The present invention relates to printed circuit boards and more particularly to printed circuit boards having a plurality of conductive pads for the attachment of an electronic package by means of solder balls.
An electronic package typically includes a circuitized substrate with one or more active devices attached thereon. The use of attach materials, such as an adhesive, is common in electronic packaging applications for attaching the devices to the substrate, particularly in Ball Grid Array (BGA) packages.
BGA packages are a relatively recent development in the electronic packaging industry, replacing current products such as Quad Flat Packs (QFP). The main difference is the connection system to the printed circuit board (PCB), also called second level attachment, that is made through eutectic tin-lead solder alloy balls arranged in a matrix layout on the bottom side of the BGA package, instead of metal leads placed along the peripheral corner of the plastic component body. BGA and QFP packages are described in “Circuits Assembly (USA)—Vol. 6, No. 3, March, 1995 pages 38-40”.
U.S. Pat. No. 5,574,801 discloses a method of inspecting an array of solder balls used as connections in integrated circuit modules. The method checks the deviation of the balls from a best fitting plane through the balls in order to ensure that the array is flat. If the array is not flat, then one or more of the balls may fail to make an electrical connection with the PCB.
In order to check that all of the electrical connections have been made between the balls and the PCB, the completed assembly may be inspected with the use of X-Rays. The size and location of the connections, especially those internally positioned, do not allow inspection with the naked eye. However, it can be very difficult to determine, when inspecting from above with X-Rays, whether a solder connection has formed successfully or not. A round dark image appears of the ball and corresponding circular pad whether or not a solder connection is made, making detection difficult.
One solution to this problem is to use X-Ray Laminography. An X-Ray Laminography machine can produce synthetic X-Ray sections through the connection, allowing the 3-dimensional shape to be assessed and a determination made as to whether a good solder connection has been made. However, such X-Ray Laminography equipment is relatively expensive.
It is believed, therefore, that an enhanced pad design for an electronic package in which a simple X-Ray process would readily identify those connections which have not been made, without recourse to an X-Ray Laminography machine, would represent a significant advancement in the art.
It is a primary object of the invention to enhance the art of electronic substrates and particularly those of the PCB variety.
It is another object to provide an enhanced conductor pad design for such a substrate which is especially adapted for receiving solder balls.
It is a still further object of the invention to provide such a substrate structure which can be produced economically and does not require complicated testing equipment or methods.
In one aspect of the invention, there is provided a substrate for the attachment of ball grid array electronic packages thereto by means of solder balls and a joining medium wherein connection is made between a contact on the ball grid array electronic package and a solder ball by means of a first joining medium and between a solder ball and a contact arranged on the substrate by means of a second joining medium and wherein the contact arranged on the substrate is substantially quadrilateral in shape.
According to another aspect of the invention, there is provided a method of attaching a ball grid array electronic package to a substrate comprising the steps of: applying a first joining medium to a plurality of contacts located on the ball grid array; locating a solder ball on each of the plurality of contacts of the ball grid array; heating the ball grid array to a temperature sufficient to join each of the solder balls to the corresponding contact on the ball grid array by means of the first joining medium; applying a second joining medium to a plurality of contacts located on the substrate; positioning the substrate and the ball grid array such that each of the solder balls is located adjacent its corresponding contact located on the substrate, the corresponding contact being substantially quadrilateral in shape; heating the ball grid array to a temperature sufficient to join each of the solder balls to the corresponding contact on the substrate by means of the second joining medium; and inspecting, by means of X-Ray, the connection formed between the ball grid array and the substrate.
Embodiments of the invention will now be described, by way of example, with reference to the accompanying drawings, in which:
For a ceramic BGA, the solder balls 106 have a higher melting point than the solder paste 104. The solder balls 106 are then reflow joined to the contacts 102 by applying a temperature high enough to melt the solder paste 104, but not high enough to melt the solder balls 106. A planar array of contacts 112 is also arranged on substrate 110. Each of the contacts 112 on substrate 110 corresponds to a contact 102 on substrate 100. Substrate 110 is typically a printed circuit board. A solder paste 114 is deposited on contacts 112.
For a plastic BGA, the above process is followed, except that the solder ball 106 melts and combines with the solder paste 104 to form a single complete ball.
The substrate 100 and the substrate 110 are brought together so that corresponding contacts on the two substrates are aligned. A temperature high enough to melt the solder paste 114, but not high enough to melt the solder balls 106, is then applied.
The above BGA module and printed circuit board, with connections successfully made, are now subjected to an X-Ray test to ensure that all the connections are satisfactory.
The BGA module and printed circuit board with its connections are now subjected to the aforementioned X-Ray test to ensure that all the connections are correctly made. The main purpose of this X-Ray test is two-fold: (1) to ensure that there are no short circuit connections; and (2) that none of the solder balls have been displaced from their intended position. When BGA modules and associated printed circuit boards are examined under X-Rays, any open circuit connections to the PCB are difficult to see as a uniform ball 106 is created over the round pad 112 of the PCB, such that all of the connections look round on the X-Ray, whether the connection has been formed or not formed.
In the present invention, the footprint of the contacts for Ball Grid Arrays on the printed circuit board is redesigned from being round such as is shown by 112 in
While there have been shown and described what are at present the preferred embodiments of the invention, it will be obvious to those skilled in the art that various changes and modifications may be made therein without departing from the scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
9826943 | Dec 1998 | GB | national |
This application is a divisional application of Ser. No. 09/452,259, filed Dec. 1, 1999. now U.S. Pat. No. 6,199,741.
Number | Name | Date | Kind |
---|---|---|---|
5147084 | Behun et al. | Sep 1992 | A |
5184768 | Hall et al. | Feb 1993 | A |
5489750 | Sakemi et al. | Feb 1996 | A |
5541449 | Crane et al. | Jul 1996 | A |
5574801 | Collet-Beillon | Nov 1996 | A |
5591941 | Acocella et al. | Jan 1997 | A |
5592562 | Rooks | Jan 1997 | A |
5675179 | Shu et al. | Oct 1997 | A |
5719952 | Rooks | Feb 1998 | A |
5828128 | Higashiguchi et al. | Oct 1998 | A |
5859474 | Dordi | Jan 1999 | A |
5891754 | Bowles et al. | Apr 1999 | A |
6046068 | Orava et al. | Apr 2000 | A |
6337445 | Abbott et al. | Jan 2002 | B1 |
6340113 | Avery et al. | Jan 2002 | B1 |
6678948 | Benzler et al. | Jan 2004 | B1 |
20010031868 | Saikali et al. | Oct 2001 | A1 |
20020053466 | Kusui | May 2002 | A1 |
Number | Date | Country |
---|---|---|
2 208 569 | Apr 1989 | GB |
2 283 863 | May 1995 | GB |
2 293 564 | Apr 1996 | GB |
9-219583 | Aug 1997 | JP |
11-4067 | Jan 1999 | JP |
11-233936 | Aug 1999 | JP |
2001-284789 | Oct 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20010010321 A1 | Aug 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09452259 | Dec 1999 | US |
Child | 09804534 | US |