Integrated circuit fabrication

Information

  • Patent Grant
  • 8507341
  • Patent Number
    8,507,341
  • Date Filed
    Thursday, April 12, 2012
    12 years ago
  • Date Issued
    Tuesday, August 13, 2013
    11 years ago
Abstract
A method for defining patterns in an integrated circuit comprises defining a plurality of features in a first photoresist layer using photolithography over a first region of a substrate. The method further comprises using pitch multiplication to produce at least two features in a lower masking layer for each feature in the photoresist layer. The features in the lower masking layer include looped ends. The method further comprises covering with a second photoresist layer a second region of the substrate including the looped ends in the lower masking layer. The method further comprises etching a pattern of trenches in the substrate through the features in the lower masking layer without etching in the second region. The trenches have a trench width.
Description
FIELD OF THE INVENTION

The present invention relates generally to integrated circuit fabrication, and more specifically to masking techniques.


BACKGROUND OF THE INVENTION

Integrated circuits are continuously being made smaller as demand for portability, computing power, memory capacity and energy efficiency in modern electronics grows. Therefore, the size of the integrated circuit constituent features, such as electrical devices and interconnect line widths, is also decreasing continuously. The trend of decreasing feature size is evident in memory circuits or devices such as dynamic random access memory (“DRAM”), flash memory, nonvolatile memory, static random access memory (“SRAM”), ferroelectric (“FE”) memory, logic gate arrays and so forth.


For example, DRAM typically comprises millions of identical circuit elements, known as memory cells. In its most general form, a memory cell typically consists of two electrical devices: a storage capacitor and an access field effect transistor. Each memory cell is an addressable location that can store one binary digit (“bit”) of data. A bit can be written to a cell through the transistor and read by sensing charge on the storage electrode from the reference electrode side. By decreasing the sizes of constituent electrical devices and the conducting lines that access them, the sizes of the memory devices incorporating these features can be decreased. Thus, storage capacities can be increased by fitting more memory cells into the memory devices.


As another example, flash memory (for example, electrically erasable programmable read only memory or “EEPROM”) is a type of memory that is typically erased and reprogrammed in blocks instead of one byte at a time. A typical flash memory comprises a memory array, which includes a large number of memory cells. The memory cells include a floating gate field effect transistor capable of holding a charge. The data in a cell is determined by the presence or absence of the charge in the floating gate. The cells are usually grouped into sections called “erase blocks.” The memory cells of a flash memory array are typically arranged into a “NOR” architecture (each cell directly coupled to a bit line) or a “NAND” architecture (cells coupled into “strings” of cells, such that each cell is coupled indirectly to a bit line and requires activating the other cells of the string for access). The cells within an erase block can be electrically programmed in a random basis by charging the floating gate. The charge can be removed from the floating gate by a block erase operation, wherein all floating gate memory cells in the erase block are erased in a single operation.


The pitch of a pattern is defined as the distance between an identical point in two neighboring pattern features. These features are typically defined by openings in, and spaced from each other by, a material, such as an insulator or conductor. Thus, pitch can be understood as the sum of the width of a feature and the width of the space separating that feature from a neighboring feature.


SUMMARY OF THE INVENTION

In one embodiment of the present invention, a method for defining patterns in an integrated circuit comprises defining a plurality of features in a first photoresist layer using photolithography over a first region of a substrate. Pitch multiplication is used to produce at least two features in a lower masking layer for each feature in the photoresist layer. The features in the lower masking layer include looped ends. A second photoresist layer covers a second region of the substrate including the looped ends in the lower masking layer. A pattern of trenches is etched in the substrate through the features in the lower masking layer without etching in the second region. The trenches have a trench width.


In another embodiment of the present invention, a method of making a plurality of conductive lines in an array comprises providing a film stack. The film stack includes a substrate in contact with a plurality of conductive plugs, an insulating film overlying the conductive plugs, a lower mask layer overlying the insulating film, and an array of spacers formed over the lower mask layer. A sacrificial film is deposited over the lower mask layer and the array of spacers. A secondary mask is formed over a portion of the sacrificial film. The secondary mask defines an opening in the array of spacers. The lower mask layer and the sacrificial film can be etched selectively with respect to the secondary mask. The sacrificial film is etched and a portion of the lower mask layer is exposed. The method further comprises etching the lower mask layer and exposing a portion of the insulating film. A plurality of trenches are etched in the insulating film, the lower mask layer, and the sacrificial film to expose at least a portion of the conductive plugs. A blanket metal deposition is performed. A planar surface is then formed, alternating between metal and insulating film in a damascene process.


In another embodiment of the present invention, a method of pitch multiplication for damascene features in an integrated circuit comprises providing a substrate. A first masking process is performed to define an array of spacer lines over the substrate. The spacer lines are separated by a plurality of gaps. A second masking process is performed to block a portion of the spacer lines and that defines a plurality of interconnects in a logic region of the integrated circuit. A plurality of trenches are etched in the gaps between the spacer lines. A metal layer is deposited to form a plurality of metal lines in the gaps between the spacer lines. The integrated circuit is provided with a substantially planar surface in a damascene process.


In another embodiment of the present invention, a method of forming integrated circuit components on a substrate comprises using a lithographic technique to pattern a first resist layer and define a plurality of lines. A pitch multiplication technique is used to form a pattern of spacers around a region defined by the plurality of lines. The spacers comprise elongate loops having loop ends. A second resist layer is deposited over the loop ends to define a blocked region of the substrate. The method further comprises selectively etching through the spacers to from a plurality of trenches in the substrate without etching in the blocked regions.





BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments of the integrated circuits and integrated circuit fabrication techniques are illustrated in the accompanying drawings, which are for illustrative purposes only. The drawings comprise the following figures, which are not necessarily drawn to scale. In the figures like numerals indicate like parts.



FIG. 1A is a cross-sectional view of a substrate having a plurality of mask lines formed thereon.



FIG. 1B is a cross-sectional view of the substrate of FIG. 1A after an anisotropic etch process transferring the mask pattern into a temporary layer.



FIG. 1C is a cross-sectional view of the substrate of FIG. 1B after removal of the mask lines and an isotropic “shrink” etch.



FIG. 1D is a cross-sectional view of the substrate of FIG. 1C after blanket deposition of a spacer material of mandrels left in the temporary layer.



FIG. 1E is a cross-sectional view of the substrate of FIG. 1D after a directional spacer etch process to leave pitch-multiplied features or spacers.



FIG. 1F is a cross-sectional view of the substrate of FIG. 1E after removal of the mandrels.



FIG. 2 is a schematic top view of an exemplary partially formed integrated circuit.



FIG. 3 is a schematic, cross-sectional side view of the partially formed integrated circuit of FIG. 2 after forming a plurality of pitch-multiplied features in and over the substrate.



FIG. 4 is a schematic, cross-sectional side view of the partially formed integrated circuit of FIG. 3 after forming an insulating film thereover.



FIG. 5 is a schematic, cross-sectional side view of the partially formed integrated circuit of FIG. 4 after forming a hard mask layer thereover.



FIG. 6A is a schematic, cross-sectional side view of the partially formed integrated circuit of FIG. 5 after forming a plurality of spacers thereover.



FIG. 6B is a schematic top view of the partially formed integrated circuit of FIG. 6A.



FIG. 7 is a schematic, cross-sectional side view of the partially formed integrated circuit of FIG. 6A after deposition of a bottom antireflective coating (“BARC”) thereover.



FIG. 8A is a schematic, cross-sectional side view of the partially formed integrated circuit of FIG. 7 after formation of a second photoresist pattern thereover.



FIG. 8B is a schematic top view of the partially formed integrated circuit of FIG. 8A.



FIG. 9 is a schematic, cross-sectional side view of the partially formed integrated circuit of FIG. 8A after etching the bottom antireflective coating.



FIG. 10A is a schematic, view of the partially formed integrated circuit of FIG. 9 after etching the hard mask layer through the spacers and the second photoresist pattern; the view is a cross-section taken along a line perpendicular to a spacer loop.



FIG. 10B is a schematic view of the partially formed integrated circuit of FIG. 9 after etching the hard mask layer through the spacers and the second photoresist pattern; the view is a cross-section taken along the length of a spacer loop.



FIG. 11 is a schematic, cross-sectional view of the partially formed integrated circuit of FIG. 10A after etching insulating film and removing the photoresist, the BARC and the spacers.



FIG. 12 is a schematic, cross-sectional view of the partially formed integrated circuit of FIG. 11 after deposition of a conductive material thereover.



FIG. 13 is a schematic, cross-sectional view of the partially formed integrated circuit of FIG. 12 after a chemical mechanical planarization process is performed.



FIG. 14 is a flowchart illustrating an exemplary process for forming certain of the integrated circuit structures disclosed herein.



FIG. 15 is a schematic top view of a partially formed integrated circuit including spacer loops and a metal layer.



FIG. 16 is a schematic, cross-sectional view of the partially formed integrated circuit of FIG. 13, further including an overhead contact between the array region and the peripheral region.



FIG. 17A is a layout view of a first mask formed by a photolithographic process; the first mask defines a plurality of mandrels.



FIG. 17B is a layout view of a spacer pattern obtained by performing a pitch multiplication technique on the mandrels of FIG. 17A.



FIG. 17C is a layout view of a partially formed integrated circuit formed by application of a second metal mask to the spacer pattern of FIG. 17B.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The continual reduction in feature size places ever greater demands on techniques used to form the features. For example, photolithography is commonly used to pattern features, such as lines, on a substrate. The concept of pitch can be used to describe the size of these features. Due to optical factors such as light or radiation wavelength, however, photolithography techniques have a minimum pitch below which features cannot be formed reliably. Thus, the minimum pitch of a photolithographic technique can limit feature size reduction.


Pitch doubling is one method proposed for extending the capabilities of photolithographic techniques beyond their minimum pitch. Such a method is illustrated in FIGS. 1A-1F and is described in U.S. Pat. No. 5,328,810 (issued 12 Jul. 1994), the entire disclosure of which is incorporated herein by reference. With reference to FIG. 1A, photolithography is first used to form a pattern of lines 10 in a photoresist layer overlying a layer 20 of a temporary or expendable material and a substrate 30. Common wavelengths which are used in performing the photolithography include, but are not limited to, 157 nm, 193 nm, 248 nm or 365 nm. As shown in FIG. 1B, the pattern is then transferred by an etch step, such as an anisotropic etch step, to the temporary layer 20, thereby forming placeholders or mandrels 40. The photoresist lines 10 can be stripped and the mandrels 40 can be isotropically etched to increase the distance between neighboring mandrels 40, as shown in FIG. 1C. A layer 50 of spacer material is subsequently deposited over the mandrels 40, as shown in FIG. 1D. Spacers 60 are then formed on the sides of the mandrels 40 by preferentially etching the spacer material from the horizontal surfaces in a directional spacer etch, as shown in FIG. 1E. The remaining mandrels 40 are then removed, leaving behind only the spacers 60, which together act as a mask for patterning, as shown in FIG. 1F. Thus, where a given pattern area formerly defined one feature and one space (each having a width F, for a pitch of 2F), the same pattern area now includes two features and two spaces, as defined by spacers 60 (each having a width ½F, for a pitch of F). Consequently, the smallest feature size possible with a photolithographic technique is effectively decreased by using the pitch doubling technique.


While the pitch is actually halved in the example above, this reduction in pitch is conventionally referred to as pitch “doubling,” or, more generally, pitch “multiplication”. That is, conventionally “multiplication” of pitch by a certain factor actually involves reducing the pitch by that factor. The conventional terminology is retained herein. Note that by forming spacers upon spacers, the definable feature size can be further decreased. Thus, pitch multiplication refers to the process generally, regardless of the number of times the spacer formation process is employed.


Because the layer 50 of spacer material typically has a single thickness 90 (see FIGS. 1D and 1E), and because the sizes of the features formed by the spacers 60 usually corresponds to that thickness 90, the pitch doubling technique typically produces features of only one width. However, integrated circuits often include features of different sizes. For example, random access memory circuits typically contain arrays of memory cells and logic circuits in the so-called “periphery”. In the arrays, the memory cells are typically connected by conductive lines and, in the periphery, the conductive lines typically contact landing pads for connecting arrays to logic. Peripheral features such as landing pads, however, can be larger than the conductive lines. Additionally, peripheral electrical devices such as transistors are preferably larger than electrical devices in the array. Moreover, even if peripheral features can be formed with the same pitch as the array, the flexibility required to define circuits will typically not be possible using a single mask, particularly if the patterns are limited to those that can be formed along the sidewalls of resist patterns.


Some proposed methods for forming patterns at the periphery and at the array involve three separate masks. For example, in one method, a first mask and pitch doubling are used to form a spacer pattern, which typically comprises spacer loops in one region of a chip, such as the array region of a memory device. Then, a second mask is performed to form a second pattern in another region of the chip, such as the peripheral region of a memory device. This second peripheral pattern is formed in a layer overlying the spacer pattern. This covers the central portion of the spacer loops while the looped ends of the spacers are left exposed to an etching process. Then, a third mask is performed to form a third pattern that includes interconnects in and/or from the peripheral region. Both the “chopped” spacer pattern and the third pattern are then transferred to an underlying masking layer which can be etched relative to an underlying substrate. This allows features having different sizes—as compared to each other and as compared to the spacer loops—to be formed in the circuit peripheral region. Such features include, for example, interconnect patterns. These features can overlap with the spacer loops, can be consolidated with features in the circuit array region, and can be subsequently etched.


In accordance with the foregoing, improved techniques have been developed for forming features of different sizes, especially pitch-multiplied features having overlapping patterns.


In certain embodiments, part of the feature pattern to be transferred to a substrate has a pitch below the minimum pitch of the photolithographic technique used for processing the substrate. Additionally, certain embodiments can be used to form devices having arrays of electrical devices, including logic or gate arrays and volatile and non-volatile memory devices such as DRAM, read only memory (“ROM”), flash memory and gate arrays. In such devices, pitch multiplication is usable to form, for example, transistor gate electrodes and conductive lines in the array region of the chips, while conventional photolithography is usable to form larger features, such as contacts, at the peripheries of the chips. Exemplary masking steps in the course of fabricating a memory device are illustrated in the figures and are described herein.



FIG. 2 shows a top view of an exemplary partially fabricated integrated circuit 100, such as a memory chip. A central array region 102 is surrounded by a peripheral region 104. It will be appreciated that, after the integrated circuit 100 is fabricated, the array 102 will typically by densely populated with conducting lines and electrical devices such as transistors and capacitors. Pitch multiplication can be used to form features in the array region 102, as discussed herein. On the other hand, the peripheral region 104 optionally includes features larger than those in the array region 102. Conventional photolithography, rather than pitch multiplication, is typically used to pattern these larger features, examples of which include various types of logic circuitry. The geometric complexity of the logic circuits located in the peripheral region 104 makes using pitch multiplication difficult. In contrast, the regular grid typical of array patterns is conducive to pitch multiplication. Additionally, some devices in the peripheral region 104 may require larger geometries due to electrical constraints, thereby making pitch multiplication less advantageous than conventional photolithography for such devices. In addition to possible differences in relative scale, the relative positions, and the number of peripheral regions 104 and array regions 102 in the integrated circuit 100 can vary in other embodiments.



FIG. 3 shows a partial cross-sectional view of the partially fabricated integrated circuit of FIG. 2, including portions of the array region 102 and the peripheral region 104. Using a photolithography technique, a plurality of trenches are etched into a substrate 108, and these trenches are filled with an insulator 105, such as an oxide. The insulator 105 is a field isolation layer, and in an exemplary embodiment is a shallow trench isolation (“STI”) layer deposited in a high density plasma (“HDP”), spin-on dielectric (“SOD”), flow-fill or TEOS process. In an exemplary embodiment, the SOD is deposited and densified.


An upper interlevel dielectric (“ILD”) insulator 106 is formed over the substrate, and contact is made through the ILD 106 by etching contact holes and filling with conductive plugs 110. In one embodiment, the conductive plugs 110 comprise polycrystalline silicon, although other electrically conductive materials can be used in other embodiments. Portions of an etch stop layer 112, such as a nitride layer, are disposed over the insulator 106; the etch stop layer 112 is used in the formation of the conductive plugs 110. In certain embodiments, the insulator 105 is aligned with the substrate/plug interface. However, in other embodiments the insulator 105 extends slightly above the substrate/plug interface, as illustrated in FIG. 3.


In the exemplary embodiment illustrated in FIG. 3, the feature size in the array region 102 is smaller than the feature size in the peripheral region 104. In one embodiment, the conductive plugs 110 have a feature size of approximately 50 nm. In a preferred embodiment, the conductive plugs 110 have a feature size between approximately 30 nm and approximately 100 nm. More preferably, the conductive plugs have a feature size between approximately 32.5 nm and approximately 65 nm. Other feature sizes for the conductive plugs 110 can be used in other embodiments. Additional details regarding the techniques used to form the conductive plugs are provided in U.S. patent application Ser. No. 11/215982 (filed concurrently herewith).


As illustrated in FIG. 4, an insulator film 114 in which damascene trenches are to be formed is deposited over the film stack illustrated in FIG. 3. In one embodiment, the insulator film comprises an un-doped oxide film, such as an oxide film deposited from tetra ethyl ortho-silicate (“TEOS”), while in other embodiments the insulator film comprises a doped oxide film, such as BPSG or PSG. Other non-oxide insulators can be used in still other embodiments. In an exemplary embodiment, the insulator film 114 is deposited to a thickness corresponding to the conductor height to be formed in the integrated circuit.


As illustrated in FIG. 5, a hard mask layer 116 is deposited over the insulator film 114. In one embodiment, the hard mask layer 116 comprises amorphous silicon, although other materials can be used in other embodiments.


As illustrated in FIG. 6A, a plurality of spacers 118 are formed over the hard mask layer 116. In an exemplary embodiment, the spacers are formed using a pitch doubling technique such as that illustrated in FIGS. 1A through 1F, using the disclosed photoresist mask, transfer to a temporary layer, isotropic etch and spacer process. In an exemplary embodiment, the spacers comprise a low temperature oxide material that can be etched selectively with respect to the underlying hard mask layer 116. For example, in one embodiment the spacers are deposited at a temperature less than about 400° C. In another embodiment, the spacers are deposited using an atomic layer deposition process. Exemplary materials for the spacers include silicon oxide, silicon nitride, polycrystalline silicon and carbon.


Between the spacers 118 are gaps 120 that correspond to regions of the integrated circuit where conductive material is to be deposited. In the exemplary embodiment illustrated in FIG. 6A, the gaps 120 are vertically aligned with the conductive plugs 110.


In an exemplary embodiment, the spacing between the spacers 118 and the gaps 120 varies between the array region 102 and the peripheral region 104 of the integrated circuit 100. This is further illustrated in FIG. 6B, which schematically shows a top view of the spacers 118 and the intervening gaps 120. FIG. 6B also illustrates that the spacers 118 generally follow the outline of the lines formed in the photo definable layer, thereby forming a plurality of looped ends 124.


As illustrated in FIG. 7, a BARC 122 is applied over the spacers 118. The BARC 122 is optionally applied in a spin-on process, thereby providing a substantially planar surface. After the BARC 122 is applied over the spacers 118, a second mask is applied. The second mask results in a pattern of photoresist 126 being deposited over the integrated circuit. The photoresist pattern defines a blocked region that blocks the looped ends 124 of the spacers 118 and defines one or more openings 128 in the peripheral region 104. This is illustrated in FIGS. 8A (side view) and 8B (top view). As illustrated in FIG. 8B, in an exemplary embodiment the second mask is spaced apart from the spacers 118 by a gap 120a, and is spaced apart from the spacer looped ends 124 by a gap 120b. The gaps 120a, 120b accommodate misalignment of the second mask with respect to the spacer pattern.


In an exemplary embodiment, the minimum width of the openings 128 depends on the native resolution of the photolithographic process, which in one embodiment is as low as 100 nm, which in another embodiment is as low as 65 nm, and which in another embodiment is as low as 45 nm. Other dimensions can be used in other embodiments. In an exemplary embodiment, the spacers 118 in the circuit array region 104 are sufficiently spaced apart to allow contacts 132 to be “landed” to provide interconnections to other levels of the integrated circuit.


In an exemplary embodiment, after the second mask is performed, the BARC 122 is etched, as illustrated in FIG. 9. In a modified embodiment, the pattern defined by the second mask, including the blocked region, is transferred to an intermediate layer before etching the BARC. In such embodiments intermediate layer or the BARC alone is used to block the looped ends 124 of the spacers 118.


The BARC etch is followed by an etch of the hard mask layer 116, which can be selectively etched with respect to the spacers 118. The resulting structure is illustrated in FIG. 10A (which is a cross-sectional view taken along a line perpendicular to a spacer loop) and in FIG. 10B (which is a cross-sectional view taken along the length of a spacer loop). In one embodiment, the hard mask etch is a dry etch process. This is followed by successive removal of the photoresist 126 and BARC 122, followed by an oxide etch. In such embodiments, the oxide etch will remove both the spacers 118 and exposed portions of the insulator film 114. The conductive plugs 110 provide an etch stop. The resulting structure, which is illustrated in FIG. 11, includes a pattern of trenches exposing the conductive plugs 110 in the array region 102, and a pattern of other openings 128 in the hard mask layer 116 in the peripheral region 104. This sequence advantageously lowers the effective aspect ratio for the trenches. In a modified embodiment, the insulator film 114 illustrated in FIGS. 10A and 10B is etched without prior removal of the spacers 118. The BARC 122 is optionally omitted in embodiments wherein the substrate material is not reflective.


Regardless of how the trenches are formed, the etch processes illustrated in FIGS. 10A, 10B and 11 advantageously consolidate two mask patterns: the pattern formed by the spacers 118 in the array region 102, and the pattern formed by the photoresist 126 in the peripheral region. This effectively forms a superposition of two distinct patterns, which allows etching through the gaps 120 between the spacers 118 in regions of the integrated circuit 100 not covered by the second photoresist layer 126.


As illustrated in FIG. 12, in an exemplary embodiment conductive material 130 is then deposited over the partially formed integrated circuit. Optionally, the hard mask layer 116 is removed before deposition of the conductive material 130. Suitable conductive materials include, but are not limited to, titanium, titanium nitride, tungsten, tantalum nitride and copper. In an exemplary embodiment, the conductive material 130 is deposited to a thickness sufficient such that the widest trench width in the periphery is filled. After deposition of the conductive material, a chemical mechanical planarization (“CMP”) process is used to separate the conductors in the trenches and provide the integrated circuit with a planar surface. The resulting structure is illustrated in FIG. 13.


A flowchart illustrating an exemplary process for forming certain of the integrated circuit structures disclosed herein is provided in FIG. 14. As illustrated, a plurality of features are defined in a first resist layer in an array region of the memory device in an operational block 150. Examples of resist layers that can be used to define the features are photoresist layers and imprinted resist layers. Based on these features, pitch multiplication is used to define a plurality of spacer loops in a lower masking layer in an operational block 152. In a modified embodiment, the spacer loops are formed over the patterned resist features, although this is less preferred because resist is generally unable to withstand spacer deposition and etch processes. The ends of the spacer loops are blocked with a second resist layer that also defines features in a periphery region of the integrated circuit in an operational block 156. After the second resist layer is applied, an insulating layer in the gaps between the spacers is etched, the etching being performed in a pattern defined by the second resist layer in an operational block 158. A metal fill and subsequent CMP process can then be performed over the partially-formed integrated circuit in an operational block 160, thereby allowing metal lines to be formed in the integrated circuit array region (operational block 162) and electrical interconnects to be formed in the integrated circuit peripheral region (operational block 164). The interconnects are optionally used to connect integrated circuit components, such as logic components, within the periphery. Alternatively, the second mask can define other patterns, such as capacitors, contacts, resistors, simultaneously with blocking the spacer loops.


In certain embodiments, the peripheral interconnects are also optionally used to form electrical connections between the array region 102 and the peripheral region 104. This is illustrated in operational block 166 of FIG. 14. For example, such contacts can be formed in a plane above the damascene structure illustrated in FIG. 13. An example of such an “overhead” contact is provided in FIG. 16. As illustrated, the overhead contact includes a plurality of contacts 146 connected by an interconnect line 148.



FIG. 17A through 17C provide a top-down view of an exemplary embodiment of the methods illustrated in FIG. 14. In particular, FIG. 17A illustrates a first mask 134 defined by a photolithographic process. In one embodiment, the first mask 134 is defined in a layer of photoresist material, although in other embodiments the first mask 134 is transferred to another layer, such as an amorphous carbon layer. FIG. 17B illustrates a spacer pattern 136 created by first shrinking the first mask 134 using an isotropic etch process, and then performing a pitch doubling technique on the shrunken first mask. Application of a second metal mask 138 yields the exemplary structure illustrated in FIG. 17C. This structure includes widened portions in the spacer pattern configured to receive contacts 139 from other layers of the integrated circuit.


Certain of the integrated circuit fabrication techniques disclosed herein offer significant advantages over conventional techniques. For example, conventional methodology requires three separate masks to define the array region, to define the peripheral region, and to remove the looped ends of circuit features. In contrast, certain of the techniques disclosed herein allow pitch reduced features to be formed in a damascene process that uses only two masks. As described herein, in exemplary embodiments the looped ends of array features can be blocked with the same mask that is used to define periphery features.


In another aspect of certain embodiments, rules are provided to facilitate circuit designers to implement the integrated circuit fabrication methods disclosed herein. The configuration of the masks indirectly corresponds to the integrated circuit patterns that are formed, particularly when the gaps between the spacer loops, some of which are enclosed and some of which are not, define the circuit features of interest. Such features can be formed as disclosed herein using pitch multiplication and damascene techniques. The rules discussed below provide a circuit designer with guidelines for building a circuit that is formable using the techniques disclosed herein. As described herein, building a circuit is compliance with these rules allows mixed use of interconnects with varying pitch size while using only two masks. Specifically, a spacer layer mask, or “spacer”, is used to define pitch-reduced spacers between dense interconnect lines in the circuit array region, and a metal layer mask, or “metal”, is used to define the interconnect pattern in the circuit periphery region.


In an exemplary embodiment, the design rules for defining the spacer and metal are based on two scaling factors. For a given lithography, F is the minimum feature size that can be resolved, and D is the maximum misalignment allowed between the two masks. The variable x is a pitch multiplication scaling constant corresponding to a feature size of the spacer loops used to define the metal lines (0<x<1). Because a single pitch-multiplication technique is used, the actual interconnect pitch achievable using the techniques disclosed herein is F.


In one embodiment, the spacer loops are drawn in a plurality of distinct closed loops that to not overlap or cross. Two exemplary spacer loops 140 are illustrated in FIG. 15, which is a top view of an exemplary in-process integrated circuit simplified for illustration. As illustrated, the spacer loops have a minimum width of xF, and have a minimum space of (1−x)F.


In such embodiments, a plurality of metal features 144 are defined by a plurality of spacer loops 140. Because a damascene process is used in the preferred embodiments, the gaps between the spacer loops, some of which are enclosed and some of which are not, define the metal features 144 that will subsequently be deposited (for example, by physical vapor deposition or chemical vapor deposition) or electroplated with conductive material. In addition, metal features 142 are defined only one side by the spacer loops 140. The metal features 144 that are defined on both sides by the spacer loops 140 have a minimum width of (1−x)F. The metal features 142 that are defined on only one side by a spacer loop 140 have a minimum width of ((1−x)F+D). Metal features can also be formed without restriction by a spacer loop 140 with a minimum width corresponding to the minimum resolution of the lithography technique F. As illustrated in FIG. 15, the metal features 144 have a minimum spacing of xF if separated by a spacer loop 140, and the metal features 142 have a minimum spacing of F if separated by empty space or by a spacer loop 140 on only one side. If a metal feature 142 or 144 is present on both sides of a spacer loop 140, then the metal is drawn in contact with (that is, the metal occupies directly adjacent real estate with) the spacer loop 140. If the metal feature 142 is present on only one side of the spacer loop 140, then a minimum space of min(D−xF, 0) separates the metal feature 144 from the spacer loop 140.


The circuit design rules expounded herein are based on the integrated circuit fabrication techniques disclosed herein. In particular, using an oversized spacer mask to define subsequently pitch-reduced features limits the spacing of metal lines that are defined by the pitch-reduced features.


Separately defining the metal and spacer layers according to the rules provided by the exemplary embodiments disclosed herein allows circuit designers to build an integrated circuit based on the actual circuit features that will appear on the wafer. These rules advantageously account for the inherent limitations that arise when pitch multiplication techniques are used to form circuit features. The use of the scaling parameter x allows these design rules to work with future pitch multiplication technologies capable of producing smaller feature sizes.


Certain embodiments disclosed herein are usable to form a wide variety of integrated circuits. Examples of such integrated circuits include, but are not limited to, circuits having arrays of electrical devices, such as memory cell arrays for volatile and non-volatile memory devices such as DRAM, ROM or flash memory, NAND flash memory, and integrated circuits having logic or gate arrays. For example, the logic array can be a field programmable gate array (“FPGA”) having a core array similar to a memory array and a periphery with supporting logic circuitry. Therefore, the integrated circuit formed using the techniques disclosed herein can be, for example, a memory chip or a processor, which can include both a logic array and embedded memory, or other integrated circuits having a logic or gate array.


Scope of The Invention

While the foregoing detailed description discloses several embodiments of the present invention, it should be understood that this disclosure is illustrative only and is not limiting of the present invention. It should be appreciated that the specific configurations and operations disclosed can differ from those described above, and that the methods described herein can be used in contexts other than integrated circuit fabrication.

Claims
  • 1. A partially formed integrated circuit comprising: a plurality of mask lines in an array region of the integrated circuit, wherein the mask lines form closed loop ends; andan optically definable material overlying a portion of the mask lines, including the closed loop ends, wherein the optically definable material extends into a periphery region of the integrated circuit, and further defines a plurality of features in the periphery region.
  • 2. The partially formed integrated circuit of claim 1, wherein the mask lines overlie a substrate.
  • 3. The partially formed integrated circuit of claim 1, wherein the mask lines comprise silicon.
  • 4. The partially formed integrated circuit of claim 1, wherein the mask lines comprise silicon oxide or silicon nitride spacers.
  • 5. The partially formed integrated circuit of claim 1, wherein the mask lines overlie a substrate that includes an array of conductive lines.
  • 6. The partially formed integrated circuit of claim 1, wherein the mask lines have a feature size between approximately 30 nm and approximately 100 nm.
  • 7. The partially formed integrated circuit of claim 1, wherein the mask lines have a feature size between approximately 32.5 nm and approximately 65 nm.
  • 8. The partially formed integrated circuit of claim 1, wherein the optically definable material comprises photoresist.
  • 9. The partially formed integrated circuit of claim 1, wherein the mask lines are pitch-multiplied spacer lines.
  • 10. The partially formed integrated circuit of claim 1, wherein the integrated circuit is a memory device.
  • 11. The partially formed integrated circuit of claim 10, wherein the integrated circuit is a flash memory device.
  • 12. A partially formed integrated circuit comprising: a plurality of elongated spacer elements, the spacer elements including closed loop ends connecting adjacent spacer elements; anda selectively definable material overlying the closed loop ends, without overlying a middle portion of the spacer elements;wherein the plurality of elongated spacer elements are positioned in an array region of the integrated circuit, and wherein the selectively definable material extends into a periphery region of the integrated circuit and further defines a plurality of features in the periphery region.
  • 13. The partially formed integrated circuit of claim 12, wherein the plurality of features in the periphery correspond to mask lines for defining interconnects.
  • 14. The partially formed integrated circuit of claim 12, wherein the integrated circuit is a memory device.
  • 15. The partially formed integrated circuit of claim 14, wherein the integrated circuit is a flash memory device.
  • 16. The partially formed integrated circuit of claim 12, wherein the plurality of spacers overlie a substrate, wherein a hard mask layer is disposed between the spacers and the substrate.
  • 17. The partially formed integrated circuit of claim 16, wherein the hard mask layer overlies an insulator film.
  • 18. The partially formed integrated circuit of claim 17, wherein the insulator film overlies a plurality of conductive plugs.
  • 19. The partially formed integrated circuit of claim 12, wherein the selectively definable material comprises photoresist.
PRIORITY APPLICATION

This application is a divisional of U.S. patent application Ser. No. 12/850,511 (filed 4 Aug. 2010), which is a continuation of U.S. patent application Ser. No. 12/119,831 (filed May 13, 2008), now U.S. Pat. No. 7,776,683, which is a continuation of Ser. No. 11/216,477 (filed 31 Aug. 2005), now U.S. Pat. No. 7,611,944, which is a non-provisional of U.S. Provisional Patent Application 60/666,031 (filed 28 Mar. 2005). The entire disclosure of all of these priority applications are hereby incorporated by reference herein. This application is related to U.S. patent application Ser. No. 10/932,993 (filed 1 Sep. 2004), now U.S. Pat. No. 7,910,288, U.S. patent application Ser. No. 10/934,778 (filed 2 Sep. 2004), now U.S. Pat. No. 7,115,525, U.S. patent application Ser. No. 10/931,771 (filed 31 Aug. 2004), now U.S. Pat. No. 7,151,040, U.S. patent application Ser. No. 10/934,317 (filed 2 Sep. 2004), now U.S. Pat. No. 7,655,387, U.S. patent application Ser. No. 11/215,982 (filed 31 Aug. 2005), now U.S. Pat. No. 7,829,262, U.S. Provisional Patent Application 60/662,323 (filed 15 Mar. 2005), and U.S. patent application Ser. No. 11/134,982 (filed 23 May 2005), now U.S. Pat. No. 7,429,536. The entire content of all of these related applications is hereby incorporated by reference herein.

US Referenced Citations (161)
Number Name Date Kind
4234362 Riseman Nov 1980 A
4419809 Riseman Dec 1983 A
4432132 Kinsbron et al. Feb 1984 A
4502914 Trumpp et al. Mar 1985 A
4508579 Goth et al. Apr 1985 A
4648937 Ogura et al. Mar 1987 A
4716131 Xiang et al. Dec 1987 A
4776922 Bhattacharyya et al. Oct 1988 A
4838991 Cote et al. Jun 1989 A
5013680 Yang et al. May 1991 A
5053105 Fox, III Oct 1991 A
5117027 Bernhardt et al. May 1992 A
5328810 Lowrey et al. Jul 1994 A
5330879 Dennison Jul 1994 A
5470661 Bailey et al. Nov 1995 A
5514885 Myrick May 1996 A
5593813 Kim Jan 1997 A
5670794 Dennison Sep 1997 A
5753546 Doyle May 1998 A
5789320 Andricacos et al. Aug 1998 A
5795830 Yu et al. Aug 1998 A
5830332 Babich et al. Nov 1998 A
5899746 Mukai May 1999 A
5923981 Qian Jul 1999 A
5998256 Juengling Dec 1999 A
6004862 Kim et al. Dec 1999 A
6010946 Hisamune et al. Jan 2000 A
6020255 Tsai et al. Feb 2000 A
6042998 Brueck et al. Mar 2000 A
6057573 Kirsch et al. May 2000 A
6063688 Doyle et al. May 2000 A
6071789 Yang et al. Jun 2000 A
6110837 Linliu et al. Aug 2000 A
6143476 Ye et al. Nov 2000 A
6207490 Lee et al. Mar 2001 B1
6211044 Xiang et al. Apr 2001 B1
6288454 Allman et al. Sep 2001 B1
6291334 Somekh Sep 2001 B1
6297554 Lin Oct 2001 B1
6335257 Tseng Jan 2002 B1
6348380 Weimer et al. Feb 2002 B1
6362057 Taylor, Jr. et al. Mar 2002 B1
6383907 Hasegawa et al. May 2002 B1
6395613 Juengling May 2002 B1
6423474 Holscher Jul 2002 B1
6455372 Weimer Sep 2002 B1
6500756 Bell et al. Dec 2002 B1
6514884 Maeda Feb 2003 B2
6522584 Chen et al. Feb 2003 B1
6534243 Templeton Mar 2003 B1
6548396 Naik et al. Apr 2003 B2
6559017 Brown et al. May 2003 B1
6566280 Meagley et al. May 2003 B1
6573030 Fairbairn et al. Jun 2003 B1
6602779 Li et al. Aug 2003 B1
6620715 Blosse et al. Sep 2003 B1
6632741 Clevenger et al. Oct 2003 B1
6635917 Juengling Oct 2003 B2
6638441 Chang et al. Oct 2003 B2
6664028 Hwang et al. Dec 2003 B2
6667237 Metzler Dec 2003 B1
6673684 Huang et al. Jan 2004 B1
6686245 Mathew et al. Feb 2004 B1
6689695 Lui et al. Feb 2004 B1
6703312 Golz et al. Mar 2004 B2
6706571 Yu et al. Mar 2004 B1
6709807 Hallock et al. Mar 2004 B2
6710387 Nakamura Mar 2004 B2
6716761 Mitsuiki Apr 2004 B2
6723607 Nam et al. Apr 2004 B2
6734107 Lai et al. May 2004 B2
6744094 Forbes Jun 2004 B2
6756284 Sharma Jun 2004 B2
6762449 Uchiyama et al. Jul 2004 B2
6764949 Bonser et al. Jul 2004 B2
6773998 Fisher et al. Aug 2004 B1
6818141 Plat et al. Nov 2004 B1
6835662 Erhardt et al. Dec 2004 B1
6835663 Lipinski Dec 2004 B2
6846618 Hsu et al. Jan 2005 B2
6867116 Chung Mar 2005 B1
6875703 Furukawa et al. Apr 2005 B1
6888755 Harari May 2005 B2
6893972 Rottstegge et al. May 2005 B2
6905628 Bjarnason et al. Jun 2005 B2
6913871 So Jul 2005 B2
6916594 Bok Jul 2005 B2
6924191 Liu et al. Aug 2005 B2
6926843 Cantell et al. Aug 2005 B2
6939808 Tzou et al. Sep 2005 B2
6951703 Chae et al. Oct 2005 B2
6955961 Chung Oct 2005 B1
6962867 Jackson et al. Nov 2005 B2
6967140 Doyle Nov 2005 B2
6987043 Kujirai et al. Jan 2006 B2
6998319 Tanaka et al. Feb 2006 B2
6998332 Furukawa et al. Feb 2006 B2
7005240 Manger et al. Feb 2006 B2
7015124 Fisher et al. Mar 2006 B1
7045383 Maimon et al. May 2006 B2
7064078 Liu et al. Jun 2006 B2
7074666 Furukawa et al. Jul 2006 B2
7074668 Park et al. Jul 2006 B1
7084076 Park et al. Aug 2006 B2
7115525 Abatchev et al. Oct 2006 B2
7119020 Okamura et al. Oct 2006 B2
7151040 Tran et al. Dec 2006 B2
7175944 Yin et al. Feb 2007 B2
7179672 Asakawa et al. Feb 2007 B2
7183205 Hong Feb 2007 B2
7183597 Doyle Feb 2007 B2
7202174 Jung Apr 2007 B1
7208379 Venugopal et al. Apr 2007 B2
7226853 Bekiaris et al. Jun 2007 B2
7253118 Tran et al. Aug 2007 B2
7271107 Marks et al. Sep 2007 B2
7288445 Bryant et al. Oct 2007 B2
7291560 Parascandola et al. Nov 2007 B2
7351666 Furukawa et al. Apr 2008 B2
7355273 Jackson et al. Apr 2008 B2
7390746 Bai et al. Jun 2008 B2
7393789 Abatchev et al. Jul 2008 B2
7396781 Wells Jul 2008 B2
7413981 Tang et al. Aug 2008 B2
7429536 Abatchev et al. Sep 2008 B2
7442976 Juengling Oct 2008 B2
7446049 Kim et al. Nov 2008 B2
7473644 Lane et al. Jan 2009 B2
7537866 Liu May 2009 B2
7547599 Sandhu et al. Jun 2009 B2
7560390 Sant et al. Jul 2009 B2
7572572 Wells Aug 2009 B2
7611944 Tran et al. Nov 2009 B2
7648919 Tran et al. Jan 2010 B2
7655387 Sandhu et al. Feb 2010 B2
7687342 Haller et al. Mar 2010 B2
7737227 Jung Jun 2010 B2
7759197 Tran Jul 2010 B2
7776683 Tran et al. Aug 2010 B2
7776744 Sandhu et al. Aug 2010 B2
7851135 Jung Dec 2010 B2
20020094688 Mitsuiki Jul 2002 A1
20030207584 Sivakumar et al. Nov 2003 A1
20040018738 Liu Jan 2004 A1
20050074949 Jung et al. Apr 2005 A1
20050142497 Ryou Jun 2005 A1
20050153562 Furukawa et al. Jul 2005 A1
20060011947 Juengling Jan 2006 A1
20060046200 Abatchev et al. Mar 2006 A1
20060083996 Kim Apr 2006 A1
20060115978 Specht Jun 2006 A1
20060231900 Lee et al. Oct 2006 A1
20060234138 Fehlhaber et al. Oct 2006 A1
20070049035 Tran Mar 2007 A1
20070050748 Juengling Mar 2007 A1
20070077524 Koh Apr 2007 A1
20070210449 Caspary et al. Sep 2007 A1
20070215960 Zhu et al. Sep 2007 A1
20080054350 Breitwisch et al. Mar 2008 A1
20080085612 Smythe et al. Apr 2008 A1
20080292991 Wallow Nov 2008 A1
Foreign Referenced Citations (26)
Number Date Country
42 36 609 May 1994 DE
0 227 303 Jul 1987 EP
0 491 408 Jun 1992 EP
1 357 433 Oct 2003 EP
57-048237 Mar 1982 JP
64-035916 Feb 1989 JP
05343370 Dec 1993 JP
H8-55908 Feb 1996 JP
H8-55920 Feb 1996 JP
2000-208434 Jul 2000 JP
2000-307084 Nov 2000 JP
2000-357736 Dec 2000 JP
2001-358061 Dec 2001 JP
2003-273211 Sep 2003 JP
2004-080033 Mar 2004 JP
2004 152784 May 2004 JP
2005-150333 Jun 2005 JP
2006-351861 Jan 2012 JP
1999-0001440 Jan 1999 KR
1999-027887 Apr 1999 KR
WO 9415261 Jul 1994 WO
WO 02099864 Dec 2002 WO
WO 2004001799 Dec 2003 WO
WO 2004003977 Jan 2004 WO
WO 2005034215 Apr 2005 WO
WO 2006026699 Mar 2006 WO
Non-Patent Literature Citations (15)
Entry
Office Action of Jun. 2, 2008 in U.S. Appl. No. 11/219,067, filed Sep. 1, 2005.
Bergeron, et al., “Resolution Enhancement Techniques for the 90nm Technology Node and Beyond,” Future Fab International, Issue 15, Jul. 11, 2003, 4 pages.
Bhave et al. “Developer-soluble Gap fill materials for patterning metal trenches in Via-first Dual Damascene process,” preprint of Proceedings of SPIE: Advances in Resist Technology and Processing XXI, vol. 5376, 2004, John L. Sturtevant, editor, 8 pages.
Bruek, “Optical and Interferometric Lithography—Nanotechnology Enablers,” 2005, Proceedings of the IEEE, vol. 93, No. 10, pp. 1704-1721.
Choi et al.“Sublithographic nanofabrication technology for nanocatalysts and DNA chips,” J.Vac. Sci. Technol., Nov./Dec. 2003; pp. 2951-2955.
Chung et al. “Pattern multiplication method and the uniformity of nanoscale multiple lines,” J.Vac.Sci.Technol. B21 (4), Jul./Aug. 2003, pp. 1491-1495.
Chung et al. “Nanoscale Multi-Line Patterning Using Sidewall Structure,” Jpn., J. App.. Phys. vol. 41 (2002) Pt. 1, No. 6B, pp. 4410-4414.
Joubert et al. “Nanometer scale linewidth control during etching of polysilicon gates in high-density plasmas,” Microelectronic Engineering 69 (2003), pp. 350-357.
Oehrlein et al.“Pattern transfer into low dielectic materials by high-density plasma etching,” Solid State Tech., May 2000, 8 pages.
Sheats et al., “Microlithography: Science and Technology,” 1998, Marcel Dekkar, Inc., pp. 104-105.
“Ex parte Cantell, unpublished decision of the Board of Patent Appeals and Interferences, Mar. 4, 2005”.
Office Action of Jun. 5, 2008 in U.S. Appl. No. 11/514,117, filed Aug. 30, 2006.
Office Action of Jul. 11, 2008 in U.S. Appl. No. 11/367,020, filed Mar. 2, 2006.
Chung et al. “Pattern multiplication method and the uniformity of nanoscale multiple lines,” J.Vac.Sci.Technol. B21(4), Jul./Aug. 2003, pp. 1491-1495.
English translation of the Japanese Office Action for Japanese Patent Application No. 2008-504064 mailed on Aug. 30, 2011.
Related Publications (1)
Number Date Country
20120193777 A1 Aug 2012 US
Provisional Applications (1)
Number Date Country
60666031 Mar 2005 US
Divisions (1)
Number Date Country
Parent 12850511 Aug 2010 US
Child 13445797 US
Continuations (2)
Number Date Country
Parent 12119831 May 2008 US
Child 12850511 US
Parent 11216477 Aug 2005 US
Child 12119831 US