et al. | Feb 2020 | A1 |
20200340102 | Kimura | Oct 2020 | A1 |
20210043490 | Vasquez et al. | Feb 2021 | A1 |
20210071300 | Bajaj et al. | Mar 2021 | A1 |
20210265138 | Ikeda | Aug 2021 | A1 |
20210333715 | Topping et al. | Oct 2021 | A1 |
20210340668 | Macpherson et al. | Nov 2021 | A1 |
20220044909 | French | Feb 2022 | A1 |
20220181127 | Erickson et al. | Jun 2022 | A1 |
20220415620 | Thomas et al. | Dec 2022 | A1 |
Number | Date | Country |
---|---|---|
101495670 | Jul 2009 | CN |
106148915 | Nov 2016 | CN |
106148916 | Nov 2016 | CN |
2015343 | Jan 2009 | EP |
H07201496 | Aug 1995 | JP |
H08154387 | Jun 1996 | JP |
H09176860 | Jul 1997 | JP |
H09213778 | Aug 1997 | JP |
2001237051 | Aug 2001 | JP |
2002512448 | Apr 2002 | JP |
2003124296 | Apr 2003 | JP |
2003160874 | Jun 2003 | JP |
2004095722 | Mar 2004 | JP |
2005018992 | Jan 2005 | JP |
2005072286 | Mar 2005 | JP |
2005347620 | Dec 2005 | JP |
2006302887 | Nov 2006 | JP |
4034145 | Jan 2008 | JP |
2008270197 | Nov 2008 | JP |
2009123929 | Jun 2009 | JP |
2009256789 | Nov 2009 | JP |
2010109316 | May 2010 | JP |
2011049428 | Mar 2011 | JP |
2011061040 | Mar 2011 | JP |
2014038928 | Feb 2014 | JP |
2014505362 | Feb 2014 | JP |
2014082449 | May 2014 | JP |
2016213456 | Dec 2016 | JP |
2016213463 | Dec 2016 | JP |
2017055100 | Mar 2017 | JP |
2017228526 | Dec 2017 | JP |
2018117024 | Jul 2018 | JP |
20050115940 | Dec 2005 | KR |
20060050341 | May 2006 | KR |
20080077202 | Aug 2008 | KR |
20090081717 | Jul 2009 | KR |
101333631 | Nov 2013 | KR |
20140097312 | Aug 2014 | KR |
101465640 | Nov 2014 | KR |
20150099400 | Aug 2015 | KR |
20160000400 | Jan 2016 | KR |
20160127717 | Nov 2016 | KR |
20170042359 | Apr 2017 | KR |
20170054239 | May 2017 | KR |
20180000291 | Jan 2018 | KR |
20180011711 | Feb 2018 | KR |
200402095 | Feb 2004 | TW |
201119524 | Jun 2011 | TW |
201525184 | Jul 2015 | TW |
201535453 | Sep 2015 | TW |
201535588 | Sep 2015 | TW |
WO-2010087385 | Aug 2010 | WO |
WO-2011099481 | Aug 2011 | WO |
WO-2012087737 | Jun 2012 | WO |
WO-2013162820 | Oct 2013 | WO |
WO-2014057771 | Apr 2014 | WO |
WO-2015105647 | Jul 2015 | WO |
Entry |
---|
European Extended Search Report dated Feb. 8, 2021 issued in Application No. EP 188093256. |
Final Office Action dated Apr. 30, 2020 issued in U.S. Appl. No. 15/612,423. |
Final Office Action dated Mar. 25, 2021 issued in U.S. Appl. No. 15/612,423. |
International Preliminary Report on Patentability dated Aug. 13, 2020 issued in Application No. PCT/US2019/015865. |
International Preliminary Report on Patentability dated Dec. 12, 2019 issued in Application No. PCT/US2018/034998. |
International Preliminary Report on Patentability dated Mar. 10, 2020 issued in Application No. PCT/US2018/049267. |
International Preliminary Report on Patentability dated Oct. 1, 2020 issued in Application No. PCT/US2019/022046. |
International Preliminary Report on Patentability dated Feb. 2, 2021, in Application No. PCT/US2019/044113. |
International Search Report and Written Opinion dated Jun. 28, 2019 issued in Application No. PCT/US2019/022046. |
International Search Report and Written Opinion dated May 17, 2019 issued in Application No. PCT/US2019/015865. |
International Search Report and Written Opinion dated Sep. 6, 2018 issued in Application No. PCT/US2018/034998. |
International Search Report and Written Opinion dated Dec. 19, 2019, in Application No. PCT/US2019/044113. |
JP Office Action dated Jun. 14, 2022, in Application No. JP2019-566224 With English Translation. |
JP Office Action dated Apr. 4, 2023, in Application No. JP2020-541696 with English translation. |
JP Office Action dated Oct. 18, 2022, in Application No. JP2019-566224 With English Translation. |
Korean Office Action dated Jun. 7, 2021 issued in Application No. KR 10-2021-0056493. |
KR Office Action and Search report dated Aug. 30, 2019 in Application No. KR10-2019-0073864 With English Translation. |
KR Office Action dated Sep. 28, 2022 in Application No. KR10-2021-7032163 with English translation. |
KR Office Action dated Apr. 6, 2022, in Application No. KR1020217032163 with English translation. |
KR Office Action dated Apr. 6, 2022, in Application No. KR1020217033272 with English translation. |
KR Office Action dated Apr. 6, 2022, in Application No. KR1020217033273 with English translation. |
KR Office Action dated Aug. 2, 2022 in Application No. KR10-2022-0034122 with English translation. |
KR Office Action dated Aug. 30, 2019 in Application No. 10-2019-0073864. |
KR Office Action dated Dec. 21, 2021, in Application No. KR10-2021-0056493 with English translation. |
KR Office Action dated Feb. 3, 2023 in Application No. KR10-2021-7032163 with English translation. |
KR Office Action dated Feb. 23, 2023 in Application No. KR10-2020-7000026 with English translation. |
KR Office Action dated Feb. 27, 2023, in Application No. KR10-2020-7025028 with English translation. |
KR Office Action dated Jan. 31, 2023 in Application No. KR10-2021-7033273 with English translation. |
KR Office Action dated Mar. 23, 2022, in Application No. KR 10-2019-7037514 with English Translation. |
KR Office Action dated May 6, 2022, in Application No. KR1020207000026. |
KR Office Action dated Sep. 25, 2022 in Application No. KR10-2020-7000026 with English translation. |
KR Office Action dated Sep. 26, 2022 in Application No. KR10-2021-7033273 with English translation. |
KR Office Action dated Sep. 27, 2022, in Application No. KR10-2021-7033272 with English translation. |
KR Search Report (no translation provided) dated Aug. 1, 2019, in Application No. 10-2019-0073864. |
Notice of Allowance dated Apr. 8, 2021 issued in U.S. Appl. No. 15/926,349. |
Notice of Allowance dated Nov. 24, 2021 issued in U.S. Appl. No. 15/612,423. |
Office Action dated Jan. 3, 2020 issued in U.S. Appl. No. 15/612,423. |
Office Action dated Oct. 16, 2020 issued in U.S. Appl. No. 15/926,349. |
Office Action dated Oct. 6, 2020 issued in U.S. Appl. No. 15/612,423. |
PCT International Search Report and Written Opinion of the International Searching Authority issued in corresponding International Patent Application No. PCT/US2018/049267 dated Dec. 26, 2018 (Forms PCT/ISA/220, 210, 237) (12 total pages). |
Schwartz, M., “Encyclopedia and Handbook of Materials, Parts, and Finishes”, 3rd Edition, Glass-Ceramics Taylor & Francis, 2016, 27 pages. |
SG Office Action dated Mar. 2, 2022, in Application No. SG11201911409S. |
Singapore Notice of Eligibility and Examination Report dated Mar. 2, 2022 issued in Application No. SG 11201911409S. |
Singapore Search Report and Written Opinion dated Feb. 2, 2021 issued in Application No. SG 11201911409S. |
TW Office Action dated Oct. 22, 2021, in application No. TW107118835 with English translation. |
TW Office Action dated Sep. 30, 2022 In Application No. TW107130798 with English translation. |
U.S. Advisory Action dated Feb. 6, 2023 in U.S. Appl. No. 17/369,694. |
U.S. Final Office Action dated Jan. 19, 2022 issued in U.S. Appl. No. 15/696,068. |
U.S. Final office Action dated Nov. 21, 2022 in U.S. Appl. No. 17/369,694. |
U.S. Final Office Action dated Sep. 14, 2020 issued in U.S. Appl. No. 15/696,068. |
U.S. Non-Final Office Action dated Jan. 19, 2023 in U.S. Appl. No. 16/966,833. |
U.S. Non-Final Office Action dated Jul. 28, 2022, in U.S. Appl. No. 17/369,694. |
U.S. Non-Final Office Action dated Mar. 7, 2023 in U.S. Appl. No. 17/369,694. |
U.S. Notice of Allowance dated Jun. 1, 2022 in U.S. Appl. No. 15/696,068. |
U.S. Notice of Allowance dated Jul. 23, 2021, issued in U.S. Appl. No. 16/052,877. |
U.S. Office Action dated Apr. 28, 2020 issued in U.S. Appl. No. 15/696,068. |
U.S. Office Action dated Jun. 30, 2021 issued in U.S. Appl. No. 15/696,068. |
U.S. Office Action dated Apr. 15, 2021, issued in U.S. Appl. No. 16/052,877. |
U.S. Restriction Requirement dated Jan. 24, 2020 in U.S. Appl. No. 15/696,068. |
KR Office Action dated Jul. 20, 2023, in application No. KR10-2023-0039502 with English translation. |
KR Office Action dated Jul. 21, 2023, in Application No. KR10-2022-7040239 with English Translation. |
KR Office Action dated May 16, 2023, in application No. KR10-2023-0039502 with English translation. |
KR Office Action dated Sep. 27, 2023, in application No. KR10-2020-7025028. |
Merriam-Webster Dictionary definition of “distal” retrieved from Merriam-Webster.com (Year: 2023). |
TW Office Action dated Aug. 18, 2023, in application No. TW107130798 with English translation. |
U.S. Corrected Notice of Allowance dated Sep. 27, 2023, in U.S. Appl. No. 17/369,694. |
U.S. Final office Action dated Aug. 7, 2023 in U.S. Appl. No. 16/966,833. |
U.S. Non-Final Office Action dated Sep. 25, 2023, in U.S. Appl. No. 17/823,744. |
U.S. Notice of Allowance dated Jul. 25, 2023 in U.S. Appl. No. 17/369,694. |
TW Office Action dated Aug. 15, 2023, in application No. TW111140610 with English translation. |
CN Office Action dated Feb. 28, 2023 in Application No. 201880057283.X with English translation. |
CN Office Action dated Mar. 18, 2023, in Application No. CN201880036474.8 with English translation. |
JP Office Action dated Jun. 13, 2023 in Application No. JP2021-505710 with English translation. |
KR Office Action dated Apr. 27, 2023 in Application No. KR10-2020-7030025 with English translation. |
KR Office Action dated Feb. 3, 2023 in Application No. KR10-2021-7033272 with English translation. |
KR Search Report dated Aug. 1, 2019, in Application No. 10-2019-0073864 with English translation. |
TW Office Action dated May 30, 2023, in application No. TW108126884 with English translation. |
Number | Date | Country | |
---|---|---|---|
20220181184 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15612423 | Jun 2017 | US |
Child | 17652243 | US |