An embodiment of the invention relates generally to integrated circuit (“IC”) devices and methods, and more particularly to integrated circuit packaging devices and methods.
Many integrated circuit packages, such as a ball grid array package containing a flip chip, typically include a lid disposed over an integrated circuit die and an underlying substrate. The lid may provide one or more benefits for the package, such as increasing thermal dissipation, protecting the die from outside elements, reducing electromagnetic radiation to or from the die, and providing physical support, e.g., for warpage control. The lid typically is attached using a thermal adhesive that couples the lid to the die and substrate, and provides for heat transfer. Some lids are attached to the substrate around the full perimeter of the lid. Other lids provide legs for attachment to the substrate, with openings between the legs permitting limited access to the area between the lid and the substrate.
Problems in the prior art are generally solved or circumvented, and technical advantages are generally achieved, by one or more embodiments of the present invention which provide a semiconductor chip package lid having non-planar feet. The lid may be attached to a package substrate using a relatively high modulus adhesive. Further, a thermal interface material may be used to thermally couple the lid and the semiconductor chip.
In accordance with an embodiment of the present invention, an integrated circuit package includes a package substrate having an array of top electrical contacts disposed on its top surface, and an array of bottom electrical contacts disposed on its bottom surface, and a semiconductor die disposed on the package substrate. The semiconductor die has an array of die electrical contacts disposed on its bottom surface, wherein the die electrical contacts are bonded to the package substrate top electrical contacts by a first ball grid array, and wherein a perimeter of the semiconductor die is spaced inwardly from a perimeter of the package substrate such that a perimeter region of the package substrate is not covered by the semiconductor die. A lid has a planar main body disposed on the semiconductor die, and has legs located at corners of the main body disposed on corners of the perimeter region of the package substrate, wherein each of the legs has a non-planar bottom surface, and wherein a perimeter of the lid main body extends over sides of the perimeter region between the corners of the perimeter region. An inelastic adhesive mechanically attaches the non-planar bottom surface of each lid leg to the perimeter region of the package substrate, and a thermal interface material is disposed between and thermally couples a bottom surface of the lid main body and a top surface of the semiconductor die.
In accordance with another embodiment of the present invention, a method of forming an integrated circuit package includes surface mounting a bottom surface of a semiconductor die to a top surface of a package substrate, wherein die electrical contacts on the bottom surface of the semiconductor die are electrically connected to top electrical contacts on the top surface of the package substrate. The method further includes applying a thermal interface material to a top surface of the semiconductor die or to a bottom surface of a main body of a lid, the lid comprising legs disposed at corners of the main body. The method further includes using an inelastic adhesive to mechanically bond a bottom surface of each of the legs to a respective corner of the top surface of the package substrate outside a perimeter of the semiconductor die, wherein each of the legs has a non-planar bottom surface, wherein the thermal interface material thermally couples the bottom surface of the lid main body to the top surface of the semiconductor die.
In accordance with another embodiment of the present invention, an integrated circuit package lid includes a planar rectangular main body having a bottom surface, and a leg disposed at each corner of the main body and within a perimeter of the main body, wherein each leg has a wall projecting downwardly from the main body, wherein each leg has a non-planar bottom surface disposed at a bottom of the wall, wherein the non-planar bottom surface faces a same direction as the main body bottom surface, and wherein the lid is a single piece of material comprising the main body and legs.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
a-1b are bottom plan and side views of a semiconductor package lid;
c-1e are bottom, side and isometric views of a portion of the lid in
a-2b are bottom plan and side views of a semiconductor package lid;
c-2d are bottom and isometric views of a portion of the lid in
a-3b are bottom and side views of an alternative for the portion of the lid in
a-4b are alternative bottom and isometric views of an alternative for the portion of the lid in
a-5b are alternative bottom and isometric views of an alternative for the portion of the lid in
a-6b are top plan and side views of an assembled semiconductor package;
a-7f are cross-sectional views taken at line 7-7 of various stages in the assembly of the package shown in
a-8c are cross-sectional views taken at line 8-8 of various stages in the assembly of the package shown in
The making and using of some embodiments of the present invention are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.
The present invention will be described with respect to embodiments in a specific context, namely a ball grid array integrated circuit package incorporating a flip chip. The invention also may be applied, however, to other types of semiconductor packages having different types of chip to package substrate mounting as well as different types of package substrate to circuit board mounting. For example, other surface mount methods may be used for both the chip to package substrate mount and the package substrate to printed circuit board mount. As another example, the chip may have the contacts mounted on either the frontside or the backside.
Ball grid array (“BGA”) integrated circuit (“IC”) packaging generally provides good thermal performance by thermally coupling a lid to the backside of an IC bonded to a package substrate. The semiconductor chip or die is flipped over and contacts on the frontside of the chip are electrically connected to contacts on the package substrate using solder bumps. The BGA package substrate typically has another set of solder bumps on the bottom of the package substrate that connect to an array of contacts on a printed circuit assembly or printed circuit board (“PCB”). The BGA package substrate generally includes conductive traces that couple the relatively fine-pitch array of contacts on the IC to an array of contacts on the printed circuit assembly, which has a relatively coarse pitch.
These types of lids, however, often exhibit the problem of separating from the top of an integrated circuit package. Because the adhesion strength of the adhesive used to attach the lid is sometimes not strong enough to hold the lid to the package, the conductive lid may come off of the package. Generally, proper material construction and processing of the lid, the package, and the adhesive is required so that the lid will stay attached to the package during assembly and long term field usage. Degradation of adhesion may be caused by many factors, including shear stresses induced due to thermal expansion/shrinkage differences at the interfaces, push/pull stresses induced due to warping of the silicon, package, and/or board, adhesive degradation due to chemical exposure, etc. Excessive component handling stresses, such as excessive torque, pressure or g-shock during test, assembly, rework, and field use also may result in separation of the lid from the package.
Currently, a wide variety of components, such as FPGA, ASIC, graphics, microprocessors, and the like, employ flip chip BGA packages. The small size and increasing electronic content of many devices, such as mobile phones, personal digital assistants, portable computers, and the like, constrains the overall size of integrated circuit packages. In addition, as the requirements of large size silicon chips and/or passive devices used in packages increase, a smaller bond area is used to bond the lid to the substrate. In a high performance flip chip package, the silicon device and passives such as chip capacitors and resistors may occupy significant substrate real-estate for enhanced electrical performance. With the limits imposed on the overall size of the package substrate, very limited space may be left for placement of a lid for achieving high mechanical and thermal performance. The smaller bond area available for bonding the lid to the substrate further reduces adhesion of the lid to the substrate, and may lead to lid delamination when subjected to post assembly thermal and mechanical stresses.
A lid with a full perimeter continuous foot provides full perimeter adhesion, but reduces the real estate space available for mounting passive devices around the semiconductor chip or die. A full perimeter lid also effectively prohibits access to the area enclosed the lid and the substrate. Alternatively, four-post lids may be used on packages that do not have space for full perimeter lid attachment. The openings between the feet at the perimeter of the package substrate leave room for mounting passive devices. The limited real estate available to couple the lid to the substrate, however, generally exacerbates the problem of attaining sufficient lid adhesion and reliability. Because the coupling surface area between the lid and substrate is significantly reduced, the support provided to the packages also may be proportionally reduced.
Generally, the lid to adhesive interface is one of the weaker interfaces for adhesion in the package. One embodiment for increasing adhesion is to increase the surface area of the bottom surface of the lid's feet. Another approach for increasing adhesion is the use of a relatively inelastic or high modulus of elasticity adhesive. For example, a high modulus epoxy based material generally will provide sufficient adhesion and package stability. Prior art thermal interface materials (“TIM”s) generally tend to be silicone based materials that are more elastic or flexible than epoxy based materials. As such, the support provided by such a material is inferior to that provided by a relatively inelastic or inflexible adhesive such as an epoxy adhesive. Non-thermal interface materials, in general, tend to be relatively inelastic.
An embodiment four-leg semiconductor package lid is illustrated in
Lid 100 includes main body or main plate 102, which is generally planar and has a lower surface that thermally couples to the underlying semiconductor chip or die. Main body 102 may be completely planar, or may have raised or depressed features on either the top or bottom side. Generally, the area that contacts the semiconductor chip (via a thermally conductive material) is planar. This planar area may be the same height as, higher than, or lower than the surrounding perimeter area of the lid.
Lid 100 also includes four legs or feet 104 disposed at each corner of the lid. Each foot 104 has a non-planar bottom surface that is used to bond the lid to the underlying package substrate. Generally, the foot bottom has a non-planar surface such that it has no planar surface parallel to the main body of the lid, or to the package substrate when the lid is mounted. In this embodiment, the feet may be considered to either extend from the top surface of the main body, or from the bottom surface of the main body. Generally, the non-planar bottom surface of the lid foot increases coupling surface area of the foot while maintaining the same x and y dimensions as a comparable planar foot. Thus, even when reduced substrate coupling area is available due to space constraints, the non-planar foot provides increased adhesion capability over a planar foot.
c-1e illustrate closer views of one of the feet 104 on lid 100 from
Another embodiment of a four-leg semiconductor package lid is illustrated in
Lid 120 includes main body 122, which is generally planar and has a lower surface that thermally couples to the underlying semiconductor chip. Main body 122 may be completely planar, or may have raised or depressed features on either the top or bottom side. Generally, the area that contacts the semiconductor chip (via a thermally conductive material) is planar. This planar area may be higher or lower than the surrounding perimeter area 126 of the lid.
Lid 120 also includes four feet 124 formed on each corner of the lid. Each foot 124 has a non-planar bottom surface that is used to bond the lid to the underlying package substrate. Generally, the foot bottom has a non-planar surface such that it has no planar surface parallel to the main body of the lid, or to the package substrate when the lid is mounted. In this embodiment, the lid is stamped from a single sheet of metal, such that the feet are displaced from the plane of the main body, and there are sloped or vertical walls connecting the foot to the main body. Generally, the non-planar bottom surface of the lid foot increases coupling surface area of the foot while maintaining the same x and y dimensions as a comparable planar foot. Thus, even when reduced substrate coupling area is available due to space constraints, the non-planar foot provides increased adhesion capability over a planar foot.
c-2d illustrate closer views of one of the feet 124 on lid 120 from
There are many different non-planar configurations for the bottom surface of the lid leg that provide increased surface area of the leg's contact points to the substrate, examples of which are provided in
a-4b illustrate an alternative embodiment for the bottom surface of a leg. In these figures, a partial view of lid 140 includes main body 142 and leg 144.
a-5b illustrate an alternative embodiment for the bottom surface of a leg. In these figures, a partial view of lid 150 includes main body 152 and leg 154.
Any of the leg bottom surfaces shown in
Furthermore, it should be noted that embodiments are not limited only to lids that have four legs or posts. The various embodiments for the bottom surface of a foot also may be applied to lids that have a full perimeter coupling area. Alternatively, the lid may have full length coupling area on two sides of the lid, leaving the other two sides open. Conversely, the package lid may have more or less than four feet. Additional feet may be placed between the four corner feet along the sides of the package. For example, the lid may have an additional foot disposed along each of two opposite sides of the lid for a total of six feet, or may have an additional foot along each of all four sides of the lid for a total of eight feet. Generally, a lid with four legs provides a good balance of adhesion and support along with open space for access, venting and reduced moisture buildup.
a-6b illustrate an assembled integrated circuit package 200 including a lid 202 with a planar main body 204 and legs 206 having non-planar bottom surfaces.
The dotted line in
The inflexible high modulus adhesive 220 mechanically bonding the lid legs to the package substrate provides reinforcement of the IC package. Increased adhesion is provided by both the non-planar leg bottom surfaces and the use of the inelastic high modulus adhesive. A semiconductor chip package having non-planar leg bottom surfaces and a high modulus adhesive attaching the legs to the package substrate generally provides a structurally robust IC package with warpage control, rigidity and reliability.
While the package in
a-7f are cross-sectional views taken at line 7-7 of various stages in the assembly of the package shown in
In
In
The adhesive bonding the lid to the substrate may be selected from a variety of materials. A high modulus material generally is preferred, although in some applications, a lower modulus material may be used. The material may be a thermally-conductive thermal interface material, or a non-thermally-conductive non-thermal interface material. For example, a non-thermal interface material such as Ablestik MC723, available from Ablestik Laboratories of Rancho Dominguez, Calif., may be used to bond the lid to the substrate. This material has a modulus of about 3.3 GPa and thermal conductivity of about 0.8 W/MK. Alternatively, a different non-thermal interface material such as Ablestik 3003, with a modulus of about 4 GPa and thermal conductivity of about 1.0 W/MK, may be used to bond the lid to the substrate. The modulus of elasticity of the adhesive may be greater than about 1 GPa, preferably greater than about 2 GPa, and more preferably greater than about 3 GPa.
Alternatively, a thermal adhesive such as Shin-Etsu 9080 series, available from Shin-Etsu Chemical Co. of Tokyo, Japan, may be used to bond the lid to the substrate. As another alternative, Dow Corning SE4450 thermal adhesive, available from Dow Corning Corp. of Midland, Mich., may be used for the lid to substrate bond.
The thermal interface material used between the lid and the chip also may be selected from a variety of materials. If the lid-to-substrate adhesive is a thermal interface material, then the same material may be used to bond the lid to the chip backside. Alternatively, different materials may be used for the lid leg-to-substrate bond and the lid main body-to-chip interface. If a non-thermal interface material is used for the lid-to-substrate bond, then a thermal interface material may be used for the lid-to-chip thermal coupling. For example, a thermal grease or Ablestik MG121 may be used for the lid-to-chip thermal interface material.
Although the steps of forming the integrated circuit package are shown and described in a particular order, the steps need not be performed in the order shown. For example, the passive components 222 may be attached to the top surface of the substrate 208 at an earlier stage, such as before or at the same time that chip 214 is attached to the substrate. As another example, the solder ball array 210 may be attached to the bottom contacts 212 of substrate 208 before the lid is attached to the substrate.
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
Number | Name | Date | Kind |
---|---|---|---|
3846824 | Bell | Nov 1974 | A |
3972062 | Hopp | Jul 1976 | A |
4541005 | Hunter et al. | Sep 1985 | A |
4748538 | Tsuji | May 1988 | A |
4849856 | Funari et al. | Jul 1989 | A |
5028984 | Ameen et al. | Jul 1991 | A |
5031025 | Braun et al. | Jul 1991 | A |
5105259 | McShane et al. | Apr 1992 | A |
5168432 | Murphy et al. | Dec 1992 | A |
5206792 | Reynolds | Apr 1993 | A |
5258576 | Neumann et al. | Nov 1993 | A |
5289337 | Aghazadeh et al. | Feb 1994 | A |
5297333 | Kusaka | Mar 1994 | A |
5406117 | Dlugokecki et al. | Apr 1995 | A |
5434745 | Shokrgozar et al. | Jul 1995 | A |
5436407 | Fehr et al. | Jul 1995 | A |
5455456 | Newman | Oct 1995 | A |
5459352 | Layton et al. | Oct 1995 | A |
5468910 | Knapp et al. | Nov 1995 | A |
5473512 | Degani et al. | Dec 1995 | A |
5473814 | White | Dec 1995 | A |
5504652 | Foster et al. | Apr 1996 | A |
5533256 | Call et al. | Jul 1996 | A |
5552635 | Kim et al. | Sep 1996 | A |
5583377 | Higgins, III | Dec 1996 | A |
5641987 | Lee | Jun 1997 | A |
5728247 | Büstrich et al. | Mar 1998 | A |
5736785 | Chiang et al. | Apr 1998 | A |
5745344 | Baska et al. | Apr 1998 | A |
5770478 | Iruvanti et al. | Jun 1998 | A |
5825087 | Iruvanti et al. | Oct 1998 | A |
5834839 | Mertol | Nov 1998 | A |
5849606 | Kikuchi et al. | Dec 1998 | A |
5889323 | Tachibana | Mar 1999 | A |
5895233 | Higashi et al. | Apr 1999 | A |
5898224 | Akram | Apr 1999 | A |
5903436 | Brownell et al. | May 1999 | A |
5949655 | Glenn et al. | Sep 1999 | A |
5956576 | Toy et al. | Sep 1999 | A |
5990418 | Bivona et al. | Nov 1999 | A |
5998862 | Yamanaka | Dec 1999 | A |
6016006 | Kolman et al. | Jan 2000 | A |
6037193 | Interrante et al. | Mar 2000 | A |
6049656 | Kim et al. | Apr 2000 | A |
6069023 | Bernier et al. | May 2000 | A |
6075289 | Distefano | Jun 2000 | A |
6104093 | Caletka et al. | Aug 2000 | A |
6118177 | Lischner et al. | Sep 2000 | A |
6166434 | Desai et al. | Dec 2000 | A |
6214643 | Chiu | Apr 2001 | B1 |
6225694 | Terui | May 2001 | B1 |
6225695 | Chia et al. | May 2001 | B1 |
6249046 | Hashimoto | Jun 2001 | B1 |
6262481 | Wang et al. | Jul 2001 | B1 |
6271058 | Yoshida | Aug 2001 | B1 |
6274927 | Glenn | Aug 2001 | B1 |
6288900 | Johnson et al. | Sep 2001 | B1 |
RE37554 | Brunner et al. | Feb 2002 | E |
6352195 | Guthrie et al. | Mar 2002 | B1 |
6354485 | Distefano | Mar 2002 | B1 |
6380621 | Ando et al. | Apr 2002 | B1 |
6413353 | Pompeo et al. | Jul 2002 | B2 |
6462405 | Lai et al. | Oct 2002 | B1 |
6469897 | Ho et al. | Oct 2002 | B2 |
6483702 | Lofland | Nov 2002 | B1 |
6501171 | Farquhar et al. | Dec 2002 | B2 |
6504096 | Okubora | Jan 2003 | B2 |
6538320 | Tosaya et al. | Mar 2003 | B1 |
6573590 | Radu et al. | Jun 2003 | B1 |
6630743 | Magnuson et al. | Oct 2003 | B2 |
6670223 | Gaynes et al. | Dec 2003 | B2 |
6681482 | Lischner et al. | Jan 2004 | B1 |
6693748 | Fujimoto et al. | Feb 2004 | B1 |
6713863 | Murayama et al. | Mar 2004 | B2 |
6737298 | Shim et al. | May 2004 | B2 |
6762796 | Nakajoh et al. | Jul 2004 | B1 |
6770513 | Vikram et al. | Aug 2004 | B1 |
6819566 | Danovitch et al. | Nov 2004 | B1 |
6849942 | Lin et al. | Feb 2005 | B2 |
6853068 | Djekic | Feb 2005 | B1 |
6856015 | Huang et al. | Feb 2005 | B1 |
6864565 | Hool et al. | Mar 2005 | B1 |
6882535 | Labanok et al. | Apr 2005 | B2 |
6919630 | Hsiao | Jul 2005 | B2 |
6933537 | Yee et al. | Aug 2005 | B2 |
6949414 | Lo et al. | Sep 2005 | B2 |
6952050 | Kwon et al. | Oct 2005 | B2 |
6953990 | Gallup et al. | Oct 2005 | B2 |
7012326 | Wu et al. | Mar 2006 | B1 |
7057276 | Lin et al. | Jun 2006 | B2 |
7126217 | Chiu et al. | Oct 2006 | B2 |
7135769 | Ni et al. | Nov 2006 | B2 |
7141886 | Dimaano et al. | Nov 2006 | B2 |
7187077 | Nagarajan | Mar 2007 | B1 |
7196414 | Lin et al. | Mar 2007 | B2 |
7199467 | Yoshimura | Apr 2007 | B2 |
7203072 | Chen et al. | Apr 2007 | B2 |
7205651 | Do et al. | Apr 2007 | B2 |
7327027 | Houle et al. | Feb 2008 | B2 |
7342298 | Zhang | Mar 2008 | B1 |
7358106 | Potter | Apr 2008 | B2 |
7388284 | Zhang | Jun 2008 | B1 |
7402906 | Rahman Khan et al. | Jul 2008 | B2 |
7429501 | Wu et al. | Sep 2008 | B1 |
7473583 | Nagarajan | Jan 2009 | B1 |
7554190 | Macris et al. | Jun 2009 | B2 |
7575956 | Ararao et al. | Aug 2009 | B2 |
7986038 | Kariyazaki | Jul 2011 | B2 |
20040007780 | Hundt et al. | Jan 2004 | A1 |
20040174682 | Lin et al. | Sep 2004 | A1 |
20040238947 | Rumer et al. | Dec 2004 | A1 |
20050077614 | Chengalva et al. | Apr 2005 | A1 |
20050112796 | Ararao et al. | May 2005 | A1 |
20050168952 | Chen et al. | Aug 2005 | A1 |
20060060952 | Yuan et al. | Mar 2006 | A1 |
20080001277 | Wen et al. | Jan 2008 | A1 |
20100109152 | Kariyazaki | May 2010 | A1 |
Number | Date | Country |
---|---|---|
58140931 | Feb 1985 | JP |
60031253 | Feb 1985 | JP |
60160146 | Aug 1985 | JP |
03048446 | Mar 1991 | JP |
08211913 | Feb 1998 | JP |
WO 0069239 | Nov 2000 | WO |
Entry |
---|
Emoto, Y., et al., “Development of Molded TAB Package Technology,” Nippon Steel Technical Report, No. 56, Jan. 1993, pp. 1-6. |
U.S. Appl. No. 12/607,019, filed Oct. 27, 2009, Dosdos, S. Gabriel R and Kim, Dong W., Xilinx, Inc., 2100 Logic Drive, San Jose, CA, USA. |
Xilinx, Inc., “The Programmable Logic Data Book 1999,” pp. 1-62, available from Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. |
U.S. Appl. No. 10/648,118, filed Aug. 25, 2003, Ghee, et al., Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. |
U.S. Appl. No. 11/123,499, filed May 5, 2005, Hoang, Lan H., Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. |
U.S. Appl. No. 11/823,376, filed Jun. 26, 2007, Dosdos, et al., Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. |
Pecht, Michael, “Handbook of Electronic Package Design”, Section 5.4, Aug. 16, 1991, 256-257 pp., Marcel Dekker, Inc., NY, NY, USA. |