Feedforward and feedback control for conditioning of chemical mechanical polishing pad

Information

  • Patent Grant
  • 7101799
  • Patent Number
    7,101,799
  • Date Filed
    Friday, November 30, 2001
    23 years ago
  • Date Issued
    Tuesday, September 5, 2006
    18 years ago
Abstract
A method, apparatus and medium of conditioning a planarizing surface includes installing a wafer to be polished in a chemical mechanical polishing (CMP) apparatus having a polishing pad and a conditioning disk, polishing the wafer under a first set of pad conditioning parameters selected to maintain wafer material removal rates with preselected minimum and maximum removal rates, determining a wafer material removal rate occurring during the polishing step, calculating updated pad conditioning parameters to maintain wafer material removal rates within the maximum and minimum removal rates, and conditioning the polishing pad using the updated pad conditioning parameters, wherein the updated pad conditioning parameters are calculated using a pad wear and conditioning model that predicts the wafer material removal rate of the polishing pad based upon pad conditioning parameters, such as the conditioning down force and rotational speed of the conditioning disk.
Description
FIELD OF THE INVENTION

The present invention generally relates to the area of polishing and methods for improving the life of polishing pads.


BACKGROUND OF THE INVENTION

Chemical-mechanical polishing (CMP) is used in semiconductor fabrication processes for obtaining full planarization of a semiconductor wafer. The method involves removing material (e.g., a sacrificial layer of surface material) from the wafer, (typically silicon dioxide (SiO2)) using mechanical contact and chemical erosion from (e.g., a moving polishing pad saturated with slurry). Polishing flattens out height differences, since areas of high topography (hills) are removed faster than areas of low topography (valleys). FIG. 1A shows a top view of a CMP machine 100 and FIG. 1B shows a side section view of the CMP machine 100 taken through line AA. The CMP machine 100 is fed wafers to be polished. Typically, the CMP machine 100 picks up a wafer 105 with an arm 101 and places it onto a rotating polishing pad 102. The polishing pad 102 is made of a resilient material and is often textured, to aid the polishing process. The polishing pad 102 rotates on a platen 104 or turn table located beneath the polishing pad 102 at a predetermined speed. The wafer 105 is held in place on the polishing pad 102 by the arm 101. The lower surface of the wafer 105 rests against the polishing pad 102. The upper surface of the wafer 105 is against the lower surface of the wafer carrier 106 of arm 101. As the polishing pad 102 rotates, the arm 101 rotates the wafer 105 at a predetermined rate. The arm 101 forces the wafer 105 into the polishing pad 102 with a predetermined amount of down force. The CMP machine 100 also includes a slurry dispense arm 107 extending across the radius of the polishing pad 102. The slurry dispense arm 107 dispenses a flow of slurry onto the polishing pad 102.


It is known that the material removal rate provided by a given polishing pad decreases exponentially with time in the manner shown in FIG. 2. As a consequence, the polishing pad must be conditioned (e.g., using a conditioning disk 108), between polishing cycles. Doing so roughens the surface of the pad and restores, at least temporarily, its original material removal rate. When the pad can no longer be reconditioned, it is replaced.


A problem with conventional conditioning methods is that they may over condition, e.g., wear out, the planarizing surface, and thus may reduce the pad life of the polishing pads. Because of variation in material removal rates from pad to pad, the CMP tool must be recalibrated to achieve a desired material removal rate each time a pad is changed. The production time lost during pad changes translates into processing delays and lost efficiency.


In an attempt to extend the life of the pad, various methods are reported for selectively conditioning a polishing pad, and for varying the down force of the conditioning element (e.g., conditioning disk 108) along the surface of the CMP pad based upon the likely or perceived distribution of unacceptable pad conditions across the planarizing surface. Other methods report varying the conditioning recipe across the surface of the polishing pad in response to polishing pad non-uniformity. However, these reported CMP processes are typically more concerned with improving the CMP process, e.g., improving within water non-uniformity, than in extending pad life.


Methods and devices that would extend pad life and therefore reduce the frequency of pad replacement offer significant cost savings to the wafer fabrication process.


SUMMARY OF THE INVENTION

The present invention relates to a method, apparatus and medium for conditioning a planarizing surface of a polishing pad in order to extend the working life of the pad. The present invention uses physical and chemical models (which can be implemented as a single model or multiple models) of the pad wear and planarization processes to predict polishing pad performance and to extend pad life. This results in an increase in the number of semiconductor wafer or other substrates that can be polished with a single polishing pad, thereby providing significant cost savings in the CMP process, both in reducing the number of pads needed and the time devoted to pad replacement.


The model predicts polishing effectiveness (wafer material removal rate) based on the “conditioning” operating parameters of the conditioning process. In at least some embodiments of the present invention, conditioning parameters include pressure (conditioning disk down force) and velocity (rotational speed of the conditioning disk), and can also include other factors, such as the frequency of conditioning, duration of conditioning and translational speed of conditioning disk across the pad surface. The model selects, and then maintains, polishing pad conditioning parameters within a range that does not overcondition the pad while providing acceptable wafer material removal rates. Thus the present invention provides a process for the feedforward and feedbackward control of the CMP polishing process. Although the invention is described herein with respect to the use of a disk, having an abrading of surface thereon, which is pushed against and moved with respect the pad, the techniques of the invention may be applied to other conditioning mechanisms.


In one aspect of the invention, a method of conditioning a planarizing surface is provided in a chemical mechanical polishing (CMP) apparatus having a polishing pad against which a wafer is positioned for removal of material therefrom and a conditioning disk is positioned for conditioning of the polishing pad. The method includes providing a pad wear and conditioning model that defines wafer material removal rate as a function of at least one pad conditioning parameters, said at least one conditioning parameter having maximum and minimum values, polishing a wafer in the CMP apparatus under a first set of pad conditioning parameters selected to maintain wafer material removal rates within preselected minimum and maximum removal rates, determining a wafer material removal rate occurring during said polishing step, calculating updated pad conditioning parameters based upon said determined wafer material removal rate of said step (c) and the pad wear and conditioning model to maintain wafer material removal rates within the maximum and minimum removal rates, and conditioning the polishing pad using the updated conditioning parameters.


In at least some embodiments, the method includes polishing a wafer in the CMP apparatus under a first set of pad conditioning parameters selected to maintain wafer material removal rates within preselected minimum and maximum removal rates (which conditioning occurs simultaneously with polishing in at least some embodiments of the present invention); determining a wafer material removal rate occurring during the polishing step; calculating, based upon the wafer material removal rate, updated pad conditioning parameters to maintain wafer material removal rates within the maximum and minimum removal rates; and conditioning the polishing pad using the updated pad conditioning parameters. In at least some embodiments the polishing step includes polishing of a wafer or it includes polishing of two or more wafers, i.e. a polishing cycle. The wafer material removal rates can be averaged or the last polished wafer material removal rate can be used in updating pad conditioning parameters.


The updated pad conditioning parameters are calculated using a pad wear and conditioning model by determining wafer material removal rate as a function of pad conditioning parameters including conditioning disk down force and velocity of the conditioning disk; and determining the difference between the calculated and measured wafer material removal rates and calculating updated pad conditioning parameters to reduce said difference, wherein the updated pad conditioning parameters are updated according to the equation, k=(k1)+g*(k−(k1)), where k is a measured wafer material removal rate, k1 is a calculated wafer material removal rate, g is the estimate gain, and (k−(k1)) is the prediction error.


In at least some embodiments, the first set of pad conditioning parameters are determined empirically, or using historical data, or using the results of the design of experiment (DOE), a set of experiments used to define the model.


In at least some embodiments, the pad conditioning parameters of the pad wear and conditioning model includes frequency of conditioning, or time of conditioning, or the translational speed (a speed of motion of the disk other than disk rotation) of the conditioning disk during conditioning.


In at least some embodiments, wafer material removal rate includes measuring the wafer thickness before and after polishing. Calculating updated pad conditioning may include executing a recursive optimization process.


In at least some embodiments, the gain, g, is a value used to indicate the variability or reliability in the measured parameter.


In at least some embodiments, pad life is defined according to the relationship:

PadLife=f(Fdiskdisk,tconditioning,f, T2),

where Fdisk is the down force applied by the conditioning disk to the CMP pad during conditioning, ωdisk is the angular velocity of the conditioning disk during conditioning of the polishing pad, t is the duration of conditioning, f is the frequency of condition and T2 is the sweep speed of the conditioning disk during conditioning.


In at least some embodiments, the wafer material removal rate is defined by the equation
RemovalRate]minmax=f(Fdisk]minmax,ωdisk]minmax,f]minmax,tconditioning]minmax,T2]minmax),

where Fdisk is the down force applied by the conditioning disk to the CMP pad during conditioning, ωdisk is the angular velocity of the conditioning disk during conditioning of the polishing pad, t is the duration of conditioning, f is the frequency of condition, and T2 is the sweep speed of the conditioning disk during conditioning. In at least some embodiments, the maximum value for wafer material removal rate is the saturation point of the wafer material removal rate vs. conditioning down force curve i.e., where increases in down force do not affect removal rate. In at least some embodiments, the minimum value for wafer material removal rate and hence minimum acceptable conditioning parameters is defined by the maximum acceptable wafer polishing time.


In at least some embodiments, the wafer material removal rate is determined according to the equation:

ŷiixi+Ii,

where ŷi is the wafer material removal rate for a conditioning parameter xi, ρi is the slope and Ii is the intercept of the curve of the defining the relationship between ŷi and xi where other factors that may affect wafer polishing are held constant.


In at least some embodiments, an updated pad conditioning parameter, xi+, is determined by solving the equation:
xi+=y^i+-Ii-WiWT·Δy^ρi,

where ŷi+ is the target wafer material removal rate, Wi is the weighing factor for conditioning parameter xi, and Δy is the prediction error for wafer material removal rate.


In at least some aspects of the invention, an apparatus for conditioning polishing pads used to planarize substrates by removal of material therefrom includes a carrier assembly having an arm positionable over a planarizing surface of a polishing pad; a conditioning disk attached to the carrier assembly; and an actuator capable of controlling an operating parameter of the conditioning disk; a controller operatively coupled to the actuator, the controller operating the actuator to adjust the operating parameter of the conditioning disk as a function of a pad wear and conditioning model that predicts the wafer material removal rate of the polishing pad based upon polishing pad and wafer parameters. The conditioning down force and rotational speed of the conditioning disk is predicted by a model by determining wafer material removal rate as a function of pad conditioning parameters including conditioning disk down force and conditioning disk rotation rate.


In at least some embodiments, the wafer material removal rate is determined according to the equation:

ŷiixi+Ii,

where ŷi is the wafer material removal rate for a conditioning parameter xi, ρi, is the slope and Ii is the intercept of the curve of the defining the relationship between ŷi and xi.


In at least some embodiments, the updated pad conditioning parameter, xi+, is determined by solving the equation:
xi+=y^i+-Ii-WiWT·Δy^ρi,

where ŷi+ is the target wafer material removal rate, Wi is the weighing factor for conditioning parameter xi, and Δy is the prediction error for wafer material removal rate.


Thus, polishing pad life is extended by using a more desirable conditioning disk down force and angular velocity while keeping within the acceptable range of wafer material removal rate and by adjusting the conditioning parameters whenever the removal rate drops below the acceptable removal rate. By applying a “one size fits all” approach to pad conditioning parameters (e.g., by determining conditioning parameters without accounting for a change in actual wafer material removal rates), conventional processes overcompensate, thereby removing more pad material than is necessary and accelerating pad wear. The invention thus provides more optimal conditioning parameters, i.e., only those forces necessary to recondition the damaged pad.





BRIEF DESCRIPTION OF THE FIGURES

Various objects, features, and advantages of the present invention can be more fully appreciated with reference to the following detailed description of the invention when considered in connection with the following drawings.



FIGS. 1A-B show a conventional CMP machine. FIG. 1A shows a top plan view of a conventional CMP machine. FIG. 1B shows a side sectional view of the prior art CMP machine from FIG. 1A taken through line A—A.



FIG. 2 shows the exponential decay of wafer material removal rate and the equilibrium state of the removal rate that occurs between FIGS. 3B and 3C.



FIGS. 3A-C show the chemical reactions that occur between a polishing pad and a polishing slurry. FIG. 3A generally shows the chemical structure of a polyurethane polishing pad and the ionic bonds that form between NCO groups. FIG. 3B generally shows how water forms ionic bonds with the polyurethane polishing pad by breaking down the ionic bonds between the NCO groups in the polyurethane composition. FIG. 3C generally shows how a silicon slurry forms hydrogen bonds with the water and the polyurethane polishing pad.



FIGS. 4A-C are cross-sectional diagrams of polishing pads. FIG. 4A is a diagram of a new polishing pad. FIG. 4B is a diagram of an old polishing pad. FIG. 4C shows how an old polishing pad can be refurbished for continued use.



FIG. 5 is a flow diagram of the feedback loop used in CMP process optimization.



FIG. 6 is a flow diagram illustrating data collection and generation of a pad wear and conditioning model.



FIG. 7 is a graph generally showing the wafer material removal rate in view of the pressure exerted by the conditioning disk on the polishing pad.



FIG. 8 is a graph generally showing the wafer material removal rate in view of the rotational speed exerted by the conditioning disk on the polishing pad.



FIG. 9 is a model based on FIGS. 7 and 8 for predicting and modulating the removal rate for the next wafer removal.



FIG. 10 is a side sectional view of a CMP machine for use in the method of at least some embodiments of the present invention.



FIG. 11 is a block diagram of a computer system that includes tool representation and access control for use in at least some embodiments of the invention.



FIG. 12 is an illustration of a floppy disk that may store various portions of the software according to at least some embodiments of the invention.





DETAILED DESCRIPTION OF THE INVENTION

Novel methods for feedforward and feedback controls of the CMP process for maximizing the life of the polishing pad are described herein. Extended pad life results in reduced down time for the CMP process because the polishing pad can polish more wafers over a longer period of time without requiring replacement or adjustment (e.g., removal of the pad). The term wafer is used in a general sense to include any substantially planar object that is subject to polishing. Wafers include, in additional to monolith structures, substrates having one or more layers or thin films deposited thereon.


Most CMP pad materials comprise urethane or other polymers, which softens when exposed to water. Chemical reactions relating to the pads, shown in FIGS. 3A, 3B and 3C, explain the process by which softening may occur. In particular, the isocyanate (NCO) groups in the urethane of a brand new pad are normally cross-linked through hydrogen bonding, as shown in FIG. 3A. As water from the polishing slurry contacts the pad, the water interrupts hydrogen bonding in the cross-linked urethane structure, and forms hydrogen bonds with the urethane, as shown in FIG. 3B. When water replaces the cross-linked urethane structure, the pad becomes softer. Moreover, the structure in FIG. 3B may react with the silica (SiO2) (from material removed from the polishing process) in the slurry to create additional hydrogen bonds with the NCO groups in the urethane pad, as shown in FIG. 3C. The pad becomes “poisoned” as a result of the silica chemically reacting with the urethane structure. As water evaporates from the slurry, the silica hardens the pad. The hydrogen bonding of the slurry component and the pad blocks the mean free path of slurry movement in the pad and decreases the active contact areas between the wafers and the pad, so that removal rate of the wafer and surface uniformity decreases in the resulting polished wafers. FIG. 2 shows that the removal rate decreases over time in view of the equilibrium that occurs in the chemical reactions shown in FIGS. 3B and 3C. Once equilibrium is reached, the pad poisoning will stop.



FIGS. 4A, 4B and 4C are simplified models showing pad conditioning. As shown in FIG. 4A, the height (or depth) 1 of the active pad sites 2 is assumed to be equivalent to the life of the pad 3. As the height 1 decreases, the expected further life of the pad 3 decreases. The poisoned areas 4 of the pad 3 in FIG. 4B occur at equilibrium, and are chemically represented by FIGS. 2B and 2C. The poisoned area 4 is generally physically removed, as shown in FIG. 4C, by pad conditioning, so that fresh, active sites 2 will again be exposed. The process shown in FIGS. 4A, 4B and 4C are repeated for the entire life cycle of the pad until no more active sites are available.


The chemical and mechanical processes described above during planarization and conditioning of the polishing pad provide a model for optimization of the planarization process. By using this model, the pad life can be extended without compromise to the wafer material removal rate by adjusting the conditioning parameters during wafer polishing. In particular, conditioning disk down forces (F) and conditioning disk rotational (or angular) velocity (rpm), and optionally other conditioning parameters, for example, conditioning frequency, disk translation speed, and duration of conditioning, are adjusted during the polishing operation in a feedback and feedforward loop that predicts and then optimizes pad conditioning operating parameters.


According to at least some embodiments of the present invention, an initial model is developed based upon knowledge of the wafer polishing process, and is used in at least some embodiments of the present invention, as is shown in a flow diagram (FIG. 5). Based on that initial model for a given wafer polishing recipe, e.g. the wafer and polishing pad parameters remain constant, initial processing conditions are identified that will provide a wafer material removal rate between a preselected minimum and maximum value for a given set of conditioning parameters, hereinafter, the “acceptable” range for wafer material removal rates. The conditions are selected to prevent overconditioning of the pad. In step 500, wafers are polished according to the given wafer polishing recipe using the initial pad conditioning parameters. The thickness of the polished wafer is measured and a wafer material removal rate is calculated in step 510, which information is then used in a feedback loop to maintain the wafer material removal rate within the accepted range. The actual removal rate is compared with the predicted removal rate (derived from the pad wear model). Deviations, i.e., prediction errors, are used to calculate pad conditioning parameters in step 520 according to the model of the invention to compensate for the reduced polishing capability of the polishing pad as identified in the model and/or to correct for any unmodeled effects. The polishing pad is conditioned according to the updated conditioning parameters in step 530. Polishing is repeated in step 540 and the polishing results are used to further update the polishing conditions by repeating steps 510-530.


By maintaining the wafer material removal rate and conditioning parameters within the preselected minimum and maximum range, overconditioning of the pad is prevented, that is, conditioning parameters are sufficient to restore polishing pad effectiveness, but do not unduly damage the pad. In operation, it may be desirable to select pad conditioning parameters that result in wafer material removal rates that are close to the minimum acceptable rates, as these conditioning forces are less aggressive and therefore are more likely to avoid overconditioning of the polishing pad. However, one should be cautious (or at least cognizant) about operating too closely to the minimum removal rate since a sudden degradation in the pad condition may cause the wafer material removal rate to drop below the minimum acceptable rate.


As indicated previously, conventional art CMP processes do not change the conditioning down force (i.e., the pressure exerted by the conditioning disk on the pad) or the rotational speed uniformly across the surface, e.g., from conditioning event to conditioning event, where a single conditioning event can be, e.g., the conditioning of the entire polishing pad or a portion of the polishing pad that is in contact with the wafer during polishing. By applying a “one size fits all” approach to pad conditioning parameters, the conventional processes overcompensate, thereby removing more pad material than is necessary and accelerating pad wear. The invention thus provides far more optimal conditioning parameters.


Pad conditioning optimization is carried out with reference to a specific polishing system. That is, the conditions which improve pad lifetime are specific to the type of wafer being polished, the slurry used in polishing and the composition of the polishing pad. Once a wafer/slurry/polishing pad system is identified, the system is characterized using the models developed and as discussed herein. Exemplary polishing pad and wafer parameters include polishing pad size, polishing pad composition, slurry composition, wafer composition, rotational velocity of the polishing pad, polishing pad pressure and rotational and translational velocity of the wafer.


In at least some embodiments of the present invention, it is envisioned that a separate model (or at least a supplement to a composite model) is created for each slurry/polishing pad wafer combination (i.e., for each different type/brand of slurry and each type/brand of pad that may be used in production with a given type of wafer).



FIG. 6 shows a flow diagram of the steps used in developing the pad wear and conditioning model in at least some of the embodiments of the invention. In a first step 600 of the model development as contemplated by at least some embodiments of the present invention, the relationship between wafer material removal rate and a first conditioning parameter x1, e.g., conditioning disk down force (Fdisk), is determined in the selected polishing system. The relationship is determined by measuring wafer material removal rates at different conditioning down forces with wafer parameters such as polishing force, polishing duration, etc., held constant. Thus, a wafer may be polished under specified conditions, e.g., for a specified time and at specified polishing pad and wafer speeds and the rate of material removal may be determined. Pad conditioning and wafer polishing (the “polishing event”) may be carried out simultaneously, i.e., using an apparatus such as shown in FIG. 10, or pad conditioning may be followed by wafer polishing. The conditioning down force is increased incrementally from wafer to wafer (or thickness measurement to thickness measurement) with all other parameters held constant, and the wafer removal rate is again determined. A curve as shown in FIG. 7 is generated, which illustrates the effect of the conditioning disk down force on the wafer's material removal rate for a given polishing system (all other parameters being held constant).


With reference to FIG. 7, in a first portion of the curve 700, the slope exhibits a linear response to a change in down force and is characterized by the angle θ1. The value for θ1 is descriptive of the response of the polishing process to conditioning down force. The larger the value for θ1, the steeper the slope of the curve and the more sensitive the planarization process is to conditioning down force. In a second region of the curve 720, the curve flattens and becomes substantially non-responsive to increases in conditioning down force. This is referred to as the saturation point. The onset of saturation is described by the angle θ2. The larger the value for θ2, the more gradual the onset of saturation (poisoning).


Minimum and maximum values for the model variables are determined in step 610 of FIG. 6. The saturation point identifies the maximum (or substantially the maximum) removal rate for this polishing system where all other polishing parameters are held constant. It likewise identifies a maximum conditioning down force, since additional pressure overconditions the pad and does not substantially improve polishing rate. A minimum material removal rate is dictated by production goals, since a minimal wafer throughput rate is needed. Thus the minimal conditioning down force is also defined based on throughput. Once minimum and maximum values for conditioning down force are defined, the range is divided into n steps, e.g. n equal steps, which encompass the acceptable working range for conditioning down forces. The value for n is selected so that a step in value, e.g., from x to x+1, is meaningful, for use in updating model parameters in a feedback control algorithm.


In step 620, as contemplated by at least some embodiments of the present invention, the relationship between wafer material removal rate and a second conditioning parameter x2, e.g., conditioning disk rotational velocity, is determined in the same polishing system in the manner described above for conditioning down force. With reference to FIG. 8, a curve can be generated to illustrate the effect of the pad rotation velocity on the wafer material removal rate (all other parameters held constant). Again, the applied rotation velocity is increased incrementally and the wafer material removal rate is measured for each polishing event. The region 800 exhibits a linear response to a change in pad rotation velocity and is characterized by the angle θ3. In region 820, the curve flattens and becomes substantially non-responsive to increases in rotational rate. This is referred to as the saturation point and is described by the angle θ4. In step 630 of FIG. 6, the maximum wafer material removal rate and maximum rotational rate are defined by the saturation point for this polishing system, where all other polishing parameters are held constant. The minimum rotation rate is determined by the production-established minimum wafer material removal rate, e.g., it is based on a through put consideration. As above for conditioning down forces, the acceptable range for disk rotational velocity may be divided into m steps, e.g. of equal value, for use in updating model parameters in a feedback control algorithm.


The models provide maximum and minimum wafer material removal rates, maximum and minimum pad down forces, and maximum and minimum pad rotational rates. In addition, values for constants θ14 are determined. Although the above designs of experiment show a conditioning parameter that demonstrates an increase in wafer removal rate with increase in magnitude of the parameter, it is understood that the opposite relationship can exist, so that the minimal parameter value produces the maximum wafer removal rate. The models can be adjusted accordingly. Maximum and minimum conditions may be determined for any combination of polishing pad, wafer and polishing slurry known in the art. Additional pad conditioning parameters, up to xI, may be included in the model and their minimum and maximum values determined as indicated by steps 640 and 650.


The model can be represented as raw data that reflects the system, or it can be represented by equations, for example multiple input-multiple output linear, quadratic and non-linear equations, which describe the relationship among the variables of the system. Feedback and feedforward control algorithms can be constructed in step 660 based on the above models using various methods. The algorithms can be used to optimize parameters using various methods, such as recursive parameter estimation. Recursive parameter estimation is used in situations such as these, where it is desirable to model on line at the same time as the input-output data is received. Recursive parameter estimation is well-suited for making decisions on line, such as adaptive control or adaptive predictions. For more details about the algorithms and theories of identification, see Ljung L., System Identification—Theory for the User, Prentice Hall, Upper Saddle River, N.J. 2nd edition, 1999.


The wear and reconditioning of the polishing pad may be modeled by eq. 1:

PadLife=f(Fdiskdisk,tconditioning,f, T2)  (1)

where Fdisk is the down force applied by the conditioning disk to the polishing pad during conditioning, ωdisk is the angular velocity (rotational speed, e.g., rpm) of the conditioning disk during conditioning of the polishing pad, t is the conditioning time, and f is frequency of conditioning, and T2 is the sweeping speed of the conditioning holder as shown in the example CMP device of FIG. 10 (which will also be described in greater detail below). The pad may be conditioned in a separate step or while the wafer is polished, as is shown in FIG. 10. Frequency is measured as the interval, e.g., number of wafers polished, between conditioning events. For example, a frequency of 1 means that the pad is conditioned after every wafer, while a frequency of 3 means that the pad is conditioned after every third wafer. The sweeping speed is the speed at which the conditioning disk moves across the surface of the polishing pad. The motion is indicated by arrow T2 in FIG. 10. For the purposes of initial investigation, it is assumed in at least some embodiments of the present invention that t (time), T2 (sweep speed), and f (frequency) are held constant.


In at least some embodiments of the present invention, the wafer material removal rate is modeled according to eq. 2:
RemovalRate]minmax=f(Fdisk]minmax,ωdisk]minmax,f]minmax,tconditioning,θ1,θ2,θ3,θ4,T2)(2)

where Fdisk, ωdisk, f, tconditioning, T2, θ1, θ2, θ3, θ4 are defined above. The objective function is to maintain removal rates within the minimum and maximum allowable rates (the “acceptable rates”) by controlling the conditioning disk down forces, the rpm of the disk and, optionally, by controlling other factors such as frequency and duration of conditioning, and speed of translation of the conditioning disk across the pad surface, T2.


The CMP parameters (variables) and constants from the model may then be programmed into a computer, which may then constantly monitor and appropriately vary the parameters during the process to improve the wafer material removal rate and the pad life, as shown in FIG. 9. Parameters from the base study 901 are input into the computer or other controller 902, which runs the wafer polishing process, and the estimator 903, which monitors and modifies the process parameters. The actual output (i.e., measured removal rate) 904 is monitored and compared to the predicted output (i.e., target removal rate) 905 calculated by estimator 903. The difference 906 between the actual output 904 and the predicted output 905 is determined and reported 907 to the estimator 903, which then appropriately generates updated parameters 908 for the process 902. Updating model parameters for feedback control is based on eq. 3.

k=(k1)+g*(k−(k1)),  (3)

where k is a current parameter, k, is previous parameter estimate, g is the estimate gain and (k−(k1)) is the prediction error. Estimate gain is a constant selected by the user, which is a measure of machine error or variability. Gain factor may be determined empirically or by using statistical methods.


By way of example, a series of curves may be generated for a polishing system of interest as described above for determining the relationship between wafer material removal rate and conditioning down force and conditioning disk rotational velocity. Curves are generated using a standard polishing procedure, with all polishing pad and wafer conditions held constant with the exception of the parameter(s) under investigation. Exemplary polishing pad and wafer parameters that are held constant include polishing pad size, polishing pad composition, wafer composition, polishing time, polishing force, rotational velocity of the polishing pad, and rotational velocity of the wafer. The parameters under investigation include at least the conditioning down force and the angular velocity of the conditioning disk. As is shown in greater detail in the analysis that follows, additional parameters may be incorporated into the model. Using curves generated as in FIGS. 7 and 8 and model development as shown in FIG. 6, values for θ14, minimum and maximum values for wafer material removal rate, conditional down force and conditioning disk rotational velocity are determined. An algorithm that models the wafer planarization is defined, and a first set of pad conditioning parameters may be determined for the polishing system of interest either empirically, using historical data or from the model.


An algorithm which models the pad wear and pad recovery process is input into the estimator and a predicted wafer material removal rate is calculated based upon the model. The actual results are compared against the predicted results and the error of prediction is fed back into the estimator to refine the model. New conditioning parameters are then determined. Based upon the models described herein, these parameters are just sufficient to reactivate the pad surface without overconditioning. Thus, the smallest increment in conditioning parameters that meet the model criteria is selected for the updated conditioning parameters. Subsequent evaluation of the updated model will determine how good is the fit, and further modifications can be made, if necessary, until the process is optimized.


In at least some embodiments of the present invention, the conditioning parameters are updated in discrete increments or steps, defined by way of example, by the incremental curves shown in FIGS. 7 and 8. A suitable number of curves are generated so that steps are small enough to permit minor adjustments to the conditioning parameters.


Also, in at least some embodiments of the present invention, the updated conditioning parameters may be determined by interpolation to the appropriate parameters, which may lie between curves. Interpolation may be appropriate in those instances where a fewer number of curves are initially generated and the experimental results do not provide a fine resolution of the parameters.


While deviations from the predicted rate reflects, in part, the inability of the model to account for all factors contributing to the process (this may be improved with subsequent iterations of the feedback process), deviations from the predicted wafer material removal rate over time represent a degradation in CMP pad polishing. By identifying and modifying the pad conditioning process to account for these temporal changes in polishing performance, optimal wafer material removal rates are maintained without overconditioning of the condition pads, e.g., by operating below the saturation point of the system.


An additional feature of the method is the use of gain factor to qualify the prediction error, as shown in eq. 3. Thus, the method suggests that the model need not correct for 100% of the deviation from predicted value. A gain factor may be used to reflect uncertainty in the measured or calculated parameters, or to “damp” the effect of changing parameters too quickly or to a too great an extent. It is possible, for example, for the model to overcompensate for the prediction error, thereby necessitating another adjustment to react to the overcompensation. This leads to an optimization process that is jumpy and takes several iterations before the optimized conditions are realized. Use of a gain factor in updating the parameters for feedback control qualifies the extent to which the model will react to the prediction error.


Once the basic system is understood and optimized, it is possible to empirically vary other conditioning operating parameters and access their impact on pad conditioning and wafer polishing. A parameter, which had been set to a constant value in the initial study, can be increased (or decreased). The system is monitored to determine the effect this change has on the system. It should be readily apparent that other factors relevant to pad wear and conditioning may be evaluated in this manner. For example, conditioning frequency, which may be set to 1 in the initial study, may be increased to 2 (every second wafer), 3 (every third wafer), etc. The system is monitored to determine where degradation starts and the process can be backed off to just before this point. The greater the interval between conditioning events, the longer the pad lifetime. Maximizing this interval without loss of polishing quality is contemplated as a feature of the method of the invention.


It should be readily apparent that other factors relevant to pad wear and conditioning may be evaluated in this manner, either empirically or by mathematical modeling. By way of example, conditioning time (residence time of the disk on the pad), conditioning disk translational speed, and the like may be investigated in this manner.


It is envisioned that at least some embodiments of the present invention may be practiced using a device 1000 such as the one shown in FIG. 10. The apparatus has a conditioning system 1010 including a carrier assembly 1020, a conditioning disk 1030 attached to the carrier assembly, and a controller 1040 operatively coupled to the carrier assembly to control the down force (F) and rotation rate (ω) of the conditioning disk. The carrier assembly may have an arm 1050 to which the conditioning disk 1030 is attached and means 1060a-d to move the conditioning disk in and out of contact with the planarizing surface. For example, the controller 1040 may be operatively coupled to the moving means to adjust the height and position of the arm carrying the conditioning disk (1060a, 1060b, 1060c, 1060d). Similar controls for control of the position and movement of the wafer may also be present. In operation, the controller adjusts the operating parameters of the conditioning disk, e.g., down force and rotation rate, in response to changes in wafer material removal rate. The controller may be computer controlled to automatically provide conditioning according to the calculated conditioning recipe. Thus, the apparatus provides a means for selectively varying the pad conditioning parameters over the operating life of the pad 1080 in order to extend pad life without compromise to the planarization process of the wafer 1090. Other types of devices where, e.g., other components have their height, positions, and/or rotations adjusted are also contemplated by at least some embodiments of the present invention.


Additional apparatus utilized to implement the feedforward and feedback loop include a film thickness measurement tool to provide thickness data needed to calculate wafer material removal rate. The tool may be positioned on the polishing apparatus so as to provide in-line, in situ measurements, or it may be located remote from the polishing apparatus. The tool may use optical, electrical, acoustic or mechanical measurements methods. A suitable thickness measurement device is available from Nanometrics (Milpitas, Calif.) or Nova Measuring Instruments (Phoenix, Ariz.). A computer may be utilized to calculate the optimal pad conditioning recipe based upon the measured film thickness and calculated removal rate, employing the models and algorithm provided according to the invention. A suitable integrated controller and polishing apparatus (Mirra with iAPC or Mirra Mesa with iAPC) is available from Applied Materials, California.


Exemplary semiconductor wafers that can be polished using the concepts discussed herein including, but are not limited to those made of silicon, tungsten, aluminum, copper, BPSG, USG, thermal oxide, silicon-related films, and low k dielectrics and mixtures thereof.


The invention may be practiced using any number of different types of conventional CMP polishing pads. There are numerous polishing pads in the art which are generally made of urethane or other polymers. However, any pad which can be reconditioned can be evaluated and optimized using the invention herein. Exemplary polishing pads include Epic™ polishing pads (Cabot Microelectronics Corporation, Aurora Ill.) and Rodel® IC 1000, IC1010, IC1400 polishing pads (Rodel Corporation, Newark, Del.), OXP series polishing pads (Sycamore Pad), Thomas West Pad 711, 813, 815, 815-Ultra, 817, 826, 828, 828-E1 (Thomas West).


Furthermore, any number of different types of slurry can be used in the methods of the invention. There are numerous CMP polishing slurries in the art, which are generally made to polish specific types of metals in semiconductor wafers. Exemplary slurries include Semi-Sperse® (available as Semi-Sperse® 12, Semi-Sperse® 25, Semi-Sperse® D7000, Semi-Sperse® D7100, Semi-Sperse® D7300, Semi-Sperse® P1000, Semi-Sperse® W2000, and Semi-Sperse® W2585) (Cabot Microelectronics Corporation, Aurora Ill.), Rodel ILD1300, Klebesol series, Elexsol , MSW1500, MSW2000 series, CUS series and PTS (Rodel).


An example of the algorithm for calculating the conditioning recipe from wafer material removal rate data may be defined as:

ŷiixi+Ii,  (4)

where ŷi is the wafer material removal rate for the conditioning parameter xi, ρi is the slope and Ii is the intercept of the curve of the defining the relationship between ŷi and xi. Letting X1=Fdisk, x2disk, x3=f, x4=tconditioning, and x5=T2, the following relationships may be established from the model:

ŷ11x1+I1 for N1≦x1≦Ni+k;  (5)
ŷ22x2+I2 for Nj≦x2≦Nj+k;  (6)
ŷ33x3+I3 for Nk≦x3≦Nk+k;  (7)
ŷ44x4+I4 for Nl≦x4≦Nl+k;  (8)
ŷ55x5+I5 for Nm≦x5≦Nm+k;  (9)

where ŷ is the predicted removal rate, ρ is the slope and I is the intercept in each equation. N and N+ represent the upper and lower boundary conditions for a particular pad conditioning parameter. Models of the invention may include all or a subset of these pad conditioning parameters.


Each of the pad conditioning factors contributing to wafer material removal rate may be combined in a single equation, which defines the weighted contribution of each factor to the wafer material removal rate. The wafer material removal rate may be defined by eq. 10,

ŷ=W1ŷ1+W2ŷ2+W3ŷ3+W4ŷ4+W5ŷ5.  (10)

where Wi is a weighing factor and WT=W1+W2+W3+W4+W5. The weighing factors are determined by minimizing any penalties, e.g., materials defects, nonuniformity of deposition, etc., that are associated with xi for satisfying ŷ in eq. 10. The penalty function may be determined empirically or by using historical data.


The prediction error for wafer material removal rate, Δŷ, is the difference between the predicted removal rate, ŷ, and the measured removal rate, y, shown in eq. 11.

Δŷ=y−ŷ  (11)


The prediction error is used to generate an updated wafer material removal rate, ŷ1+.


The new predictor based upon the feedback eq. 12 will be:
y^i+=iρixi+iIi+iWiWT·Δy^,(12)

and optimized parameter xi+ is determined by eq. 13.
xi+=y^i+-Ii-WiWT·Δy^ρi,(13)

where ŷi+ is the target wafer material removal rate.


The optimized parameters are used to update the new CMP polishing recipe that is sent to the tool for use in subsequent polishing steps. Thus, the model is able to adapt as more data is received to improve the process without any external control over the process.


The present invention is described above under conditions where wafer polishing parameters are held constant. However, the methodology can also be used together with an optimization engine when the wafer polishing parameters are changing through an optimization engine.


In at least some embodiments, pad conditioning optimization may be carried out together with optimization of wafer polishing. This can be accomplished through optimization by having the optimization search engine's objective function minimize a function that describes both polishing and conditioning parameters.


Assuming n number of polishing parameters to be changed during the wafer polishing, N1, N2, N3 . . . Nn, and y number of control parameters, Y1, Y2 , . . . Yy, then

S=N1(N1previous−N1current)2+WN2(N2previous−N2current) 2+. . . WNn(Nnprevious
Nncurrent)+WF(Fprevious−Fcurrent)2+Wωprevious−ωcurrent) 2+WY1(Y1previous
Y1current)2+WY2(Y2previous−Y2current)2+WYy(Yyprevious−Yycurrent)2,

where Wx is a weighing factor for parameter x (e.g., N1, N2, Y1, Y1, F, etc.), F is the conditioning down force and ω is the pad rotational velocity. Other pad conditioning parameters can be included in the function. The optimization process then seeks to minimize S. Thus, the method of the present invention can be used under conditions when the polishing parameters are held constant or when the polishing parameters are to be changed through optimization.


Various aspects of the present invention that can be controlled by a computer, including computer or other controller 902, can be (and/or be controlled by) any number of control/computer entities, including the one shown in FIG. 11. Referring to FIG. 11 a bus 1156 serves as the main information highway interconnecting the other components of system 1111. CPU 1158 is the central processing unit of the system, performing calculations and logic operations required to execute the processes of embodiments of the present invention as well as other programs. Read only memory (ROM) 1160 and random access memory (RAM) 1162 constitute the main memory of the system. Disk controller 1164 interfaces one or more disk drives to the system bus 1156. These disk drives are, for example, floppy disk drives 1170, or CD ROM or DVD (digital video disks) drives 1166, or internal or external hard drives 1168. These various disk drives and disk controllers are optional devices.


A display interface 1172 interfaces display 1148 and permits information from the bus 1156 to be displayed on display 1148. Display 1148 can be used in displaying a graphical user interface. Communications with external devices such as the other components of the system described above can occur utilizing, for example, communication port 1174. Optical fibers and/or electrical cables and/or conductors and/or optical communication (e.g., infrared, and the like) and/or wireless communication (e.g., radio frequency (RF), and the like) can be used as the transport medium between the external devices and communication port 1174. Peripheral interface 1154 interfaces the keyboard 1150 and mouse 1152, permitting input data to be transmitted to bus 1156. In addition to these components, system 1111 also optionally includes an infrared transmitter and/or infrared receiver. Infrared transmitters are optionally utilized when the computer system is used in conjunction with one or more of the processing components/stations that transmits/receives data via infrared signal transmission. Instead of utilizing an infrared transmitter or infrared receiver, the computer system may also optionally use a low power radio transmitter 1180 and/or a low power radio receiver 1182. The low power radio transmitter transmits the signal for reception by components of the production process, and receives signals from the components via the low power radio receiver. The low power radio transmitter and/or receiver are standard devices in industry.


Although system 1111 in FIG. 11 is illustrated having a single processor, a single hard disk drive and a single local memory, system 1111 is optionally suitably equipped with any multitude or combination of processors or storage devices. For example, system 1111 may be replaced by, or combined with, any suitable processing system operative in accordance with the principles of embodiments of the present invention, including sophisticated calculators, and hand-held, laptop/notebook, mini, mainframe and super computers, as well as processing system network combinations of the same.



FIG. 12 is an illustration of an exemplary computer readable memory medium 1284 utilizable for storing computer readable code or instructions. As one example, medium 1284 may be used with disk drives illustrated in FIG. 11. Typically, memory media such as floppy disks, or a CD ROM, or a digital video disk will contain, for example, a multi-byte locale for a single byte language and the program information for controlling the above system to enable the computer to perform the functions described herein. Alternatively, ROM 1160 and/or RAM 1162 illustrated in FIG. 11 can also be used to store the program information that is used to instruct the central processing unit 1158 to perform the operations associated with the instant processes. Other examples of suitable computer readable media for storing information include magnetic, electronic, or optical (including holographic) storage, some combination thereof, etc. In addition, at least some embodiments of the present invention contemplate that the medium can be in the form of a transmission (e.g., digital or propagated signals).


In general, it should be emphasized that the various components of embodiments of the present invention can be implemented in hardware, software or a combination thereof. In such embodiments, the various components and steps would be implemented in hardware and/or software to perform the functions of the present invention. Any presently available or future developed computer software language and/or hardware components can be employed in such embodiments of the present invention. For example, at least some of the functionality mentioned above could be implemented using the C, C++, or any assembly language appropriate in view of the processor(s) being used. It could also be written in an interpretive environment such as Java and transported to multiple destinations to various users.


Although various embodiments which incorporate the teachings of the present invention have been shown and described in detail herein, those skilled in the art can readily devise many other varied embodiments that incorporate these teachings.

Claims
  • 1. A method of conditioning a planarizing surface in a chemical mechanical polishing (CMP) apparatus having a polishing pad against which a wafer is positioned for removal of material therefrom and a conditioning disk is positioned for conditioning of the polishing pad, comprising the steps of: a) providing a pad wear and conditioning model that defines wafer material removal rate as a function of at least one pad conditioning parameter, said at least one conditioning parameter having maximum and minimum values; b) polishing a wafer in the CMP apparatus under a first set of pad conditioning parameters selected to maintain wafer material removal rates within preselected minimum and maximum removal rates; c) determining a wafer material removal rate occurring during said polishing step; d) calculating at least one updated pad conditioning parameters based upon said determined wafer material removal rate of said step (c) and the pad wear and conditioning model to maintain wafer material removal rates within the maximum and minimum removal rates; and e) conditioning the polishing pad using at least one the updated conditioning parameters.
  • 2. The method of claim 1, wherein the conditioning parameters comprise conditioning down force.
  • 3. The method of claim 2, wherein the conditioning parameters comprise rotational velocity of the conditioning disk.
  • 4. The method of claim 2, wherein the conditioning parameters comprise one or more parameters selected from the group consisting of rotational velocity of the disk, frequency of conditioning, duration of conditioning and translational speed of the conditioning disk.
  • 5. The method of claim 1, wherein the step of calculating updated conditioning parameters includes calculating parameters such that the parameter is within the determined minimum and maximum values.
  • 6. The method of claim 1, wherein the updated pad conditioning parameters are calculated by determining the difference between an output of the pad wear and conditioning model and said determined wafer material removal of step (c).
  • 7. The method of claim 6, wherein said difference is adjusted using an estimate gain prior to calculating updated conditioning parameters.
  • 8. The method of claim 1, wherein the updated pad conditioning parameters are updated according to the equation k=(k1)+g*(k−(k1)),where k is a measured wafer material removal rate, k1, is a calculated wafer material removal rate, g is the estimate gain, and (k−(k1)) is the prediction error.
  • 9. The method of claim 1, wherein the steps (b) through (e) are repeated.
  • 10. The method of claim 1, wherein the first set of pad conditioning parameters are determined empirically.
  • 11. The method of claim 1, wherein the first set of pad conditioning parameters are determined using historical data.
  • 12. The method of claim 1, wherein the first set of pad conditioning parameters are determined using the results of a design of experiment (DOE) used to develop the model.
  • 13. The method of claim 1, wherein the maximum value for wafer material removal rate is the saturation point of the wafer material removal rate vs. conditioning down force curve.
  • 14. The method of claim 1, wherein the minimum value for wafer material removal rate is defined by the maximum acceptable wafer polishing time.
  • 15. The method of claim 1, wherein the step of calculating updated pad conditioning parameters in step (d) comprises executing a recursive optimization process.
  • 16. The method of claim 7, wherein the estimate gain is an indication of variability or reliability in the measured parameter.
  • 17. The method of claim 1, wherein pad life is defined according to the equation: PadLife=f(Fdisk, ωdisk, tconditioning, f, T2),
  • 18. The method of claim 1, wherein the wafer material removal rate is defined by the equation  RemovalRate]minmax=f(Fdisk]minmax, ωdisk]minmax, f]minmax, tconditioning]minmax, T2]minmax),
  • 19. The method of claim 1, wherein the wafer material removal rate is determined according to the equation: ŷi=pixi+Ii,
  • 20. The method of claim 19, wherein the updated pad conditioning parameter, xi+, is determined by solving the equation: xi+=y^i+-Ii-WiWT·Δ⁢ ⁢y^ρi,
  • 21. A method of developing a pad wear and pad conditioning model for optimization of the pad conditioning, comprising the steps of: determining the relationship between at least one pad conditioning parameter and wafer material removal rate; determining maximum and minimum values for each of the at least one pad conditioning parameters and the wafer material removal rate; and recording the relationships and minimum and maximum values of the at least one pad conditioning parameter and the wafer removal rate.
  • 22. The method of claim 21, wherein the at least one pad conditioning parameter comprises a plurality of parameters and the wafer removal rate is defined as a weighted function of the plurality of pad conditioning parameters.
  • 23. The method of claim 21, wherein the at least one pad conditioning parameters comprises conditioning disk down force.
  • 24. The method of claim 23, wherein the at least one pad conditioning parameter further comprises conditioning disk rotational rate.
  • 25. The method of claim 21, where the at least one pad conditioning parameter comprises one or more parameters selected from the group consisting of conditioning disk down force, conditioning disk rotational rate, frequency of conditioning, and conditioning disk translational speed.
  • 26. The method of claim 21, wherein the relationship between the at least one conditioning parameter and wafer removal rate is determined by incrementally varying the conditioning parameter and measuring the resultant wafer removal rate.
  • 27. The method of claim 21, wherein the maximum value for the conditioning parameter is the value above which no incremental increase of the wafer removal rate is observed.
  • 28. The method of claim 21, wherein the minimum value for the conditioning parameter is the value which provides the minimum wafer removal rate.
  • 29. The method of claim 21, further comprising the steps of: polishing a wafer in the CMP apparatus under a first set of pad conditioning parameters selected to maintain wafer material removal rates within preselected minimum and maximum removal rates; determining a wafer material removal rate occurring during said polishing step; calculating updated pad conditioning parameters based upon said determined wafer material removal rate and the pad wear and conditioning model to maintain wafer material removal rates within the maximum and minimum removal rates; and conditioning the polishing pad using the updated pad conditioning parameters.
  • 30. The method of claim 29, wherein the updated pad conditioning parameters are calculated by determining the difference between an output of the pad wear and conditioning model and said determined wafer material removal.
  • 31. The method of claim 29, wherein the updated pad conditioning parameters are updated according to the equation k=(k1)+g*(k−(k1)), where k is a measured wafer material removal rate, k1 is a calculated wafer material removal rate, g is the estimate gain, and (k−(k1)) is the prediction error.
  • 32. A method of conditioning a planarizing surface in a chemical mechanical polishing (CMP) apparatus having a polishing pad against which a wafer is positioned for removal of material therefrom and a conditioning disk is positioned for conditioning of the polishing pad, comprising the steps of: (a) developing a pad wear and pad conditioning model by: (i) determining the relationship between at least one pad conditioning parameter and wafer material removal rate; (ii) determining maximum and minimum values for each of the at least one pad conditioning parameters and the wafer material removal rate; and (iii) recording the relationships and minimum and maximum values of the at least one pad conditioning parameter and the wafer removal rate, (b) polishing a wafer in the CMP apparatus under a first set of pad conditioning parameters selected to maintain wafer material removal rates within preselected minimum and maximum removal rates; (c) determining a wafer material removal rate occurring during said polishing step; (d) calculating at least one updated pad conditioning parameters based upon said determined wafer material removal rate of said step (c) and the pad wear and conditioning model to maintain wafer material removal rates within the maximum and minimum removal rates, wherein the wafer material removal rate is determined according to the equation: ŷi=ρixi+Ii,
  • 33. A system for conditioning a planarizing surface in a chemical mechanical polishing (CMP) apparatus having a polishing pad and a conditioning disk, comprising: a) a pad wear and conditioning model that defines wafer material removal rate as a function of at least one pad conditioning parameters including rotation and direction of the conditioning disk; b) polishing means for polishing a wafer in the CMP apparatus c) measuring means for determining a wafer material removal rate; and d) calculating means for the at least one updating pad conditioning parameters based upon said determined wafer material removal rate of said step (c) and the pad wear and conditioning model to maintain wafer material removal rates within the maximum and minimum removal rates.
RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119(e) from now abandoned application Ser. No. 60/298,878 filed Jun. 19, 2001 and entitled “Advanced Process Control for Semiconductor Manufacturing Process.” This application claims priority under 35 U.S.C. § 119(e) from now abandoned application Ser. No. 60/305,782, filed Jul. 16, 2001 and entitled “Feedforward and Feedback Control for Conditioning of Chemical Mechanical Polishing Pad.” This application claims priority under 35 U.S.C. § 119(e) from now abandoned application Ser. No. 60/318,741, filed Sep. 12, 2001 and entitled “Feedforward and Feedback Control for Conditioning of Chemical Mechanical Polishing Pad.”

US Referenced Citations (360)
Number Name Date Kind
3205485 Noltingk Sep 1965 A
3229198 Libby Jan 1966 A
3767900 Chao et al. Oct 1973 A
3920965 Sohrwardy Nov 1975 A
4000458 Miller et al. Dec 1976 A
4207520 Flora et al. Jun 1980 A
4209744 Gerasimov et al. Jun 1980 A
4302721 Urbanek et al. Nov 1981 A
4368510 Anderson Jan 1983 A
4609870 Lale et al. Sep 1986 A
4616308 Morshedi et al. Oct 1986 A
4663703 Axelby et al. May 1987 A
4698766 Entwistle et al. Oct 1987 A
4750141 Judell et al. Jun 1988 A
4755753 Chern Jul 1988 A
4757259 Charpentier Jul 1988 A
4796194 Atherton Jan 1989 A
4901218 Cornwell Feb 1990 A
4938600 Into Jul 1990 A
4957605 Hurwitt et al. Sep 1990 A
4967381 Lane et al. Oct 1990 A
5089970 Lee et al. Feb 1992 A
5108570 Wang Apr 1992 A
5208765 Turnbull May 1993 A
5220517 Sierk et al. Jun 1993 A
5226118 Baker et al. Jul 1993 A
5231585 Kobayashi et al. Jul 1993 A
5236868 Nulman Aug 1993 A
5240552 Yu et al. Aug 1993 A
5260868 Gupta et al. Nov 1993 A
5270222 Moslehi Dec 1993 A
5283141 Yoon et al. Feb 1994 A
5295242 Mashruwala et al. Mar 1994 A
5309221 Fischer et al. May 1994 A
5329463 Sierk et al. Jul 1994 A
5338630 Yoon et al. Aug 1994 A
5347446 Iino et al. Sep 1994 A
5367624 Cooper Nov 1994 A
5369544 Mastrangelo Nov 1994 A
5375064 Bollinger Dec 1994 A
5398336 Tantry et al. Mar 1995 A
5402367 Sullivan et al. Mar 1995 A
5408405 Mozumder et al. Apr 1995 A
5410473 Kaneko et al. Apr 1995 A
5420796 Weling et al. May 1995 A
5427878 Corliss Jun 1995 A
5444837 Bomans et al. Aug 1995 A
5469361 Moyne Nov 1995 A
5485082 Wisspeintner et al. Jan 1996 A
5490097 Swenson et al. Feb 1996 A
5495417 Fuduka et al. Feb 1996 A
5497316 Sierk et al. Mar 1996 A
5497381 O'Donoghue et al. Mar 1996 A
5503707 Maung et al. Apr 1996 A
5508947 Sierk et al. Apr 1996 A
5511005 Abbe et al. Apr 1996 A
5519605 Cawlfield May 1996 A
5525808 Irie et al. Jun 1996 A
5526293 Mozumder et al. Jun 1996 A
5534289 Bilder et al. Jul 1996 A
5541510 Danielson Jul 1996 A
5546312 Mozumder et al. Aug 1996 A
5553195 Meijer Sep 1996 A
5586039 Hirsch et al. Dec 1996 A
5599423 Parker et al. Feb 1997 A
5602492 Cresswell et al. Feb 1997 A
5603707 Trombetta et al. Feb 1997 A
5617023 Skalski Apr 1997 A
5627083 Tounai May 1997 A
5629216 Wijaranakula et al. May 1997 A
5639388 Kimura et al. Jun 1997 A
5642296 Saxena Jun 1997 A
5646870 Krivokapic et al. Jul 1997 A
5649169 Berezin et al. Jul 1997 A
5654903 Reitman et al. Aug 1997 A
5655951 Meikle et al. Aug 1997 A
5657254 Sierk et al. Aug 1997 A
5661669 Mozumder et al. Aug 1997 A
5663797 Sandhu Sep 1997 A
5664987 Renteln Sep 1997 A
5665199 Sahota et al. Sep 1997 A
5665214 Iturralde Sep 1997 A
5666297 Britt et al. Sep 1997 A
5667424 Pan Sep 1997 A
5674787 Zhao et al. Oct 1997 A
5694325 Fukuda et al. Dec 1997 A
5695810 Dubin et al. Dec 1997 A
5698989 Nulman Dec 1997 A
5719495 Moslehi Feb 1998 A
5719796 Chen Feb 1998 A
5735055 Hochbein et al. Apr 1998 A
5740429 Wang et al. Apr 1998 A
5743784 Birang et al. Apr 1998 A
5751582 Saxena et al. May 1998 A
5754297 Nulman May 1998 A
5761064 La et al. Jun 1998 A
5761065 Kittler et al. Jun 1998 A
5764543 Kennedy Jun 1998 A
5777901 Berezin et al. Jul 1998 A
5787021 Samaha Jul 1998 A
5787269 Hyodo Jul 1998 A
5808303 Schlagheck et al. Sep 1998 A
5812407 Sato et al. Sep 1998 A
5823854 Chen Oct 1998 A
5824599 Schacham-Diamand et al. Oct 1998 A
5825356 Habib et al. Oct 1998 A
5825913 Rostami et al. Oct 1998 A
5828778 Hagi et al. Oct 1998 A
5831851 Eastburn et al. Nov 1998 A
5832224 Fehskens et al. Nov 1998 A
5838595 Sullivan et al. Nov 1998 A
5838951 Song Nov 1998 A
5844554 Geller et al. Dec 1998 A
5857258 Penzes et al. Jan 1999 A
5859777 Yokoyama et al. Jan 1999 A
5859964 Wang et al. Jan 1999 A
5859975 Brewer et al. Jan 1999 A
5862054 Li Jan 1999 A
5863807 Jang et al. Jan 1999 A
5867389 Hamada et al. Feb 1999 A
5870306 Harada Feb 1999 A
5871805 Lemelson Feb 1999 A
5883437 Maruyama et al. Mar 1999 A
5889991 Consolatti et al. Mar 1999 A
5901313 Wolf et al. May 1999 A
5903455 Sharpe, Jr. et al. May 1999 A
5904608 Watanabe May 1999 A
5904609 Fukuroda et al. May 1999 A
5910011 Cruse Jun 1999 A
5910846 Sandhu Jun 1999 A
5912678 Saxena et al. Jun 1999 A
5916016 Bothra Jun 1999 A
5923553 Yi Jul 1999 A
5926690 Toprac et al. Jul 1999 A
5930138 Lin et al. Jul 1999 A
5940300 Ozaki Aug 1999 A
5943237 Van Boxem Aug 1999 A
5943550 Fulford, Jr. et al. Aug 1999 A
5960185 Nguyen Sep 1999 A
5960214 Sharpe, Jr. et al. Sep 1999 A
5961369 Bartels et al. Oct 1999 A
5963881 Kahn et al. Oct 1999 A
5975994 Sandhu et al. Nov 1999 A
5978751 Pence et al. Nov 1999 A
5982920 Tobin, Jr. et al. Nov 1999 A
6002989 Shiba et al. Dec 1999 A
6012048 Gustin et al. Jan 2000 A
6017771 Yang et al. Jan 2000 A
6036349 Gombar Mar 2000 A
6037664 Zhao et al. Mar 2000 A
6041263 Boston et al. Mar 2000 A
6041270 Steffan et al. Mar 2000 A
6054379 Yau et al. Apr 2000 A
6059636 Inaba et al. May 2000 A
6064759 Buckley et al. May 2000 A
6072313 Li et al. Jun 2000 A
6074443 Venkatesh et al. Jun 2000 A
6077412 Ting et al. Jun 2000 A
6078845 Friedman Jun 2000 A
6093080 Inaba et al. Jul 2000 A
6094688 Mellen-Garnett et al. Jul 2000 A
6096649 Jang Aug 2000 A
6097887 Hardikar et al. Aug 2000 A
6100195 Chan et al. Aug 2000 A
6108092 Sandhu Aug 2000 A
6111634 Pecen et al. Aug 2000 A
6112130 Fukuda et al. Aug 2000 A
6113462 Yang Sep 2000 A
6114238 Liao Sep 2000 A
6127263 Parikh Oct 2000 A
6128016 Coelho et al. Oct 2000 A
6136163 Cheung et al. Oct 2000 A
6141660 Bach et al. Oct 2000 A
6143646 Wetzel Nov 2000 A
6148099 Lee et al. Nov 2000 A
6148239 Funk et al. Nov 2000 A
6148246 Kawazome Nov 2000 A
6150270 Matsuda et al. Nov 2000 A
6157864 Schwenke et al. Dec 2000 A
6159075 Zhang Dec 2000 A
6159644 Satoh et al. Dec 2000 A
6161054 Rosenthal et al. Dec 2000 A
6169931 Runnels Jan 2001 B1
6172756 Chalmers et al. Jan 2001 B1
6173240 Sepulveda et al. Jan 2001 B1
6175777 Kim Jan 2001 B1
6178390 Jun Jan 2001 B1
6181013 Liu et al. Jan 2001 B1
6183345 Kamono et al. Feb 2001 B1
6185324 Ishihara et al. Feb 2001 B1
6186864 Fisher et al. Feb 2001 B1
6191864 Sandhu Feb 2001 B1
6192291 Kwon Feb 2001 B1
6197604 Miller et al. Mar 2001 B1
6204165 Ghoshal Mar 2001 B1
6210983 Atchison et al. Apr 2001 B1
6211094 Jun et al. Apr 2001 B1
6212961 Dvir Apr 2001 B1
6214734 Bothra et al. Apr 2001 B1
6217412 Campbell et al. Apr 2001 B1
6219711 Chari Apr 2001 B1
6222936 Phan et al. Apr 2001 B1
6226563 Lim May 2001 B1
6226792 Goiffon et al. May 2001 B1
6228280 Li et al. May 2001 B1
6230069 Campbell et al. May 2001 B1
6236903 Kim et al. May 2001 B1
6237050 Kim et al. May 2001 B1
6240330 Kurtzberg et al. May 2001 B1
6240331 Yun May 2001 B1
6245581 Bonser et al. Jun 2001 B1
6245679 Cook et al. Jun 2001 B1
6246972 Klimasauskas Jun 2001 B1
6248602 Bode et al. Jun 2001 B1
6249712 Boiquaye Jun 2001 B1
6252412 Talbot et al. Jun 2001 B1
6253366 Mutschler, III Jun 2001 B1
6259160 Lopatin et al. Jul 2001 B1
6263255 Tan et al. Jul 2001 B1
6268270 Scheid et al. Jul 2001 B1
6271670 Caffey Aug 2001 B1
6276989 Campbell et al. Aug 2001 B1
6277014 Chen et al. Aug 2001 B1
6278899 Piche et al. Aug 2001 B1
6280289 Wiswesser et al. Aug 2001 B1
6281127 Shue Aug 2001 B1
6284622 Campbell et al. Sep 2001 B1
6287879 Gonzales et al. Sep 2001 B1
6290572 Hofmann Sep 2001 B1
6291367 Kelkar Sep 2001 B1
6292708 Allen et al. Sep 2001 B1
6298274 Inoue Oct 2001 B1
6298470 Breiner et al. Oct 2001 B1
6303395 Nulman Oct 2001 B1
6304999 Toprac et al. Oct 2001 B1
6307628 Lu et al. Oct 2001 B1
6314379 Hu et al. Nov 2001 B1
6317643 Dmochowski Nov 2001 B1
6320655 Matsushita et al. Nov 2001 B1
6324481 Atchison et al. Nov 2001 B1
6334807 Lebel et al. Jan 2002 B1
6336841 Chang Jan 2002 B1
6339727 Ladd Jan 2002 B1
6340602 Johnson et al. Jan 2002 B1
6345288 Reed et al. Feb 2002 B1
6345315 Mishra Feb 2002 B1
6346426 Toprac et al. Feb 2002 B1
6355559 Havemann et al. Mar 2002 B1
6360133 Campbell et al. Mar 2002 B1
6360184 Jacquez Mar 2002 B1
6363294 Coronel et al. Mar 2002 B1
6366934 Cheng et al. Apr 2002 B1
6368879 Toprac Apr 2002 B1
6368883 Bode et al. Apr 2002 B1
6368884 Goodwin et al. Apr 2002 B1
6375791 Chiesl et al. Apr 2002 B1
6379980 Toprac Apr 2002 B1
6381564 David et al. Apr 2002 B1
6388253 Su May 2002 B1
6389491 Jacobson et al. May 2002 B1
6391780 Shih et al. May 2002 B1
6397114 Eryurek et al. May 2002 B1
6398152 Burchert et al. Jun 2002 B1
6400162 Mallory et al. Jun 2002 B1
6405096 Toprac et al. Jun 2002 B1
6405144 Toprac et al. Jun 2002 B1
6409580 Lougher et al. Jun 2002 B1
6417014 Lam et al. Jul 2002 B1
6427093 Toprac Jul 2002 B1
6432728 Tai et al. Aug 2002 B1
6435952 Boyd et al. Aug 2002 B1
6438438 Takagi et al. Aug 2002 B1
6440295 Wang Aug 2002 B1
6442496 Pasadyn et al. Aug 2002 B1
6449524 Miller et al. Sep 2002 B1
6455415 Lopatin et al. Sep 2002 B1
6455937 Cunningham Sep 2002 B1
6465263 Coss, Jr. et al. Oct 2002 B1
6470230 Toprac et al. Oct 2002 B1
6479902 Lopatin et al. Nov 2002 B1
6479990 Mednikov et al. Nov 2002 B1
6482660 Conchieri et al. Nov 2002 B1
6484064 Campbell Nov 2002 B1
6486492 Su Nov 2002 B1
6492281 Song et al. Dec 2002 B1
6495452 Shih Dec 2002 B1
6503839 Gonzales et al. Jan 2003 B1
6515368 Lopatin et al. Feb 2003 B1
6517413 Hu et al. Feb 2003 B1
6517414 Tobin et al. Feb 2003 B1
6528409 Lopatin et al. Mar 2003 B1
6529789 Campbell et al. Mar 2003 B1
6532555 Miller et al. Mar 2003 B1
6535783 Miller et al. Mar 2003 B1
6537912 Agarwal Mar 2003 B1
6540591 Pasadyn et al. Apr 2003 B1
6541401 Herner et al. Apr 2003 B1
6546508 Sonderman et al. Apr 2003 B1
6556881 Miller Apr 2003 B1
6560504 Goodwin et al. May 2003 B1
6563308 Nagano et al. May 2003 B1
6567717 Krivokapic et al. May 2003 B1
6580958 Takano Jun 2003 B1
6587744 Stoddard et al. Jul 2003 B1
6590179 Tanaka et al. Jul 2003 B1
6604012 Cho et al. Aug 2003 B1
6605549 Leu et al. Aug 2003 B1
6607976 Chen et al. Aug 2003 B1
6609946 Tran Aug 2003 B1
6616513 Osterheld Sep 2003 B1
6618692 Takahashi et al. Sep 2003 B1
6624075 Lopatin et al. Sep 2003 B1
6625497 Fairbairn et al. Sep 2003 B1
6630741 Lopatin et al. Oct 2003 B1
6640151 Somekh et al. Oct 2003 B1
6652355 Wiswesser et al. Nov 2003 B1
6660633 Lopatin et al. Dec 2003 B1
6678570 Pasadyn et al. Jan 2004 B1
6708074 Chi et al. Mar 2004 B1
6708075 Sonderman et al. Mar 2004 B1
6725402 Coss, Jr. et al. Apr 2004 B1
6728587 Goldman et al. Apr 2004 B1
6735492 Conrad et al. May 2004 B1
6751518 Sonderman et al. Jun 2004 B1
6774998 Wright et al. Aug 2004 B1
6969297 Moore et al. Nov 2005 B1
20010001755 Sandhu et al. May 2001 A1
20010003084 Finarov Jun 2001 A1
20010006873 Moore Jul 2001 A1
20010012751 Boyd et al. Aug 2001 A1
20010030366 Nakano et al. Oct 2001 A1
20010039462 Mendez et al. Nov 2001 A1
20010040997 Tsap et al. Nov 2001 A1
20010042690 Talieh Nov 2001 A1
20010044667 Nakano et al. Nov 2001 A1
20020032499 Wilson et al. Mar 2002 A1
20020058460 Lee et al. May 2002 A1
20020070126 Sato et al. Jun 2002 A1
20020077031 Johansson et al. Jun 2002 A1
20020081951 Boyd et al. Jun 2002 A1
20020089676 Pecen et al. Jul 2002 A1
20020102853 Li et al. Aug 2002 A1
20020107599 Patel et al. Aug 2002 A1
20020107604 Riley et al. Aug 2002 A1
20020113039 Mok et al. Aug 2002 A1
20020127950 Hirose et al. Sep 2002 A1
20020128805 Goldman et al. Sep 2002 A1
20020149359 Crouzen et al. Oct 2002 A1
20020165636 Hasan Nov 2002 A1
20020183986 Stewart et al. Dec 2002 A1
20020185658 Inoue et al. Dec 2002 A1
20020193899 Shanmugasandram et al. Dec 2002 A1
20020193902 Shanmugasundram et al. Dec 2002 A1
20020197745 Shanmugasundram et al. Dec 2002 A1
20020197934 Paik Dec 2002 A1
20020199082 Shanmugasundram et al. Dec 2002 A1
20030017256 Shimane Jan 2003 A1
20030020909 Adams et al. Jan 2003 A1
20030020928 Ritzdorf et al. Jan 2003 A1
20030154062 Daft et al. Aug 2003 A1
Foreign Referenced Citations (81)
Number Date Country
2050247 Aug 1991 CA
2165847 Aug 1991 CA
2194855 Aug 1991 CA
0 397 924 Nov 1990 EP
0 621 522 Oct 1994 EP
0 747 795 Dec 1996 EP
0 869 652 Oct 1998 EP
0877308 Nov 1998 EP
0 881 040 Dec 1998 EP
0 895 145 Feb 1999 EP
0 910 123 Apr 1999 EP
0 932 194 Jul 1999 EP
0 932 195 Jul 1999 EP
1 066 925 Jan 2001 EP
1 067 757 Jan 2001 EP
1 071 128 Jan 2001 EP
1 083 470 Mar 2001 EP
1 092 505 Apr 2001 EP
1072967 Nov 2001 EP
1 182 526 Feb 2002 EP
2 347 885 Sep 2000 GB
2 365 215 Feb 2002 GB
61-66104 Apr 1986 JP
61-171147 Aug 1986 JP
01-283934 Nov 1989 JP
3-202710 Sep 1991 JP
05-151231 Jun 1993 JP
05-216896 Aug 1993 JP
05-266029 Oct 1993 JP
06-110894 Apr 1994 JP
06-176994 Jun 1994 JP
6-184434 Jul 1994 JP
06-252236 Sep 1994 JP
06-260380 Sep 1994 JP
8-23166 Jan 1996 JP
8-50161 Feb 1996 JP
08-149583 Jun 1996 JP
8-304023 Nov 1996 JP
09-34535 Feb 1997 JP
9-246547 Sep 1997 JP
10-34522 Feb 1998 JP
10-173029 Jun 1998 JP
11-67853 Mar 1999 JP
11-126816 May 1999 JP
11-135601 May 1999 JP
2000183001 Jun 2000 JP
2001-76982 Mar 2001 JP
2001-284299 Oct 2001 JP
2001-305108 Oct 2001 JP
2002-9030 Jan 2002 JP
2002-343754 Nov 2002 JP
434103 May 2001 TW
436383 May 2001 TW
455938 Sep 2001 TW
455976 Sep 2001 TW
WO 9534866 Dec 1995 WO
WO 9805066 Feb 1998 WO
WO 9845090 Oct 1998 WO
WO 9909371 Feb 1999 WO
WO 9925520 May 1999 WO
WO 9959200 Nov 1999 WO
WO 0000874 Jan 2000 WO
WO 0005759 Feb 2000 WO
WO 0035063 Jun 2000 WO
WO 0054325 Sep 2000 WO
WO 0079355 Dec 2000 WO
WO 0111679 Feb 2001 WO
WO 0115865 Mar 2001 WO
WO 0118623 Mar 2001 WO
WO 0125865 Apr 2001 WO
WO 0133277 May 2001 WO
WO 0133501 May 2001 WO
WO 0152055 Jul 2001 WO
WO 0152319 Jul 2001 WO
WO 0157823 Aug 2001 WO
WO 01080306 Oct 2001 WO
WO 0217150 Feb 2002 WO
WO 0231613 Apr 2002 WO
WO 0231613 Apr 2002 WO
WO 0233737 Apr 2002 WO
WO 02074491 Sep 2002 WO
Related Publications (1)
Number Date Country
20030027424 A1 Feb 2003 US
Provisional Applications (3)
Number Date Country
60298878 Jun 2001 US
60305782 Jul 2001 US
60318741 Sep 2001 US