Field effect transistors (FETs) can be formed in a variety of ways to serve a variety of purposes for integrated circuits and other devices. FETs are formed as “planar” devices in some integrated circuits, i.e., as devices in which the conduction channel has width and length extending in a direction parallel to the major surface of a substrate. FETs can be formed in a silicon-on-insulator (SOI) layer of a substrate or in a bulk silicon substrate.
FETs having a non-planar conduction channel may also be fabricated. In such non-planar FETs, either the length or the width of the transistor channel is oriented in the vertical direction, that is, in a direction perpendicular to the major surface of the substrate. In one such type of device, commonly referred to as the fin field effect transistor (FinFET), the width of the conduction channel is oriented in the vertical direction, while the length of the channel is oriented parallel to the major surface of the substrate. With such orientation of the channel, FinFETs can be constructed to have a larger width conduction channel than planar FETs so as to produce larger current drive than planar FETs which occupy the same amount of integrated circuit area (the area parallel to the major surface of the substrate).
Fin field effect transistors (FinFETs) that include gate field plating about three sides of a fin are disclosed herein. In one example, an integrated circuit includes a substrate having a semiconductor portion that extends from a surface of the substrate to form a fin for a FinFET. The fin includes a source region, a drain region, a drift region, and a body region between the source region and the drift region. The drift region is adjacent the drain region. A field plating oxide layer is formed on a first side, a second side, and a third side of the drift region.
In another example, a method for fabricating an integrated circuit includes forming a fin of a FinFET on a semiconductor surface of a silicon substrate. A dielectric layer is formed on the fin. The dielectric layer is etched to form a field plating oxide layer on a first side, a second side, and a third side of a drift region of the fin.
In a further example, an integrated circuit includes a substrate, a fin extending from the surface of the substrate, a field plating oxide layer, and a gate oxide layer. The fin includes a source region, a drain region, a drift region, and a body region. The drift region is adjacent the drain region. The body region is adjacent the drift region. The field plating oxide layer is on a first side, a second side, and a third side of the drift region. The gate oxide layer is on a first side, a second side, and a third side of the body region. The field plating oxide layer is thicker than the gate oxide layer.
For a detailed description of various examples, reference will now be made to the accompanying drawings in which:
Gate field plating is used in planar transistors to increase drain breakdown voltage and reduce leakage current. The fin field effect transistors (FinFETs) disclosed herein include field plating formed on three sides of the fin. More specifically, the field plating is provided on three sides of a drift region of the fin. A method for fabricating the FinFET with field plating is disclosed.
In block 102, buried and/or well layers are formed in a substrate. The substrate may be bulk silicon, silicon on insulator (SOI), silicon-germanium, gallium arsenide, etc. In one example, a reduced surface field (RESURF) layer is formed on the oxide layer of an SOI substrate. In another example, an n-type layer is formed in a bulk silicon substrate and a RESURF layer is formed on the n-type layer.
In block 104, a fin is formed on the substrate. The fin may be formed by etching the substrate to create a fin of the substrate material. In some implementations of the method 100, an epitaxial layer (e.g., monocrystalline silicon) is grown on the substrate after buried and/or well layers are formed in block 102, and the epitaxial layer is etched to form a fin. While a single fin is referenced herein as a matter of clarity, in practice, any number of fins may be formed.
In block 106, additional buried and/or well structures are formed. For example, impurities may be added to the silicon of the fin to adjust the threshold voltage or other parameters of the FinFET. In some implementations of the method 100, an n-type drift layer may be formed on a portion of the fin 204 to improve drain breakdown voltage in the FinFET, and/or a RESURF layer may be formed by implantation at the base of the fin 204.
In block 108, shallow trench isolation (STI) formed on the substrate 202. The STI isolates the gate region, formed at block 122, from the substrate 202. STI formation includes depositing a dielectric material, such as silicon dioxide, on the substrate to fill a space about the fin 204, and etching the dielectric material to a desired thickness, thereby exposing a desired height of the fin 204.
In block 110, a thick dielectric layer is formed on the fin 204 and the STI 306. The term “thick” is used in this instance to refer to a thickness greater than that of the subsequently formed gate dielectric layer. The thick dielectric layer may be silicon dioxide and have a thickness of about 300-1200 angstroms in some implementations. In some implementations, a layer of tetraethoxysilane (TEOS) may be deposited over the thick dielectric layer.
In block 112, a layer of photoresist material is applied over the thick dielectric layer formed in block 110. The photoresist material patterns the dielectric layer for creation of a field plating oxide on the drift region of the fin 204.
In block 114, the thick dielectric layer formed in block 112 is etched to create field plating oxide (a field plating oxide layer) on the drift region 402 of the fin 204. For example, the thick dielectric layer is removed from all surfaces of the fin 204 except surfaces of the drift region 402. Wet etching may be applied to remove the thick dielectric layer.
In block 116, a layer of dielectric material (a gate dielectric layer) is formed on the fin 204. This layer of dielectric material may be silicon dioxide. The layer of dielectric material formed in block 110 is thicker than the layer of dielectric material formed in block 116. For example, the oxide layer formed in block 116 may be about 120 angstroms thick for a 5 volt gate oxide, and about 80 angstroms thick for a 3 volt gate oxide.
In block 118, a conductive layer, such as polysilicon, is deposited on the gate dielectric 702 of the fin 204, and on at least a portion of the field plating dielectric 602 of the fin 204. A layer of photoresist material is applied over the conductive layer. The photoresist material patterns the conductive layer for creation of a gate region on the body region 404 and a field plate on a portion of drift region 402 of the fin 204.
In block 120, the conductive layer 802 is etched to form the gate region on the body region 404 and the field plate on a portion of drift region 402 of the fin 204.
In block 122, a drain region is formed adjacent the drift region 402, and source region is formed adjacent the body region 404. For example, in a NMOS FinFET, a P-type dopant is implanted in the body region 404, and an N-type dopant is implanted in the source region 408 and the drain region 406.
In block 124, back end of line (BEOL) processing is performed. For example, metal terminals and/or routing traces are added to the source region 408, the drain region 406, and the gate region 902.
Modifications are possible in the described embodiments, and other embodiments are possible, within the scope of the claims.
The present application is a Division of U.S. patent application Ser. No. 16/920,903, entitled “FIN FIELD EFFECT TRANSISTOR WITH FIELD PLATING,” filed on Jul. 6, 2020, which is hereby incorporated by reference in its entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
7888192 | Marshall et al. | Feb 2011 | B2 |
10096519 | Shieh et al. | Oct 2018 | B2 |
20100200915 | Denison | Aug 2010 | A1 |
20110306172 | Denison | Dec 2011 | A1 |
20140015048 | Ng | Jan 2014 | A1 |
20140118814 | Uhm et al. | May 2014 | A1 |
20140151798 | Meiser | Jun 2014 | A1 |
20140183629 | Meiser | Jul 2014 | A1 |
20150028348 | Jacob et al. | Jan 2015 | A1 |
20150035053 | Singh | Feb 2015 | A1 |
20150091083 | Poelzl | Apr 2015 | A1 |
20150118814 | Ng et al. | Apr 2015 | A1 |
20160093731 | Meiser et al. | Mar 2016 | A1 |
20160308044 | Meiser et al. | Oct 2016 | A1 |
20170301762 | Ng et al. | Oct 2017 | A1 |
20180026133 | Meiser et al. | Jan 2018 | A1 |
20210391460 | Chuang | Dec 2021 | A1 |
Entry |
---|
International Search Report and Written Opinion dated Dec. 23, 2021, PCT Application No. PCT/IB2021/000513, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20230085365 A1 | Mar 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16920903 | Jul 2020 | US |
Child | 18056962 | US |