Film forming method and semiconductor device

Abstract
There is provided the film forming method of forming the insulating film 204 containing silicon on the substrate 103 by plasmanizing the compound having the siloxane bonds and the oxidizing gas to react with each other.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a method of forming an insulating film containing silicon, and to a semiconductor device and, more particularly to a technology valuable for forming the insulating film containing silicon having a low dielectric constant.




2. Description of the Prior Art




In recent years, miniaturization of the semiconductor device such as LSI, etc. progresses and thus wiring distances in the semiconductor device are reduced year by year. If the wiring distances are reduced in this manner, the parasitic capacitances of the wirings are increased and thus the operation speed of the semiconductor device is slowed down. Therefore, there is the possibility that the higher speed of the semiconductor device is prevented.




As one of the solutions to prevent such increase in the parasitic capacitances of the wirings, the insulating film having the low dielectric constant can be employed as the interlayer insulating film. The SiO


2


film is widely employed as the interlayer insulating film in the prior art. However, in order to reduce the wiring capacitances, the insulating film having the lower dielectric constant than this SiO


2


film must be employed. The relative dielectric constant of the SiO


2


film is 4.1, and up to the present there are following films that are known as the insulating film containing silicon having the lower dielectric constant than that of the SiO


2


film.




(1) SOG (Spin On Glass) film




(i) HSQ (Hydrogen Silsesquioxane) film Dielectric constant 3.1 to 3.5




(ii) MSQ (Methyl Silsesquioxane) film Dielectric constant 2.8 to 2.9




(2) FSG (Fluorinated Silicon Oxide) film Dielectric constant 3.5




With regard to the dielectric constant of above films, we referred to Table 1 set forth in “Monthly Semiconductor World”, page 52, October, 1999.




SUMMARY OF THE INVENTION




It is an object of the present invention to provide a method of forming a noble insulating film containing silicon that is different from these insulating films in the prior art, and a semiconductor device using such insulating film.




According to the film forming method of the present invention, the insulating film containing silicon (hereinafter simply refer to as insulating film) is formed on the substrate by plasmanizing the compound having the siloxane bonds and the oxidizing gas to react with each other. Here the Si (silicon) atom in the “compound having the siloxane bonds” have already been bonded with O (oxygen) in the form of the siloxane bond (Si—O—Si). Therefore, in forming the film, it is difficult for C (carbon) to newly bond with the Si atom in the insulating film formed by using this compound. As a result, it is hard to form many Si—C bonds in the insulating film, and thus the number of Si—C bonds in the film is reduced.




It is generally known that the increase in the number of Si—C bonds in the film causes the increase in leakage current of the film. As described above, since the number of Si—C bonds in the film can be reduced in the insulating film formed by the film forming method of the present invention, the increase in the leakage current of the film can be suppressed.




Particularly, when H


2


O is used as the oxidizing gas, an amount of NH


3


in the insulating film can be reduced. Therefore, when the chemical amplification resist coated on the insulating film is patterned, the resist is not crosslinked by NH


3


and thus the resist can be patterned finely. As a result, if the chemical amplification resist is used as an etching mask, it is possible to perform desirably the fine patterning of the insulating film underlying the resist.




Also, according to another film forming method of the present invention, the insulating film is formed on the substrate in the atmosphere in which the high-frequency power is applied to the upper and lower electrodes of the parallel plate type plasma chemical vapor deposition equipment, and the reaction gas containing (Si(CH


3


)


3


)


2


O and N


2


O is introduced into the chamber. Here, (Si(CH


3


)


3


)


2


O is an example of the aforementioned “compound having the siloxane bond”, and N


2


O is an example of the aforementioned oxidizing gas. Therefore, as described above, the increase in the leakage current can be reduced in the insulating film formed by this film forming method.




Also, it becomes apparent that if the high-frequency power is applied to both the upper and lower electrodes like this film forming method, the dynamic hardness of the insulating film can be increased compared to the case where the high-frequency power is applied only to the upper electrode.




In addition, according to the results of the examination made by the inventors of this application, it became apparent that if the pressure of the atmosphere in this case is set to more than 0.5 Torr, the dielectric constant of the insulating film can be reduced smaller than that of the conventional SiO


2


film.




Further, according to another film forming method of the present invention, the insulating film is formed on the substrate in the atmosphere in which the distance between the upper and lower electrodes of the parallel plate type plasma chemical vapor deposition equipment is set to more than 25 mm. In this case, the high-frequency power is applied only to the upper electrode and not to the lower electrode, and the reaction gas containing (Si(CH


3


)


3


)


2


O and N


2


O is introduced into the chamber. As described above, the increase in the leakage current of the insulating film can be reduced. Besides, according to the results of the examination made by the inventors of this application, it became apparent that if the distance between the upper electrode and the lower electrode is set to more than 25 mm in this manner, the dielectric constant of the insulating film could be lowered.




Also, according to still another film forming method of the present invention, the Si(OR)


n


H


m


compound may be used in place of the compound having the siloxane bond. Here R denotes an alkyl group, n+m=4, and m≧0.




In this Si(OR)


n


H


m


compound, the Si atom is not directly bonded with R but bonded with R via O (oxxygen). Hence, if the Si(OR)


n


H


m


compound is used, Si—C bonds are difficult to be formed in the insulating film. Therefore, like the compound having the siloxane bonds, it is difficult to form a large number of Si—C bonds in the insulating film by using the Si(OR)


n


H


m


compound, and thus the number of Si—C bonds in the film can be reduced. As a result, the increase in the leakage current due to many Si—C bonds can be reduced in this insulating film.




It should be noted that a plasma process may be employed after the formation of the insulating film, which is formed using the compound having the siloxane bonds or the Si(OR)


n


H


m


compound, in order to improve the hygroscopicity resistance of the film. In this plasma process, the atmosphere containing at least one of O


2


, N


2


O, and NH


3


is plasmanized and then the surface of the insulating film is exposed to the plasmanized atmosphere.




According to this, H


2


O contained in the film and CO


2


formed in this plasma process by oxidizing C in the film are discharged to the outside of the film, and also unbonded bonds of Si in the film are terminated by O, N, H, etc. Therefore, unbonded bonds of Si in the insulating film can be prevented from being bonded by OH group and the like, and thus the hygroscopicity resistance of the insulating film can be improved.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a sectional view showing a plasma CVD (Chemical Vapor Deposition) equipment used to form an insulating film containing silicon according to the present invention;





FIGS. 2A and 2B

are sectional views showing a method of forming the insulating film containing silicon according to an embodiment of the present invention;





FIG. 3

is a graph showing change of high-frequency powers applied in forming the insulating film containing silicon according to the embodiment of the present invention with respect to a time;





FIG. 4

is a sectional view showing a method of forming the insulating film containing silicon according to an embodiment of the present invention when an underlying insulating film and a cover insulating film are formed;





FIG. 5

is a graph showing a relationship between a relative dielectric constant of an insulating film


204


containing silicon and a pressure and a relationship between a refractive index and the pressure when a pressure of the atmosphere is changed while applying a high-frequency power only to an upper electrode


104


by setting an electrode distance to 25 mm;





FIG. 6

is a graph showing a relationship between the relative dielectric constant of the insulating film


204


containing silicon and the pressure and a relationship between the refractive index and the pressure when the pressure of the atmosphere is changed while applying the high-frequency power to both the upper electrode


104


and a lower electrode


102


by setting the electrode distance to 25 mm;





FIG. 7

is a graph showing a relationship between a power of a second high-frequency power supply


109


and a dynamic hardness of the insulating film


204


containing silicon and a relationship between the power and a Young's modulus of the insulating film


204


containing silicon when a power of the second high-frequency power supply


109


is changed by setting the electrode distance to 25 mm;





FIG. 8

is a graph showing a relationship between a power of a first high-frequency power supply


107


and the relative dielectric constant of the insulating film


204


containing silicon and a relationship between the power and a refractive index of the insulating film


204


containing silicon when a power of the first high-frequency power supply


107


is changed by setting the electrode distance to 50 mm;





FIG. 9

is a graph showing a relationship between the power of the second high-frequency power supply


109


and the relative dielectric constant of the insulating film


204


containing silicon and a relationship between the power and the refractive index of the insulating film


204


containing silicon when the power of the second high-frequency power supply


109


is changed by setting the electrode distance to 50 mm;





FIG. 10

is a graph showing a relationship between the relative dielectric constant of the insulating film


204


containing silicon and the pressure and a relationship between the refractive index and the pressure when the pressure of the atmosphere is changed while using H


2


O as an oxidizing gas by setting the electrode distance to 50 mm;





FIG. 11

is a graph showing results of the insulating film


204


containing silicon measured by the Infrared Absorption Spectroscopy when the pressure of the atmosphere is changed while using H


2


O as the oxidizing gas by setting the electrode distance to 25 mm;





FIG. 12

is a graph showing a relationship between the power of the second high-frequency power supply


109


and the relative dielectric constant of the insulating film


204


containing silicon and a relationship between the power and the refractive index of the insulating film


204


containing silicon when the power of the second high-frequency power supply


109


is changed while using H


2


O as the oxidizing gas by setting the electrode distance to 25 mm;





FIG. 13

is a sectional view used to explain a method of measuring a leakage current in the insulating film


204


containing silicon;





FIG. 14

is a graph showing characteristics of the leakage current in the insulating film


204


containing silicon when the power of the second high-frequency power supply


109


is changed while using H


2


O as the oxidizing gas by setting the electrode distance to 25 mm;





FIG. 15

is a graph showing measured results of an amount of NH


3


, that is contained in an insulating film formed by using Si(CH


3


)


4


and N


2


O, measured by the TDS method;





FIG. 16

is a graph showing measured results of an amount of NH


3


, that is contained in the insulating film


204


containing silicon formed by using HMDS and H


2


O, measured by the TDS method;





FIG. 17

is a graph showing a relationship between the pressure of the atmosphere and the relative dielectric constant of the insulating film


204


containing silicon and a relationship between the pressure and the refractive index of the insulating film


204


containing silicon when the pressure of the atmosphere is changed while using HMDS and H


2


O;





FIG. 18

is a graph showing characteristics of the leakage current in the insulating film


204


containing silicon when the pressure of the atmosphere is changed while using HMDS and H


2


O;





FIGS. 19A

to


19


F are sectional views showing a sectional shape respectively when the damascene process is applied to the insulating film


204


containing silicon according to the embodiment of the present invention; and





FIGS. 20A

to


20


G are sectional views showing a sectional shape respectively when the damascene process is applied to the insulating film


204


containing silicon formed by using H


2


O as the oxidizing gas according to the embodiment of the present invention.











DESCRIPTION OF THE PREFERRED EMBODIMENT




An embodiment of the present invention will be explained in detail with reference to the accompanying drawings hereinafter.




(1) Explanation of the plasma CVD equipment used to form an insulating film in the present invention.





FIG. 1

is a sectional view showing the plasma CVD (Chemical Vapor Deposition) equipment used to form the insulating film containing silicon (hereinafter simply refer to as insulating film) in the present embodiment.




In

FIG. 1

, a reference


101


denotes a chamber used to form the film, and two opposing electrodes, i.e., a lower electrode


102


and an upper electrode


104


are provided in the chamber


101


. Here, the lower electrode


102


serves also as a loading table on which a substrate


103


is loaded. A heater (not shown) for heating the substrate


103


up to the desired temperature is built in the lower electrode


102


. A reference


105


denotes power supplying lines that supply a power to this heater.




Further, the upper electrode


104


serves also as a shower head that supplies a gas to an interior of the chamber


101


.




A first high-frequency power supply


107


and a second high-frequency power supply


109


are connected to these two electrodes


104


and


102


respectively. The gas in the camber


101


can be plasmanized by supplying a high-frequency power to the gas in the chamber


101


from one of these high-frequency power supplies


107


,


109


, or from both the power supplies.




In addition, a gas introducing port


108


is provided to the upper electrode


104


, and the gas is introduced into the chamber


101


via the gas introducing port


108


. An exhaust port


106


is provided to the chamber


101


, and the gas introduced into the chamber


101


is exhausted via the exhaust port


106


to reduce a pressure in the chamber


101


.




It should be noted that since the upper electrode


104


and the lower electrode


102


are provided in the chamber


101


to oppose to each other, this plasma CVD equipment is so-called parallel plate type plasma chemical vapor deposition equipment.




(2) Explanation of the method of forming the insulating film according to the present invention.




(i) Outline




The inventors of this application have made following consideration before making the present invention.




First, it is considered that in order to form the insulating film having the low dielectric constant, the SiO


2


film should be formed to contain groups containing C (carbon) and H (hydrogen) in the film so as to reduce a density of the SiO


2


film. It is expected that when the SiO2 film is formed in this manner, Si—O bonds are disconnected at the portion where these groups exist and thus the dielectric constant of the portion is reduced, which in turn result in reducing the dielectric constant of the overall film.




Second, it is considered that when the SiO


2


film is formed as above, the above groups should be contained in the film not to form a large number of Si—C bonds. This is because, if a large number of Si—C bonds are formed in the film, portions in which a large number of Si—C bonds are continuously exist are formed in the film, and thus there is the possibility that the leakage currents are generated in these portions.




Third, it is considered that, in view of the first and second considerations, {circle around (1)} a reaction gas containing the compound having the siloxane bond (Si—O—Si) or {circle around (2)} a reaction gas containing the Si(OR)


n


H


m


compound should be employed as the reaction gas used to form the film. Since the Si—O bonds are formed originally in these compounds, there is the possibility that it can be made difficult to form a large number of Si—C bonds when forming the film.




Then, examples of these compounds will be listed hereunder specifically.




{circle around (1)} Compound having the siloxane bond (Si—O—Si)




HMDS (hexamethyldisiloxane: (Si(CH


3


)


3


)


2


O)




OMCTS (octomethylcyclotetrasiloxane: (Si(CH


3


)


2


)


4


O


4


)




HEDS (hexaethyldisiloxane: (Si(C


2


H


5


)


3


)


2


O)




TMDS (tetramethyldisiloxane: (SiH(CH


3


)


2


)


2


O)




TEDS (tetraethyldisiloxane: (SiH(C


2


H


5


)


2


)


2


O)




TMCTS (tetramethylcyclotetrasiloxane: (SiH(CH


3


))


4


O


4


)




TETCS (tetraethylcyclotetrasiloxane: (SiH(C


2


H


5


))


4


O


4


)




These compounds are liquid at the room temperature (20° C.).




{circle around (2)} Si(OR)


n


H


m


compound




Si(OCH


3


)


3


H




Si(OC


2


H


5


)


3


H




Si(OCH


3


)


4






Si(OC


2


H


5


)


4






These compounds are a liquid at the room temperature (20° C.). It should be noted that the Si(OR)


n


H


m


compounds are not limited to these specific examples, but may use such a compounds satisfying n+m=4 and m≧0, where n and m denotes integer.




(ii) Explanation of film forming conditions




Next, film forming conditions will be explained with reference to

FIGS. 2A and 2B

, when the above compounds are employed to form the insulating film containing silicon.

FIGS. 2A and 2B

are sectional views showing a method of forming the insulating film according to an embodiment of the present invention.




At first, as shown in

FIG. 2A

, a silicon substrate


201


on a surface of which a BPSG (borophosphosilicate glass) film


202


is formed is prepared. Then, an aluminum film is formed on the BPSG film


202


and then aluminum wirings


203


are formed by patterning the aluminum film. These silicon substrate


201


, the BPSG film


202


, and the aluminum wirings


203


constitute the substrate


103


.




Then, as shown in

FIG. 2B

, an insulating film


204


containing silicon (simply referred to as insulating film hereinafter) is formed on the substrate


103


. This is performed by introducing the reaction gas via the gas introducing port


108


after the substrate


103


is loaded on the lower electrode


102


in the chamber


101


(see FIG.


1


), then heating the lower electrode


102


up to the predetermined temperature, and then applying the high-frequency power to the reaction gas from the first and second high-frequency power supplies


107


,


109


. At the same time, an inside of the chamber


101


is set to a predetermined pressure by exhausting the reaction gas via the exhaust port


106


.




As described above, as compounds contained in the reaction gas, there are {circle around (1)} the compound having the siloxane bond (Si—O—Si) and {circle around (2)} the Si(OR)


n


H


m


compound. Two cases where these compounds are employed respectively will be explained in the following.




{circle around (1)} the case where the compound having the siloxane bond (Si—O—Si) is used




The film forming conditions in this case will be given in Table 1.















TABLE 1













Flow rate of compound




 50 sccm







having siloxane bond







(Si—O—Si)







Flow rate of




see Table 2







an oxidizing gas







Flow rate of




200 sccm







an inert gas (Ar or He)







Temperature of




350° C.







a substrate 103







Pressure in




 1.75 Torr







a chamber 101







Frequency of the high frequency




 13.56 MHz







power applied by the first high-







frequency power supply 107







Power of the high frequency




 50 to 300 W







power applied by the first high-







frequency power supply 107







Frequency of the high frequency




380 KHz







power applied by the second high-







frequency power supply 109







Power of the high frequency




 10 to 100 W







power applied by the second high-







frequency power supply 109















As the compound having the siloxane bond (Si—O—Si) set forth in the first line of Table 1, there are HMDS, OMCTS, HEDS, TMDS, TEDS, TMCTS, and TECTS, which are already mentioned above. Any one of these compounds may be contained in the reaction gas. These compounds, which are a liquid at the room temperature, are heated to be vaporized after the flow rates of them are controlled by the liquid mass flowmeter (not shown), and then introduced into the chamber


101


. Alternatively, the flow rates of these compounds may be controlled by the high-temperature mass flowmeter (not shown) after these compounds are vaporized, and then these compounds may be supplied to the chamber


101


. The flow rate of the compound having the siloxane bonds given in Table 1 is the flow rate of the compound vaporized in these manners.




Also, there are N


2


O, O


2


, H


2


O, CO


2


as the oxidizing gas set forth in the second line of Table 1, and at least one of them may be contained in the reaction gas. In case only one of these oxidizing gases is added into the reaction gas, i.e., without combination of other oxidizing gases, the flow rate of the oxidizing gas will be given in Table 2.















TABLE 2











Oxidizing gas




Flow rate













N


2


O




 50 to 200 sccm







O


2






 10 to 50 sccm







H


2


O




100 to 300 sccm







CO


2






100 to 300 sccm















The inert gas set forth in the third line of Table 1 is not essential. That is, even if such inert gas is not contained in the reaction gas, advantages similar to those described in the following can be achieved.




The dielectric constant of the insulating film


204


formed in accordance with these conditions was 2.7 at 1 MHz. This value is smaller than that of the conventional SiO


2


film (4.1).




The reason why the insulating film


204


having such a low dielectric constant can be formed is considered as follows. That is, as can be seen from their chemical formulas, the compounds having the siloxane bond (Si—O—Si) contain the alkyl groups such as CH


3


, C


2


H


5


and the like. Therefore, if the insulating film


204


is formed using these compounds, the alkyl groups are contained in the film. In the insulating film


204


, the Si—O bonds are disconnected at the portions where the alkyl groups are contained, which in turn creates pores at the portions and reduce the dielectric constant of that portions. As a result, the dielectric constant of the overall insulating film


204


is lowered.




In addition, Si and O have already been bonded in the compound having the siloxane bond (Si—O—Si). Therefore, since the bonding of Si and C is limited in the insulating film


204


, the Si—C bonds that cause the increase in the leakage current in the film are hard to be formed. Accordingly, it is expected that the leakage current of the insulating film


204


can be reduced compared with the case where the compound that does not have the siloxane bond (Si—O—Si) is used.




Though the high-frequency power applied by the first and second high-frequency power supply


107


and


109


are constant in time in the film forming conditions given in Table 1 and Table 2, high-frequency power whose power varies in time as shown in

FIG. 3

may also be employed in the alternative.




If the first and second high-frequency power whose power varies in time as shown in

FIG. 3

is employed, the high-frequency power is applied intermittently to the reaction gas. For example, the first and second high-frequency powers are applied to the reaction gas from a time T


2


to a time T


3


, and the high-frequency power is not applied to the reaction gas from a time T


1


to a time T


2


. In the present embodiment, a time period during which the high-frequency power is applied, i.e., T


3


−T


2


is 0.5×10


−3


sec. Then, a time period during which the high-frequency power is not applied, i.e., T


2


−T


1


is also 0.5×10


−3


sec.




If the high-frequency powers whose power varies in time intermittently are employed, there is the possibility that the alkyl groups can be contained in the film in the complete form. That is, if the high-frequency powers whose power varies in time intermittently are applied, dissociation of the alkyl groups, which are contained in the compound having the siloxane bond (Si—O—Si), due to the application of the high-frequency powers can be suppressed during the time intervals in which the high-frequency powers is not applied.




Therefore, the alkyl groups which is not dissociate and thus of complete form can be contained in the insulating film


204


. Accordingly, if the high-frequency powers whose power varies in time intermittently are applied, it is expected to be able to lower the dielectric constant of the insulating film


204


compared with the case where the high-frequency powers whose power is constant in time are applied.




Under the conditions shown in Table 1 and Table 2, or in case where the high-frequency powers whose power varies in time intermittently are applied under the conditions shown in Table 1 and Table 2, the methyl alcohol may be added into the reaction gas. Since the methyl groups can be contained much more in the film by the methyl alcohol, much more Si—O bonds in the film can be reduced. Therefore, it is expected that the dielectric constant of the film can be further lowered.




In order to add the methyl alcohol into the reaction gas, a flow rate of the liquid methyl alcohol is controlled by the liquid mass flowmeter (not shown), and then the liquid methyl alcohol is introduced into the chamber


101


. Alternatively, the methyl alcohol may be vaporized by heating and then introduced into the chamber


101


in a gas state. When the methyl alcohol is added into the reaction gas, the flow rate of the methyl alcohol is 50 sccm.




{circle around (2)} the case where the Si(OR)


n


H


m


compound is used




The film forming conditions in this case will be given in Table 3.















TABLE 3













Flow rate of




 50 sccm







Si(OR)


n


H


m


compound







Flow rate of




see Table 4







an oxidizing gas







Flow rate of




200 sccm







an inert gas (Ar or He)







Temperature of




200° C.







a substrate 103







Pressure in




 0.8 Torr







a chamber 101







Frequency of the high frequency




 13.56 MHz







power applied by the first high-







frequency power supply 107







Power of the high frequency




 50 to 300 W







power applied by the first high-







frequency power supply 107







Frequency of the high frequency




400 KHz







power applied by the second high-







frequency power supply 109







Power of the high frequency




 10 to 400 W







power applied by the second high-







frequency power supply 109















As the Si(OR)


n


H


m


compound set forth in Table 3, there are Si(OCH


3


)


3


H, Si(OC


2


H


5


)


3


H, Si(OCH


3


)


4


, and Si(OC


2


H


5


)


4


, which are already mentioned above. Also, it should be noted that the Si(OR)


n


H


m


compounds are not limited these specific example, but may use such a compounds satisfying n+m=4 and m≧0, where n and m denotes integer. Any one of these compounds may be contained in the reaction gas. These compounds, which are liquid at the room temperature (20° C.), are heated to be vaporized after the flow rates of them are controlled by the liquid mass flowmeter (not shown), and then introduced into the chamber


101


. Alternatively, the flow rates of these compounds may be controlled by the high-temperature mass flowmeter (not shown) after these compounds are vaporized, and then these compounds may be supplied to the chamber


101


. The flow rate of the Si(OR)


n


H


m


compound in Table 3 is the flow rate of the compound after vaporized.




Also, there are N


2


O, O


2


, H


2


O, CO


2


as the oxidizing gas set forth in the second line of Table 3, and at least one of them may be contained in the reaction gas. In case only one of these oxidizing gases is added into the reaction gas, i.e., without combination of other oxidizing gases, the flow rate of the oxidizing gas will be given in Table 4.















TABLE 4











Oxidizing gas




Flow rate













N


2


O




 50 to 200 sccm







O


2






 10 to 50 sccm







H


2


O




100 to 300 sccm







CO


2






100 to 300 sccm















The dielectric constant of the insulating film


204


formed in accordance with these conditions was 2.5 at 1 MHz. This value is smaller than the dielectric constant 4.1 of the SiO


2


film used in the prior art. Also, the film forming rate was 200 nm/min.




The reason why the insulating film


204


having such a low dielectric constant can be formed is considered as follows. That is, if the Si(OR)


n


H


m


compound is used, the alkoxy groups (OR) in the compound are contained in the film. In the insulating film


204


, the Si—O bonds are disconnected at the portions where the alkoxy groups are contained, which in turn reduce the dielectric constant of that portions. As a result, the dielectric constant of the overall insulating film


204


is lowered.




In addition, Si—OR bonds have already been formed in the Si(OR)


n


H


m


compound. Therefore, since Si and R (alkyl group) are easily bonded via O also in the insulating film


204


, it can be prevented that Si and C are newly bonded to form the Si—C bonds. Accordingly, it is expected that, in the insulating film


204


, the portions in which many Si—C bonds are continuously exist can be reduced compared with the case where the compound that does not have the Si—OR bond is employed. In this manner, the leakage current of the film can be reduced.




Under the conditions shown in Table 3 and Table 4, a C


p


H


q


gas may be further added into the reaction gas. If the C


p


H


q


gas is added, the methyl group, the ethyl group, etc. are contained in the film and thus the Si—O bonds in the film can be reduced. Therefore, it is expected that the dielectric constant of the film can be further lowered.




There are CH


4


, C


2


H


4


, and C


2


H


6


that are used actually as the C


p


H


q


gas in the experiment by the inventors of this application. However, the C


p


H


q


gas is not limited to these specific examples. At least one of these C


p


H


q


gases may be added to the reaction gas. In case only one of these gases is added into the reaction gas, i.e., without combination of other C


p


H


q


gases, the flow rates of these gases are 50 sccm.




(iii) Explanation of the plasma process performed to improve the hygroscopicity resistance of the insulating film




By the way, as an insulating film employed in semiconductor devices, it is preferable to use insulating films that show good hygroscopicity resistance. This is because if the insulating film that shows the poor hygroscopicity resistance and is apt to absorb the moisture is employed, the moisture in the film defuses into the underlying wiring layer and thus corrosion of the wiring layer is caused.




Considering the above, in the film forming method of the present invention, in order to improve the hygroscopicity resistance of the insulating film


204


(see FIG.


2


B), the plasma process is performed for the insulating film


204


after the film is formed.




The conditions of this plasma process are given in Table 5 hereunder.




















TABLE 5









(A)




(B)




(C)




(D)




(E)




(F)




(G)




(H)




(I)











O


2






600














400




50




400




0.2




60






N


2


O









600









400




50




400




0.2




60






NH


3
















600




400




50




400




0.2




60






O


2


+ N


2


O




300




300









400




50




400




0.2




60






O


2


+ NH


3






300









300




400




50




400




0.2




60






N


2


O + NH


3











300




300




400




50




400




0.2




60






O


2


+ N


2


O + NH


3






200




200




200




400




50




400




0.2




60











(A): Gas used in the plasma process










(B): O


2


flow rate (sccm)










(C): N


2


O flow rate (sccm)










(D): NH


3


flow rate (sccm)










(E): Power of the first high-frequency power supply 107 (W)










(F): Power of the second high-frequency power supply 109 (W)










(G): Temperature of the substrate 103 (° C.)










(H): Pressure in the chamber 101 (Torr)










(I): Process time (sec)













In this plasma process, a frequency of the high-frequency power applied by the first high-frequency power supply


107


is 13.56 MHz and a frequency of the high-frequency power applied by the second high-frequency power supply


109


is 400 kHz. As shown in the Table 5, there are O


2


, N


2


O, NH


3


as the gas employed in this plasma process, and at least one of them may be employed. In addition, Ar (argon) may be added to these gases. When Ar is added, the flow rate of Ar is 100 sccm.




If the plasma process is performed in this manner, H


2


O that is contained in the insulating film


204


and CO


2


formed in this plasma process by oxidizing C in the film are discharged to the outside of the film. Also, since unbonded bonds of Si in the film are terminated by O, N, H, etc., the unbonded bonds of Si can be prevented from being bonded by OH group and the like, which in turn improve the hygroscopicity resistance of the film.




(iv) Explanation of an underlying insulating film and a cover insulating film formed to improve the hygroscopicity resistance of the insulating film




In order to improve the hygroscopicity resistance of the insulating film of the present invention, the underlying insulating film and the cover insulating film may be formed under and on the insulating film


204


. This will be explained with reference to FIG.


4


. In

FIG. 4

, the same reference symbols as those used in

FIG. 2

are affixed to the constituent members similar to those in

FIG. 2

, and their explanation will be omitted hereunder.




In

FIG. 4

,


205


denotes an underlying insulating film, and


206


denotes a cover insulating film. These films


205


and


206


are, for example, made up of SiO


2


and the like. In case where the SiO


2


film is employed as the underlying insulating film


205


and the cover insulating film


206


, the film forming conditions of the SiO


2


film are given in Table 6 as follows.















TABLE 6













SiH


4


flow rate




 50 sccm







N


2


O flow rate




1000 sccm







Temperature of the substrate 103




 400° C.







Pressure in the chamber 101




  0.8 Torr







Frequency of the high-frequency




 13.56 MHz







power applied by the first high-







frequency power supply 107







Power applied by the first high-




 50 W







frequency power supply 107







Frequency of the high-frequency




 380 KHz







power applied by the second high-







frequency power supply 109







Power applied by the second high-




 400 W







frequency power supply 109







Film thickness




 50 nm















If the underlying insulating film


205


is formed in this manner, the moisture can be prevented from entering into the inside of the substrate


103


from the upper surface (the surface contacting to the underlying insulating film


205


) of the substrate


103


. Therefore, corrosion of the aluminum wiring


203


by the moisture can be prevented.




Also, if the cover insulating film


206


is formed, the moisture can be prevented from entering into the inside of the insulating film


204


from the upper surface (the surface contacting to the cover insulating film


206


) of the insulating film


204


. Therefore, the degradation of the insulating film


204


due to the moisture can be prevented.




(v) Explanation of applying the present invention to the damascene process




In the above, the insulating film


204


of the present embodiment is formed on the aluminum wiring


203


(see FIG.


2


B). However, the present invention is not limited to this, and the insulating film


204


may be applied to the damascene process suitable for forming the copper wirings. Such damascene process will be explained with reference to

FIGS. 19A

to


19


F hereunder.

FIGS. 19A

to


19


F are sectional views showing the case where the insulating film


204


of the present invention is applied to the damascene process.




At first, as shown in

FIG. 19A

, a lower copper wiring layer


210


is formed on an underlying interlayer insulating film


209


, and a blocking film


211


such as the SiN film, etc. is formed on the lower copper wiring layer


210


. The term blocking film is usually employed for the film when the film serves as both etching stopper film and barrier metal film.




Then, as shown in

FIG. 19B

, the insulating film


204


of the present embodiment is formed on the blocking film


211


. As previously explained, the insulating film


204


is formed by the plasma CVD method using {circle around (1)} the reaction gas containing the compound having the siloxane bond or {circle around (2)} the reaction gas containing the Si(OR)


n


H


m


compound. The conditions in this case are the same as those set forth in Table 1 to Table 4, which have already been described. The film thickness of the insulating film


204


can be controlled desirably by changing a film forming time.




Then, as shown in

FIG. 19C

, a protection film


212


is formed on the insulating film


204


. A dense and high quality silicon oxide film is used as the protection film


212


. This protection film


212


serves to prevent the insulating film


204


from being deteriorated in an ashing process and etching process.




In turn, as shown in

FIG. 19D

, photoresist


213


is coated on the protection film


212


. After this, an opening portion


213




a


is formed in the photoresist


213


by the photolithography. Then, the protection film


212


and the insulating film


204


are etched by the RIE (Reactive Ion Etching) while using the photoresist


213


as a mask. In this RIE, the plasmanized gas mixture containing CF


4


+CHF


3


or C


4


F


8


may be used as the etching gas.




Then, the insulating film


204


located under the opening portion


213




a


in the photoresist


213


is removed by this etching, and an opening portion


204




a


is formed. Then, a surface of the blocking film


211


is exposed on the bottom portion of the opening portion


204




a


. Since the blocking film


211


has the etching resistance against the gas mixture containing CF


4


+CHF


3


, the blocking film


211


is not etched by this RIE.




Then, as shown in

FIG. 19E

, the blocking film


211


is etched by the RIE while using the photoresist


213


as a mask. In this RIE, a gas mixture containing CF


4


+CHF


3


, in which the gas composition ratio is changed than that used in etching the insulating film


204


, is plasmanized. By this plasmanised gas mixture, an opening portion


211




a


is formed in the blocking film


211


located under the opening portion


213




a


, and a surface of the lower copper wiring layer


210


is exposed. As a result, a via hole


214


reaching the lower copper wiring layer


210


is formed by this step.




Then, as shown in

FIG. 19F

, after the photoresist


213


is removed and a barrier metal layer (not shown) such as a TiN film, etc. is formed on a side wall of the via hole


214


, a copper plating film


215


is formed on an inner surface of the via hole


214


and an upper surface of the protection film


212


. This copper plating film


215


is formed by supplying a current to a copper seed layer (not shown), which is formed on the inner surface of the via hole


214


and the upper surface of the protection film


212


by means of sputter method, etc.




After this step, the copper plating film


215


formed on the protection film


212


is removed by the CMP (Chemical Mechanical Polishing) method, and an upper copper wiring layer (not shown) is formed on the protection film


212


.




According to the above mentioned damascene process, the insulating film


204


is formed as the interlayer insulating film between the lower copper wiring layer


210


and the upper copper wiring layer (not shown). This insulating film


204


is the low dielectric constant film that has the relative dielectric constant such as about 2.7 at 1 MHz, as described above. Therefore, if the insulating film


204


is employed, the wiring capacitance between the lower copper wiring layer


210


and the upper copper wiring layer (not shown) can be reduced, and therefore the semiconductor device that has the quick operation speed can be provided.




EXAMPLES




The inventors of this application examined how the property of the insulating film


204


changed when the film forming conditions were changed, especially when using HMDS (chemical formula: (Si(CH


3


)


3


)


2


O) as the compound having the siloxane bond. The results of the examination will be explained in the following.




In this examination, a 8-inch silicon wafer was employed as the substrate


103


(see FIG.


1


). When the relative dielectric constant of the insulating film was measured, the C-V (Capacitance-Voltage) measuring method in which the high-frequency signal of 1 MHz was superposed on the DC bias was employed. When the refractive index of the film was measured, the ellipsometer using the He—Ne laser whose wavelength is 632.8 nm was employed.




(1) The case where an electrode distance is 25 mm




At first, a distance (electrode distance) between the upper electrode


104


and the lower electrode


102


was fixed to 25 mm, and the film forming conditions were changed as follows.




(i) The case where the pressure was changed




The film forming conditions in this case are given as following Condition A.




(Condition A)




HMDS flow rate: 50 sccm




N


2


O flow rate: 200 sccm




substrate temperature: 350° C.




deposited film thickness: 500 nm




frequency of the high-frequency power applied by the first high-frequency power supply


107


: 13.56 MHz




power of the first high-frequency power supply


107


: 300 W




power of the second power supply


109


: 0 W




In the Condition A, the high-frequency power was applied only to the upper electrode


104


and was not applied to the lower electrode


102


.




When the pressure of the atmosphere was changed under the Condition A, a relationship between the relative dielectric constant of the insulating film


204


and the pressure, and a relationship between the refractive index of the film and the pressure were obtained as in FIG.


5


. In

FIG. 5

, an arrow pointing to the left indicates that the data series dotted by &Circlesolid; represent the relative dielectric constant, and an arrow pointing to the right indicates that the data series dotted by ◯ represent the refractive index.




As can be seen from

FIG. 5

, when the high-frequency power was applied only to the upper electrode


104


, the relative dielectric constant was almost constant and its value showed about 2.8 even if the pressure of the atmosphere was changed. Similarly, the refractive index was almost constant and was about 1.38 to 1.42.




The leakage current of the insulating film


204


formed under the Condition A was of the order of 10


−10


A/cm


2


at the electric field strength of 1 MV/cm over all pressures. This value is quite satisfactorily for practical use.




Next, the inventors of this application examined how the above tendency changed when the high-frequency power was applied not only to the upper electrode


104


but also to the lower electrode


102


. The film forming conditions in this case are given as following Condition B.




(Condition B)




HMDS flow rate: 50 sccm




N


2


O flow rate: 200 sccm




substrate temperature: 350° C.




deposited film thickness: 500 nm




frequency of the high-frequency power applied by the first high-frequency power supply


107


: 13.56 MHz




power of the first high-frequency power supply


107


: 300 W




frequency of the high-frequency power applied by the second high-frequency power supply


109


: 380 KHz




power of the second power supply


109


: 30 W




When the pressure of the atmosphere was changed under the Condition B, a relationship between the relative dielectric constant of the insulating film


204


and the pressure, and a relationship between the refractive index of the film and the pressure were obtained as in FIG.


6


.




As can be seen from

FIG. 6

, when the high-frequency power was applied to both the upper electrode


104


and the lower electrode


102


, the tendency that is clearly different from that shown in

FIG. 5

was obtained. That is, when the high-frequency power was applied to both electrodes, such a tendency appeared that, when the pressure was increased, the relative dielectric constant and the refractive index of the film ware reduced.




In

FIG. 6

, the value of the relative dielectric constant at the pressure of 1.0 Torr was about 3.8. In the present example, the measurement was not carried out at the pressure lower than 1.0 Torr. However, it can be understood from

FIG. 6

such a tendency that the relative dielectric constant comes close to 4.0 at the pressure lower than 1.0 Torr.




As described in the prior art column, in order to provide the semiconductor device in which the wiring capacitance is reduced smaller than the prior art, the film whose relative dielectric constant is lower than that of SiO


2


film (4.1) must be employed as the interlayer insulating film. It can be understood from the above description that, to this end, the pressure should be set to more than 1.0 Torr and the high-frequency power should be applied to both the upper electrode


104


and the lower electrode


102


.




Though the electrode distance was set to 25 mm in this example, the inventors of this application similarly examined the case where the electrode distance was set to more than 50 mm. According to this examination, it became apparent that, when the electrode distance was set to more than 50 mm, the insulating film


204


having the relative dielectric constant lower than that of the SiO


2


film (4.1) could be formed by setting the pressure to more than 0.5 Torr.




The leakage current of the insulating film


204


formed under the Condition B was of the order of 10


−10


A/cm


2


at the electric field strength of 1 MV/an over all pressures. This value is quite satisfactorily for practical use.




(ii) The case where the power of the second high-frequency power supply


109


was changed




As described above, it was found that, when the high-frequency power was applied not only to the upper electrode


104


but also to the lower electrode


102


, the tendency that was different from the case where the high-frequency power is applied only to one electrode was obtained.




Next, the inventors of this application examined what change occurred on the property of the insulating film


204


when the power of the high-frequency power applied to one electrode was changed while applying the high-frequency power to the other electrode.




The film forming conditions in this case are given as following Condition C.




(Condition C)




HMDS flow rate: 50 sccm




N


2


O flow rate: 200 sccm




substrate temperature: 350° C.




deposited film thickness: 500 nm




frequency of the high-frequency power applied by the first high-frequency power supply


107


: 13.56 MHz




power of the first high-frequency power supply


107


: 100 W




frequency of the high-frequency power applied by the second high-frequency power supply


109


: 380 KHz




When the power of the second high-frequency power was changed under the Condition C, a relationship between the power of the second high-frequency power supply


109


and a dynamic hardness of the insulating film


204


, and a relationship between the power of the second high-frequency power supply


109


and a Young's modulus of the insulating film


204


were obtained as shown in FIG.


7


. The measurement of the dynamic hardness and Yang's modulus is carried out using the equipment DUH-W201S, which is made by Shimadzu Corporation.




As can be clearly seen from

FIG. 7

, the dynamic hardness and the Young's modulus of the film increases as the power of the second high-frequency power supply


109


increases. Put in another way, when the power of the second high-frequency power supply


109


is larger than 0 W, the film whose dynamic hardness and Young's modulus are larger than that obtained when the power is 0 W can be obtained. This means that if the high-frequency power is applied not only to the upper electrode


104


but also to the lower electrode


102


, the film whose dynamic hardness and Young's modulus are larger than that obtained when the power is applied only to the upper electrode


104


can be obtained.




By the way, in the damascene process for forming the copper wiring layer, the damascene trench is formed in the interlayer insulating film, and the copper plating is preformed for the upper surface of the interlayer insulating film and the inside of the damascene trench. After this, in order to leave the copper only in the damascene trench, overall surface of the copper plating is polished by the CMP method. When polishing the surface by the CMP method, the interlayer insulating film, together with the copper plating thereon, is polished to some extent. If the interlayer insulating film is polished in this manner, the residual film thickness of the interlayer insulating film must be desirably controlled. In general, it has been known that in order to control the residual film thickness in the CMP, the film having the large dynamic hardness is preferable for the interlayer insulating film.




As described above, if the high-frequency power is applied to both the upper electrode


104


and the lower electrode


102


, the film whose dynamic hardness is lager that obtained when the high-frequency power is applied only to the upper electrode


104


can be formed. Accordingly, it is preferable to use the insulating film


204


, formed by applying the high-frequency power to both the upper and lower electrode


104


and


102


, for the insulating film which undergoes the polishing in the CMP process.




The leakage current of the insulating film


204


formed under the Condition C was of the order of 10


−10


A/cm


2


at the electric field strength of 1 MV/cm over all pressures. This value is quite satisfactorily for the practical use.




(2) The case where the electrode distance is 50 mm




The results of the examination set forth in the case (1) were derived when the electrode distance was fixed to 25 mm and the film forming conditions (except the electrode distance) were changed. However, it is considered that the property of the insulating film


204


may also changes as the electrode distance changes. Therefore, the inventors of this application examined how the property of the insulating film


204


changed by changing the electrode distance. In particular, the examination was carried out while fixing the electrode distance to 50 mm in the following.




(i) The case where the high-frequency power is applied only to the upper electrode


104


and the power of the high-frequency power is changed




The film forming conditions in this case are given as following Condition D.




(Condition D)




HMDS flow rate: 50 sccm




N


2


O flow rate: 200 sccm




substrate temperature: 350° C.




deposited film thickness: 500 nm




pressure: 0.9 Torr




frequency of the high-frequency power applied by the first high-frequency power supply


107


: 13.56 MHz




power of the second high-frequency power supply


109


: 0 W




As can be understood from the Condition D, the high-frequency power was applied only to the upper electrode


104


, and the high-frequency power was not applied to the lower electrode


102


.




When the power of the first high-frequency power supply


107


was changed under the Condition D, a relationship between the power of the first high-frequency power supply


107


and the relative dielectric constant of the insulating film


204


, and a relationship between the power and the refractive index of the insulating film


204


were obtained as shown in FIG.


8


.




As can be seen from

FIG. 8

, it can be understood that if the power of the high-frequency power was changed, the relative dielectric constant and the refractive index of the insulating film


204


were seldom changed. More specifically, the relative dielectric constant of the insulating film


204


is about 2.6 and the refractive index is about 1.38.




The leakage current of the insulating film


204


formed under the Condition D was of the order of 10


−10


A/cm


2


at the electric field strength of 1 MV/cm over all the powers of the first high-frequency power supply


107


. This value is quite satisfactorily for the practical use.




(ii) The case where the high-frequency power is applied to both the upper electrode


104


and the lower electrode


102


, and the power of the high-frequency power applied to the lower electrode


102


is changed




The film forming conditions in this case are given as following Condition E.




(Condition E)




HMDS flow rate: 50 sccm




N


2


O flow rate: 200 sccm




substrate temperature: 350° C.




deposited film thickness: 500 nm




pressure: 0.9 Torr




frequency of the high-frequency power applied by the first high-frequency power supply


107


: 13.56 MHz




power of the first high-frequency power supply


107


: 300 W




frequency of the high-frequency power applied by the second high-frequency power supply


109


: 380 KHz




When the power of the second high-frequency power supply


109


was changed under the Condition E, a relationship between the power of the second high-frequency power supply


109


and the relative dielectric constant of the insulating film


204


, and a relationship between the power and the refractive index of the insulating film


204


were obtained as shown in FIG.


9


.




As can be seen from

FIG. 9

, it can be understood that, if the power of the second high-frequency power supply


109


is increased, the relative dielectric constant and the refractive index of the film are increased correspondingly. However, it can be understood from

FIG. 9

that the relative dielectric constant and the refractive index have their maximum values when the power of the second high-frequency power supply


109


is around 100 W, and they are reduced when the power is larger than 100 W. Also, it can be seen from

FIG. 9

that the relative dielectric constant does not exceed 4.0 at the maximum value. Accordingly, even if the high-frequency power is applied to the upper electrode


104


and the lower electrode


102


, the relative dielectric constant of the insulating film


204


does not exceed the relative dielectric constant (4.1) of the conventional SiO


2


film.




Here, in order to see how the relative dielectric constant of the insulating film


204


changed when the electrode distance was changed, FIG.


5


and

FIG. 9

are compared in the following. Particularly, in order to avoid disparity in the condition other than the electrode distance, the relative dielectric constant (about 2.9) obtained when the pressure is 1.0 Torr in

FIG. 5

should be compared with the relative dielectric constant (about 2.6) obtained when the power of the second high-frequency power supply


109


is 0 W in FIG.


9


. These values were obtained respectively when the film forming conditions other than the electrode distance were set substantially equal. More specifically, these values were obtained when only the power of the first high-frequency power supply


107


, which was 300 W, was applied and the pressure was about 1.0 Torr.




As can be seen clearly by comparing these values, the dielectric constant obtained when the electrode distance was set to 50 mm became lower than that obtained when the electrode distance was set to 25 mm. The reason for this will be given as follows. That is, if the electrode distance is large, the area (sheath area) where the gradient of the potential appears between the electrodes is relatively reduced compared with the case where the electrode distance is narrow. If the sheath area is reduced in this manner, the acceleration of the methyl groups caused by this sheath area can be suppressed and decomposition of the methyl groups can also be suppressed. Therefore, the methyl groups can be taken into the insulating film


204


with their complete form, and therefore the dielectric constant of the insulating film


204


is lowered.




Therefore, in order to lower the dielectric constant of the insulating film


204


, it is preferable to expand the electrode distance. More specifically, it is preferable to set the electrode distance more than 25 mm.




The leakage current of the insulating film


204


formed under the Condition E was of the order of 10


−10


A/cm


2


at the electric field strength of 1 MV/cm at all powers of the second high-frequency power supply


109


. This value is quite satisfactorily for practical use.




(3) The case where H


2


O is employed as an oxidizing gas




The above results of the examination were obtained by employing N


2


O as the oxidizing gas. The inventors of this application examined how the property of the insulating film


204


changed when the film forming conditions were changed when using H


2


O as the oxidizing gas in place of N


2


O.




(i) The case where the high-frequency power is applied only to the lower electrode


102


and the pressure is changed




The film forming conditions in this case are given as following Condition F.




(Condition F)




HMDS flow rate: 50 sccm




H


2


O flow rate: 100 sccm




substrate temperature: 200° C.




deposited film thickness: 500 nm




electrode distance: 25 mm




power of the first high-frequency power supply


107


: 0 W




frequency of the high-frequency power applied by the second high-frequency power supply


109


: 380 KHz




power of the second high-frequency power supply


109


: 100 W




As can be understood from the Condition F, the high-frequency power was applied only to the lower electrode


102


and was not applied to the upper electrode


104


.




When the pressure was changed under the Condition F, a relationship between the relative dielectric constant of the insulating film


204


and the pressure, and a relationship between the refractive index and the pressure were obtained as shown in FIG.


10


.




As can be seen from

FIG. 10

, it can be understood that the relative dielectric constant and the refractive index of the insulating film


204


are monotonously reduced as the pressure of the atmosphere is increased. It can also be understood that the relative dielectric constant of the insulating film


204


is lower than that of the conventional SiO


2


film (4.1) at all pressures.




The leakage current of the insulating film


204


formed under the Condition F was of the order of 10


−10


A/cm


2


at the electric field strength of 1 MV/cm at all pressures. This value is quite satisfactorily for practical use.




(ii) The examination results of H


2


O contained in the film




If H


2


O is used as the oxidizing gas as above, there is the possibility that H


2


O is contained in the insulating film


204


. The inventors of this application therefore examined how the H


2


O contained in the insulating film


204


changed when the pressure was changed under the Condition F.




The results of this examination are shown in FIG.


11


.

FIG. 11

shows the measurement results measured by the Infrared Absorption Spectroscopy.




If H


2


O is contained in the film, a peak appears in vicinity of the wave number of 3600 cm


−1


. However, as can be seen from

FIG. 11

, no peak appears in vicinity of 3600 cm


−1


at all pressures. This means that regardless of the pressure of the atmosphere, no H


2


O is contained in the insulating film


204


that is formed in accordance with the Condition F.




In general, if H


2


O is contained in the interlayer insulating film, H


2


O diffuses into the underlying wiring layer formed under the interlayer insulating film, and such a problem arises that the wiring layer corrodes due to the diffusion of the H


2


O. As described above, in the present embodiment, even if H


2


O is uses as the oxidizing gas, no H


2


O is contained in the insulating film


204


, and thus such problem does not arise.




In addition, according to the results of another examination made by the inventors of this application, such a good result was obtained that the film thickness uniformity of the insulating film


204


is less than 3%.




(iii) The case where the high-frequency power is applied also to the upper electrode


104


, and the power of the high-frequency power applied to the lower electrode


102


is changed




In the Condition F, the high-frequency power is applied only to the lower electrode


102


. The inventors of this application examined how the property of the insulating film


204


changed when the high-frequency power was applied also to the upper electrode


104


and the power of the high-frequency power applied to the lower electrode


102


was changed.




The film forming conditions in this case are given as following Condition G.




(Condition G)




HMDS flow rate: 50 sccm




H


2


O flow rate: 250 sccm




substrate temperature: 375° C.




deposited film thickness: 500 nm




electrode distance: 25 mm




pressure: 2.3 Torr




frequency of the high-frequency power applied by the first high-frequency power supply


107


: 13.56 MHz




power of the first high-frequency power supply


107


: 300 W




frequency of the high-frequency power applied by the second high-frequency power supply


109


: 380 KHz




When the relative dielectric constant and the refractive index of the resultant insulating film


204


examined while changing the power of the high-frequency power applied by the second high-frequency power supply


109


under Condition G, the results shown in

FIG. 12

were obtained.




As shown in

FIG. 12

, it can be understood that as the power of the second high-frequency power supply


109


is reduced, the relative dielectric constant and the refractive index of the insulating film


204


are lowered.




Next, the inventors of this application examined the leakage current of the insulating film


204


formed under the Condition G by changing variously the power of the second high-frequency power supply


109


as in the above.




In this examination, as shown in

FIG. 13

, the insulating film


204


was formed on a p-type silicon substrate


207


under the Condition G. Then, with the p-type silicon substrate


207


being grounded, a mercury probe


208


, which has an electrode area of 0.02258 cm


2


, was brought into contact with the upper surface of the insulating film


204


, and a negative potential is given to the mercury probe


208


.




Results of the examination are shown in FIG.


14


. In

FIG. 14

, an ordinate represents the leakage current (A/cm


2


) of the insulating film


204


in a logarithmic scale. On the other hand, an abscissa represents the strength of the electric field (MV/cm) applied to the insulating film


204


, and a (−) sign indicates that the negative potential is applied to the mercury probe 208.




As shown in

FIG. 14

, the leakage current is 10


−10


to 10


−9


A/cm


2


at −1 MV/cm, and this value is quite satisfactorily for practical use.




(iv) Examination results of NH


3


contained in the film




It is preferable that, when the insulating film


204


is used as the interlayer insulating film and chemical amplification resist is coated on the insulating film


204


for pattering, NH


3


is not contained in the insulating film


204


. This is because, if NH


3


is contained in the insulating film


204


, the chemical amplification resist formed on the insulating film


204


is crosslinked by the NH


3


when the resist undergoes patterning, and thus the desired resist pattern cannot be formed. Especially, in case where the fine pattern is required for the resist, this phenomenon becomes prominent, which poses a barrier to implement fine patterning for the underlying insulating film.




When the nitrogen oxide (N


2


O, etc.), which serves as the oxidizing gas, is added into the reaction gas, NH


3


is apt to be contained in the film because of N (nitrogen) in the nitrogen oxide. In order to verify this phenomenon, the inventors of this application formed the insulating film by using Si(CH


3


)


4


and N


2


O, and then examined an amount of NH


3


in the insulating film. The film forming conditions for this insulating film are given as following Condition H.




(Condition H)




Si(CH


3


)


4


flow rate: 80 sccm




N


2


O flow rate: 320 sccm




substrate temperature: 350° C.




deposited film thickness: 500 nm




pressure: 1 Torr




frequency of the high-frequency power applied by the first high-frequency power supply


107


: 13.56 MHz




power of the first high-frequency power supply


107


: 300 W




frequency of the high-frequency power applied by the second high-frequency power supply


109


: 400 KHZ




power of the second high-frequency power supply


109


: 30 W




The results of an amount of NH


3


contained in the insulating film formed under the Condition H are shown in FIG.


15


.

FIG. 15

is graph showing the results of an amount of NH


3


measured by the TDS (Thermal Desorption Spectroscopy) method. An abscissa of this graph represents the temperature (° C.) at which the insulating film is heated in the measurement. On the other hand, an ordinate represents the relative ion intensity (%) of monovalent positive ion whose molecular weight is 17. Here, the relative ion intensity (%) is defined as (ion intensity of the monovalent positive ion whose molecular weight is 17)/(total ion intensity desorped by heating). NH


3


is ionized to NH


3




+


by the heating and since the NH


3




+


is monovalent positive ion whose molecular weight is 17, what depicted in the

FIG. 15

is the relative ion intensity of the NH


3




+


.




As can be seen from

FIG. 15

, it can be understood that when the bias is applied (which means the power of the second high-frequency power supply


109


is applied to the lower electrode


102


as in the condition H), NH


3




+


is desorped at the temperature of about 250° C. It can also be understood that when no bias is applied (which means the power of the second high-frequency power supply


109


is not applied to the lower electrode


102


), NH


3




+


is desorped at the temperature of about 400° C.




In this manner, it can be understood that if the nitrogen oxide (N


2


O, etc.) is used as the oxidizing gas, NH


3


is contained in the film regardless whether the bias is applied or not.




On the contrary, it is considered that if H


2


O is used as the oxidizing gas, NH


3


is not contained in the film. In order to verify this, the inventors of this application examined an amount of NH


3


contained in the insulating film


204


that is formed under the following Condition I.




(Condition I)




HMDS flow rate: 50 sccm




H


2


O flow rate: 250 sccm




substrate temperature: 375° C.




deposited film thickness: 500 nm




electrode distance: 25 mm




frequency of the high-frequency power applied by the first high-frequency power supply


107


: 13.56 MHz




power of the first high-frequency power supply


107


: 300 W




power of the second high-frequency power supply


109


: 0 W




As can be seen from the Condition I, the high-frequency power is applied only to the upper electrode


104


and is not applied to the lower electrode


102


. That is, bias is not applied in the Condition I.




When the pressure in forming the film was changed variously under the Condition I, an amount of NH


3


contained in the insulating film


204


was measured as shown in FIG.


16


.

FIG. 16

is a graph showing the results obtained when the amount of NH


3


contained in the insulating film was measured by the TDS method. Since the abscissa and the ordinate of this graph are the same as those explained previously in

FIG. 15

, their explanation will be omitted.




Although the desorption begins at the temperature of 600° C. in

FIG. 16

, this is not due to NH


3




+


but due to the isotope of CH


4




+


whose molecular weight is 17. In this manner, if H


2


O is used as the oxidizing gas, the amount of NH


3


contained in the film can be largely reduced compared with the case where N


2


O is used as the oxidizing gas. Therefore, if the insulating film


204


is formed by using H


2


O as the oxidizing gas and the chemical amplification resist is formed thereon, the chemical amplification resist can be patterned with desired precision. This respect will be explained with

FIGS. 20A

to


20


G, in which the damascene process is exemplified.

FIGS. 20A

to


20


G are sectional views showing a sectional shape respectively when the damascene process is applied to the insulating film


204


formed by using H


2


O as the oxidizing gas.




First, as shown in

FIG. 20A

, a lower copper wiring layer


210


is formed on an underlying interlayer insulating film


209


and then a blocking film


211


such as an SiN film, etc. is formed thereon.




Then, as shown in

FIG. 20B

, the insulating film


204


is formed on the blocking film


211


under the Condition I. At this time, as described above, an amount of NH


3


contained in the insulating film


204


is sufficiently reduced.




Then, as shown in

FIG. 20C

, chemical amplification resist


216


is coated on the insulating film


204


.




Then, as shown in

FIG. 20D

, an opening portion


216




a


is formed by patterning the chemical amplification resist


216


by virtue of the photolithography. As described above, since an amount of NH


3


contained in the insulating film


204


has been sufficiently reduced, the chemical amplification resist


216


is not crosslinked by NH


3


during undergoing this patterning. Therefore, fine pattern of the chemical amplification resist


216


can be obtained in this step, and thus a diameter of the opening portion


216




a


can be made small desirably.




Then, as shown in

FIG. 20E

, using the chemical amplification resist


216


as an etching mask, an opening portion


204




a


is formed by etching the insulating film


204


This etching is carried out by the RIE, in which a gas mixture containing CF


4


+CHF


3


or C


4


F


8


is used as the etching gas. Since the pattern of the chemical amplification resist


216


is formed finely as described above, the pattern of the insulating film


204


can also be formed finely. Thus, the opening portion


204




a


with a small diameter can be formed in the insulating film


204


. In this etching, the blocking film


211


has etching resistance against the gas mixture containing CF


4


+CHF


3


, which is used as etching gas. Therefore, the blocking film


211


is not etched by this etching.




Then, as shown in

FIG. 20F

, using the chemical amplification resist


216


as a etching mask, the blocking film


211


is etched by the RIE. In this RIE, a gas mixture containing CF


4


+CHF


3


, in which the gas composition ratio is changed than that used in etching the insulating film


204


, is plasmanized. By this plasmanised gas mixture, an opening portion


211




a


is formed in the blocking film


211


located under the opening portion


216




a


, and a surface of the lower copper wiring layer


210


is exposed. As a result, a via hole


214


reaching the lower copper wiring layer


210


is formed by this step.




Then, as shown in

FIG. 20G

, after the chemical amplification resist


216


is removed, a barrier metal layer (not shown) such as the TiN film, etc. is formed on a side wall of the via hole


214


, and then a copper plating film


215


is formed in the inside of the via hole


214


and on the insulating film


204


. This copper plating film


215


is formed by supplying a current to a copper seed layer (not shown), which is formed on the inner surface of the via hole


214


and the upper surface of the insulating film


204


by means of sputter method, etc.




After this step, the copper plating film


215


formed on the insulating film


204


is removed by the CMP (Chemical Mechanical Polishing) method, and then an upper copper wiring layer (not shown) is formed on the insulating film


204


.




As described above, if the insulating film


204


is formed by using the reaction gas containing HMDS and H


2


O, and then the chemical amplification resist


216


is formed thereon, the chemical amplification resist


216


is not crosslinked by NH


3


. Therefore, since the chemical amplification resist


216


can be patterned finely, the insulating film


204


can be etched finely using the chemical amplification resist


216


as a etching mask.




In this fashion, if the insulating film


204


is formed by using the reaction gas containing HMDS and H


2


O, not only the dielectric constant of the film


204


can be lowered, but also the amount of NH


3


in the film


204


can be reduced and therefore the fine pattern can easily be made in the film


204


.




Next, the inventors of this application examined the relative dielectric constant and the refractive index of the insulating film


204


obtained when the pressure of the atmosphere was changed under the Condition I. The examination results are shown in FIG.


17


.




As shown in

FIG. 17

, it can be understood that as the pressure is increased, both the relative dielectric constant and the refractive index reduces.




In addition, the inventors of this application examined the leakage current in the insulating film


204


formed under the same conditions as FIG.


17


. Since the leakage current measuring method is the same as that explained with reference to

FIG. 13

, its explanation will be omitted.




The examination results are shown in FIG.


18


. As shown in

FIG. 18

, the leakage current is 10


−10


to 10


−9


A/cm


2


at −1 MV/cm, and this value is quite satisfactorily for practical use.




As described above, according to the film forming method of the present invention, the insulating film containing silicon is formed by using the compound having the siloxane bond or the Si(OR)


n


H


m


compound. The alkoxy or alkyl group is contained in the insulating film, and the dielectric constant of the portion of the film in which The alkoxy or alkyl group is contained is lowered, and thus the dielectric constant of the entire film is lowered.




Also, in the compound having the siloxane bond or the Si(OR)


n


H


m


compound, Si and O have already been bonded. Therefore, when the insulating film containing silicon is formed by using these compounds, many Si—C bonds are hard to be formed in the film. Therefore, the increase in the leakage current due to the Si—C bond can be reduced in the insulating film containing silicon formed as above.




Especially, when the parallel plate type plasma chemical vapor deposition equipment is used as the film forming equipment, and also the gas containing HMDS (chemical formula: (Si(CH


3


)


3


)


2


O) and N


2


O is used as the reaction gas, following particular advantages can be achieved respectively if the film is formed under following conditions.




(1) Applying the high-frequency power to both the upper and lower electrode.




According to this condition, the insulating film containing silicon having the larger dynamic hardness than the case where the high-frequency power is applied only to the upper electrode can be formed.




(2) Applying the high-frequency power to both the upper and lower electrode, and setting the pressure of the atmosphere to more than 0.5 Torr.




According to this condition, the insulating film containing silicon having the larger dynamic hardness than the case where the high-frequency power is applied only to the upper electrode and having the lower dielectric constant than that of the SiO


2


film can be formed.




(3) Applying the high-frequency power only to the upper electrode, and setting the electrode distance to more than 25 mm.




According to this condition, the insulating film containing silicon having the lower dielectric constant than the case where the high-frequency power is applied only to the upper electrode and the distance between the upper and lower electrodes is less than 25 mm can be formed.




Also, if the reaction gas containing HMDS and H


2


O is used, NH


3


is seldom contained in the resultant insulating film containing silicon. Therefore, the chemical amplification resist formed on the insulating film containing silicon is never crosslinked by NH


3


. As a result, the resist can be finely patterned and thus the insulating film containing silicon can be finely patterned desirably.




The invention is not to be constructed as limited to the particular examples describes herein, as these are to be regarded as illustrative, rather than restrictive. The invention is intended to cover all process and structures which do not depart from the spirit and scope of the invention. For example, though in the examples and examination therein the HMDS are utilized, other compounds having the siloxane bonds such as OMCTS, HEDS, TMDS, TEDS, TMCTS, TETCS may be utilizing alternatively.



Claims
  • 1. A film forming method for forming an insulating film containing silicon on a substrate comprising converting a mixture of a gas of a compound having siloxane bonds and an oxidizing gas to a plasma and contacting the substrate with the plasma, whereby the gases react with each other to form the insulating film on the substrate, said insulating film having a dielectric constant which is lower than that of a silicon oxide film.
  • 2. A film forming method according to claim 1, wherein the compound having the siloxane bonds is selected from the group consisting of (Si(CH3)3)2O, (Si(CH3)2)4O4, (Si(C2H5)3)2O, (SiH(CH3)2)2O, (SiH(C2H5)2)2O, (SiH(CH3))4O4, and (SiH(C2H5))4O4.
  • 3. A film forming method according to claim 2, wherein the oxidizing gas contains at least one gas selected from the group consisting of N2O, O2, H2O, and CO2.
  • 4. A film forming method according to claim 3, wherein an inert gas is further added to said mixture which is converted to the plasma.
  • 5. A film forming method according to claim 1, wherein the converting to a plasma is performed by applying a high-frequency power to the mixture.
  • 6. A film forming method according to claim 5, wherein the high-frequency power is applied intermittently to the mixture.
  • 7. A film forming method using a parallel plate type plasma chemical vapor deposition apparatus in which an upper electrode and a lower electrode are provided opposing each other in a chamber, said method comprising:introducing a reaction gas containing (Si(CH3)3)2O and N2O into the chamber with a substrate therein; and applying high-frequency power to the electrodes to convert the reaction gas to a plasma, said plasma forming an insulating film containing silicon on the substrate, said insulating film having a dielectric constant which is lower than that of a silicon oxide film.
  • 8. A film forming method according to claim 7, wherein pressure within the chamber is more than 0.5 Torr.
  • 9. A film forming method using a parallel plate type plasma chemical vapor deposition apparatus in which an upper electrode and a lower electrode are provided opposing each other in a chamber and spaced apart more than 25 mm, said method comprising:introducing a reaction gas containing (Si(CH3)3)2O and N2O into the chamber with a substrate therein; and applying high-frequency power to only the upper electrode to convert the reaction gas to a plasma, said plasma forming an insulating film containing silicon on the substrate, said insulating film having a dielectric constant which is lower than that of a silicon oxide film.
  • 10. A film forming method for forming an insulating film containing silicon on a substrate comprising converting a gaseous admixture of a gas of a Si(OR)nHm compound (where R is an alkyl group, n and m denote integers satisfying n+m=4 and m≧†0) and an oxidizing gas to a plasma and contacting the substrate with the plasma, whereby the gases react with each other to form the insulating film on the substrate.
  • 11. A film forming method according to claim 10, wherein the Si(OR)nHm compound is selected from the group consisting of Si(OCH3)3H, Si(OC2H5)3H, Si(OCH3)4, and Si(OC2H5)4.
  • 12. A film forming method according to claim 11, wherein the oxidizing gas contains at least one compound selected from the group consisting of N2O, O2, H2O, and CO2.
  • 13. A film forming method according to claim 10, wherein a CpHq compound is further added to the gaseous admixture which is converted to the plasma.
  • 14. A film forming method according to claim 13, wherein the CpHq compound is selected from the group consisting of CH4, C2H4, and C2H6.
  • 15. A film forming method according to claim 14, wherein an inert gas is further added to the gaseous admixture which is converted to the plasma.
  • 16. A film forming method according to claim 1, wherein a gas containing at least one of O2, N2O, and NH3 is converted to a second plasma and, after the insulating film containing silicon is formed, a surface of the insulating film containing silicon is exposed to the second plasma.
  • 17. A film forming method according to claim 1, wherein an underlying insulating film is formed on the substrate and the insulating film containing silicon is formed on the underlying insulating film.
  • 18. A film forming method according to claim 1, wherein a cover insulating film is formed over the insulating film containing silicon.
  • 19. A semiconductor device comprising the insulating film containing silicon formed by employing the film forming method set forth in claim 1.
  • 20. A film forming method according to claim 10 wherein said oxidizing gas is N2O.
Priority Claims (3)
Number Date Country Kind
11-375611 Dec 1999 JP
2000-188307 Jun 2000 JP
2000-263991 Aug 2000 JP
US Referenced Citations (5)
Number Name Date Kind
5521126 Okamura et al. May 1996 A
5605867 Sato et al. Feb 1997 A
5656337 Park et al. Aug 1997 A
5989998 Sugahara et al. Nov 1999 A
20010023125 Nishimoto et al. Sep 2001 A1
Foreign Referenced Citations (10)
Number Date Country
0 299 754 Jul 1988 EP
0 573 911 Jun 1993 EP
6-168930 Jun 1994 JP
7-211712 Aug 1995 JP
10-189577 Jul 1998 JP
10-284486 Oct 1998 JP
11-288931 Oct 1999 JP
1998-019144 Jun 1998 KR
1998-063389 Oct 1998 KR
9941423 Feb 1999 WO
Non-Patent Literature Citations (1)
Entry
Hegemann et al., Deposition of SiOx films from O2/HMDSO plasmas, 6th International Conference on Plasma Surface Engineering, Germany Sept. 14-18,1998, vol. 116-119, pp. 1033-1036.