Ion guide within pulsed converters

Information

  • Patent Grant
  • 11081332
  • Patent Number
    11,081,332
  • Date Filed
    Thursday, July 26, 2018
    6 years ago
  • Date Issued
    Tuesday, August 3, 2021
    3 years ago
Abstract
Elongation of orthogonal accelerators is assisted by ion spatial transverse confinement within novel confinement means, formed by spatial alternation of electrostatic quadrupolar field (22). Contrary to prior art RF confinement means, the static means provide mass independent confinement and may be readily switched. Spatial confinement defines ion beam (29) position, prevents surfaces charging, assists forming wedge and bend fields, and allows axial fields in the region of pulsed ion extraction, this way improving the ion beam admission at higher energies and the spatial focusing of ion packets in multi-reflecting, multi-turn and singly reflecting TOF MS or electrostatic traps.
Description
CROSS-REFERENCE TO RELATED APPLICATION APPLICATIONS

This application is a national phase filing claiming the benefit of and priority to International Patent Application No. PCT/GB2018/052099, filed on Jul. 26, 2018, which claims priority from and the benefit of United Kingdom patent application No. 1712612.9, United Kingdom patent application No. 1712613.7, United Kingdom patent application No. 1712614.5, United Kingdom patent application No. 1712616.0, United Kingdom patent application No. 1712617.8, United Kingdom patent application No. 1712618.6 and United Kingdom patent application No. 1712619.4, each of which was filed on Aug. 6, 2017. The entire content of these applications is incorporated herein by reference.


FIELD OF INVENTION

The invention relates to the area of time of flight and electrostatic trap mass spectrometers and is particularly concerned with pulsed converters.


BACKGROUND

Time-of-flight mass spectrometers (TOF MS) are widely used for combination of sensitivity and speed, and lately with the introduction of ion mirrors and multi-reflecting schemes, for their high resolution and mass accuracy.


In last two decades, the resolution of TOF MS has been substantially improved by using multi-pass TOFMS (MPTOF), employing either ion mirrors for multiple ion reflections in a multi-reflecting TOFMS (MRTOF), e.g. as described in SU1725289, U.S. Pat. Nos. 6,107,625, 6,570,152, GB2403063, U.S. Pat. No. 6,717,132, or employing electrostatic sectors for multiple ion turns in a multi-turn TOFMS (MTTOF) as described in U.S. Pat. Nos. 7,504,620, 7,755,036, and M. Toyoda, et. al, J. Mass Spectrom. 38 (2003) 1125, incorporated herein by reference. The term “pass” generalizes ion mirror reflection in MRTOF and ion turn in MTTOF.


Electrostatic traps (E-traps) with image current detection is an emerging technology. With success of compact Orbitrap electrostatic analyzers, alternative approaches were proposed for higher space charge capacity and throughput of E-traps. Historically ion traps were used for accumulation and pulsed ejection of large size ion clouds into E-traps. However, elongated pulsed converters are equally feasible. Open traps is another intermediate hybrid of TOF MS and E-trap.


Operation of TOF MS starts with pulsed injection of ion packets. Pulsed sources are used for intrinsically pulsed ionization methods, such as Matrix Assisted Laser Desorption and Ionization (MALDI), Secondary Ionization (SIMS), and pulsed EI. The first two ion sources become more and more popular for mass spectral surface imaging, where relatively large surface area is analyzed simultaneously while using mapping properties of TOF MS.


Even more popular are TOF MS, where pulsed converters are used to form pulsed ion packets out of continuous ion beams produced by ion sources like Electron Impact (EI), Electrospray (ESI), Atmospheric pressure ionization (APPI), atmospheric Pressure Chemical Ionization (APCI), Inductively couple Plasma (ICP) and gaseous (MALDI). Most common pulsed converters are orthogonal accelerators as exampled in WO9103071, and radiofrequency ion traps with pulsed radial ejection, lately used for ion injection into Orbitraps.


Elongated orthogonal accelerators have been recently proposed in WO2016174462 and co-pending application by the inventor for higher duty cycle and sensitivity. This raises a question of ion beam retaining in the elongated OA. U.S. Pat. No. 5,763,878 or 8,373,120 propose using RF fields for transverse ion confinement, which limits the retained mass range and produces multiple mass dependent and RF phase dependent effects at ion pulsed ejection. RU2013149761 proposed using static quadrupolar field for moderate elongation of OA, which allows moderate elongation of the OA, since the quadrupole field defocuses the ion beam in the second direction.


SUMMARY

From a first aspect the present invention provides a pulsed ion accelerator for a mass spectrometer comprising: an ion guide portion having electrodes arranged to receive ions travelling along a first direction (Z-dimension), including a plurality of DC electrodes spaced along the first direction; DC voltage supplies configured to apply different DC potentials to different ones of said DC electrodes such that when ions travel through the ion guide portion along the first direction they experience an ion confining force, generated by the DC potentials, in at least one dimension (X- or Y-dimension) orthogonal to the first direction; and a pulsed voltage supply configured to apply a pulsed voltage to at least one electrode of the ion accelerator for pulsing ions out of the ion accelerator in a second direction (X-dimension) substantially orthogonal to the first direction (Z-dimension).


The DC electrodes and DC voltage supplies generate an electrostatic field that spatially varies along the first direction. As such, the ions travelling along the first direction experience different forces at different distances along the first direction. This enables the ions to be confined by the DC potentials in an effective potential well that may be independent of the mass to charge ratios of the ions.


The ion confining force generated by the DC potentials desirably confines ions in the second dimension (X-dimension). This may improve the initial spatial distribution of the ions for pulsing in the second dimension (X-dimension).


The DC voltage supplies may be configured to apply different DC potentials to different ones of said DC electrodes such that when ions travel through the ion guide portion along the first direction they experience an ion confining force generated by the DC potentials in both dimensions (X- and Y-dimensions) orthogonal to the first direction.


Embodiments of the ion guide portion enable the pulsed ion accelerator to be relatively long in the first direction, whilst having relatively low ion losses, ion beam spreading and surface charging of the electrodes of the ion accelerator.


The ion confinement may be performed without the use of resonant RF circuits, and can be readily switched on and off. More specifically, the use of DC potentials to confine the ions in the ion guide portion enables embodiments to switch off the confining potentials relatively quickly (as opposed to RF confinement voltages), e.g. just before the pulsed ion ejection. Also, the pulsed voltage for ejecting ions does not excite the DC ion confinement electrodes in the detrimental manner that it would with RF confinement electrodes.


The provision of the DC electrodes spaced along the first direction enables the strength and shape of the DC confining field to be set up to vary along the first direction of the ion guide portion, e.g. to provide an axial gradient, a slight wedge or curvature of the confining field, without constructing complex RF circuits.


The pulsed ion accelerator may be an orthogonal accelerator.


The ions may enter into the pulsed ion accelerator along the first direction.


The ion guide portion may comprise a first pair of opposing rows of said DC electrodes on opposing sides of the ion guide portion, wherein each row extends in the first direction (Z-dimension).


The rows may be spaced apart in a third direction (Y-dimension), that is orthogonal to the first and second directions, by a gap. The pulsed ion accelerator may be configured such that when the pulsed voltage is applied to the at least one electrode, the ions are pulsed in the second direction (X-dimension) through the gap between the rows of electrodes and out of the ion guide portion. The ions may therefore be pulsed out of the ion guide without impacting on the rows of electrodes.


The DC voltage supplies may be configured to maintain at least some of the adjacent DC electrodes in each row at potentials having opposite polarities.


Each electrode in a given row may be maintained at an opposite polarity to the opposing electrode in the other row, i.e. each electrode in a given row may be maintained at an opposite polarity to the electrode having the same location (in the first direction) in the opposing row.


The ion guide portion may comprise a second pair of opposing rows of said DC electrodes on opposing sides of the ion guide portion, wherein each row extends in the first direction (Z-dimension). These rows may be spaced apart in the third direction (Y-dimension), that is orthogonal to the first and second directions, by a gap. The DC voltage supplies maybe configured to maintain at least some of the adjacent DC electrodes in each row at potentials having opposite polarities.


Each electrode in a given row of the second pair may be maintained at an opposite polarity to the opposing electrode in the other row of the second pair, i.e. each electrode in a given row of the second pair may be maintained at an opposite polarity to the electrode having the same location (in the first direction) in the opposing row of the second pair.


Ions may be received in the ion guide portion in the region radially inward of (and defined by) the first and second pairs of rows.


The DC voltage supplies may be configured to maintain the DC electrodes at potentials so as to form an electrostatic quadrupolar field in the plane orthogonal to the first direction, wherein the polarity of the quadrupolar field alternates as a function of distance along the first direction.


The DC electrodes may be arranged to form a quadrupole ion guide that is axially segmented in the first direction, and wherein the DC voltage supplies are configured to maintain DC electrodes that are axially adjacent in the first direction at opposite polarities, and DC electrodes that are adjacent in a direction orthogonal to the first direction at opposite polarities.


The DC quadrupolar field may spatially oscillate in the first direction.


The DC electrodes may have the same lengths in the first direction and may be periodically spaced along the first direction.


The DC electrodes may be arranged on one or more printed circuit board (PCB), insulating substrate, or insulating film.


For example, each of the rows of DC electrodes may be arranged on a respective printed circuit board, insulating substrate, or insulating film. Alternatively, two of the rows of DC electrodes may be arranged on two opposing sides of a PCB, insulating substrate, or insulating film. Alternatively, two of the rows of DC electrodes may be arranged on different layers of a multi-layer PCB or insulating substrate.


The PCB(s), insulating substrate(s), or insulating film(s) may comprise a conductive coating (e.g. in the regions that the electrodes do not contact) to prevent charge build up due to ion strikes. For example, a resistive layer may be provide between the electrodes, so as to avoid the insulating material becoming electrically charged.


PCB as used herein may refer to a component containing conductive tracks, pads and other features etched from, printed on, or deposited on one or more sheet layers of material laminated onto and/or between sheet layers of a non-conductive substrate.


It may be desired to increase the ion confining force as a function of distance in the first direction, e.g. so that the amplitude of oscillation of the ions (e.g. micro-motion) orthogonal to the first direction is (gradually) reduced as a function of distance along the ion guide portion.


For example, the DC voltage supplies may be configured to apply different DC voltages to the DC electrodes so as to form a voltage gradient in the first direction that increases the ion confining force as a function of distance in the first direction.


This may be achieved by connecting the DC electrodes aligned in the first direction using resistive dividers.


For the avoidance of doubt, said function of distance in the first direction is the distance away from the ion entrance to the ion guide portion.


The DC electrodes may be arranged in rows that are spaced apart in at least one dimension orthogonal to the first direction for confining the ions between the rows, and the DC electrodes may be spaced apart in said at least one dimension by an amount that decreases as a function of distance in the first direction.


The spacing between the DC electrodes in said at least one dimension may decrease as a function of distance in the first direction from the ion entrance at a first end of the ion guide portion to a downstream portion.


The spacing between the DC electrodes in said at least one dimension may be maintained constant from the downstream portion at least part of the distance to a second end of the ion guide portion.


The at least one dimension may be the dimension (Y-dimension) orthogonal to both the first direction (Z-dimension) and the second direction (X-dimension).


The pulsed ion accelerator may be configured to control the DC voltage supplies to switch off at least some of said DC potentials applied to the DC electrodes and then subsequently control the pulsed voltage supply to apply the pulsed voltage for pulsing ions out of the ion accelerator; and/or the pulsed ion accelerator may be configured to control the DC voltage supplies to progressively reduce the amplitudes of the DC potentials applied to the DC electrodes with time, and then subsequently control the pulsed voltage supply to apply the pulsed voltage for pulsing ions out of the ion accelerator.


The ion accelerator may repeatedly (and optionally periodically) pulse ions out, and prior to each pulse may switch off the DC potentials applied to the DC electrodes. Alternatively, or additionally, the ion accelerator may repeatedly (and optionally periodically) pulse ions out, and prior to each pulse may progressively reduce the amplitudes of the DC potentials applied to the DC electrodes with time.


The above embodiments may reduce the micro-motion of the ions within the confined ion beam before pulsed ejection.


The pulsed ion accelerator may comprise pulsed electrodes spaced apart in the second direction (X-dimension) on opposite sides of the ion guide portion, at least one of which is connected to the pulsed voltage supply for pulsing ions in the second direction (X-dimension).


The pair of pulses electrodes may comprise at least one push electrode connected to the pulsed voltage supply for pulsing ions away from the at least one push electrode, out of the ion guide portion, and out of the ion accelerator; and/or at least one puller electrode connected to the pulsed voltage supply for pulsing ions towards the at least one puller electrode, out of the ion guide portion, and out of the ion accelerator.


The at least one puller electrode may have a slit therein, or may be formed from spaced apart electrodes, so as to allow the pulsed ions to pass therethrough.


The pulsed ion accelerator may comprise electrodes spaced apart in the second direction (X-dimension) on opposite sides of the ion guide portion; wherein these electrodes are spaced apart in said second direction (X-dimension) by an amount that decreases as a function of distance in the first direction.


These electrodes may be the pulsed electrodes described above.


The spacing between the electrodes in said second direction (X-dimension) may decrease as a function of distance in the first direction from the ion entrance at a first end of the ion guide portion to a downstream portion. The spacing between the electrodes in said second direction (X-dimension) may be maintained constant from the downstream portion at least part of the distance to a second end of the ion guide portion.


The pulsed ion accelerator may comprise electrodes spaced apart in the second direction (X-dimension) on opposite sides of the ion guide portion; wherein the average DC potential of said DC potentials may be negative relative to said electrodes spaced apart in the second direction so as to form a quadrupolar field that compresses the ions in the second direction (X-dimension).


Said electrodes spaced apart in the second direction may be the pulsed electrodes described above.


The pulsed ion accelerator may comprise electrodes and voltage supplies forming a DC ion acceleration field arranged downstream of the ion guide portion, in the second direction (X-dimension).


The present invention also provides a mass spectrometer comprising: a time-of-flight mass analyser or electrostatic ion trap having the pulsed ion accelerator as described hereinabove, and electrodes arranged and configured to reflect or turn ions.


The mass spectrometer may comprise: a multi-pass time-of-flight mass analyser or electrostatic ion trap having the pulsed ion accelerator as described hereinabove, and electrodes arranged and configured so as to provide an ion drift region that is elongated in a drift direction (z-dimension) and to reflect or turn ions multiple times in an oscillating dimension (x-dimension) that is orthogonal to the drift direction.


The drift direction (z-dimension) may corresponds to said first direction and/or the oscillating dimension (x-dimension) may correspond to said second direction; or said first direction may be tilted at an acute angle to the drift direction (z-dimension).


The first direction and drift direction (z-dimension) may be arranged at a small angle to each other for isochronous steering of ion packets. The steering angles may be adjusted for aligning the ion packets time front with the drift direction (z-dimension).


For the avoidance of doubt, the time front of the ions may be considered to be a leading edge/area of ions in the ion packet having the same mass to charge ratio (and which may have the mean average energy).


The spectrometer may be configured to spatially focus the ion packets in the drift direction (z-dimension) downstream of the pulsed ion accelerator.


The spatial focusing may comprise: (i) spatial focusing or steering of the ions by a field of a trans-axial lens/wedge, optionally complimented with curved electrodes in the pulsed extraction region of the pulsed ion accelerator; (ii) spatial focusing and/or steering of the ions by multiple segments of deflecting fields, e.g. forming a Fresnel lens/deflector; (iii) by arranging a negative spatial-temporal correlation of the ion beam within said ion guide portion at ion beam injection into said ion guide portion; (iv) by arranging a first direction dependent deceleration of the ion beam within said ion guide portion.


The spectrometer may be configured to pulse the ion packets so as to be displaced in the dimension (Y-dimension) orthogonal to the drift direction (Z-dimension) and the oscillating dimension (X-dimension).


This may enable the ions to be displaced onto an isochronous surface of mean ion trajectory within the fields of the isochronous electrostatic analyzer.


The multi-pass time-of-flight mass analyser may be a multi-reflecting time of flight mass analyser having two ion mirrors that are elongated in the drift direction (z-dimension) and configured to reflect ions multiple times in the oscillation dimension (x-dimension), wherein the pulsed ion accelerator is arranged to receive ions and accelerate them into one of the ion mirrors. Alternatively, the multi-pass time-of-flight mass analyser may be a multi-turn time of flight mass analyser having at least two electric sectors configured to turn ions multiple times in the oscillation dimension (x-dimension), wherein the pulsed ion accelerator is arranged to receive ions and accelerate them into one of the sectors.


Where the mass analyser is a multi-reflecting time of flight mass analyser, the mirrors may be gridless mirrors.


Each mirror may be elongated in the drift direction and may be parallel to the drift dimension.


It is alternatively contemplated that the multi-pass time-of-flight mass analyser or electrostatic trap may have one or more ion mirror and one or more sector arranged such that ions are reflected multiple times by the one or more ion mirror and turned multiple times by the one or more sector, in the oscillation dimension.


The spectrometer may comprise an ion deflector located downstream of said pulsed ion accelerator, and that is configured to back-steer the average ion trajectory of the ions, in the drift direction, thereby tilting the angle of the time front of the ions received by the ion deflector.


The average ion trajectory of the ions travelling through the ion deflector may have a major velocity component in the oscillation dimension (x-dimension) and a minor velocity component in the drift direction. The ion deflector back-steers the average ion trajectory of the ions passing therethrough by reducing the velocity component of the ions in the drift direction. The ions may therefore continue to travel in the same drift direction upon entering and leaving the ion deflector, but with the ions leaving the ion deflector having a reduced velocity in the drift direction. This enables the ions to oscillate a relatively high number of times in the oscillation dimension, for a given length in the drift direction, thus providing a relatively high resolution.


The ion deflector may be configured to generate a substantially quadratic potential profile in the drift direction.


The pulsed ion accelerator and ion deflector may tilt the time front so that it is aligned with the ion receiving surface of the ion detector and/or to be parallel to the drift direction (z-dimension).


The mass analyser or electrostatic trap may be an isochronous and/or gridless mass analyser or an electrostatic trap.


The mass analyser or electrostatic trap may be configured to form an electrostatic field in a plane defined by the oscillation dimension and the dimension orthogonal to both the oscillation dimension and drift direction (i.e. the XY-plane).


This two-dimensional field may have a zero or negligible electric field component in the drift direction (in the ion passage region). This two-dimensional field may provide isochronous repetitive multi-pass ion motion along a mean ion trajectory within the XY plane.


The energy of the ions received at the pulsed ion accelerator and the average back steering angle of the ion deflector may be configured so as to direct ions to an ion detector after a pre-selected number of ion passes (i.e. reflections or turns).


The spectrometer may comprise an ion source. The ion source may generate an substantially continuous ion beam or ion packets.


The pulsed ion accelerator may receive a substantially continuous ion beam or packets of ions, and may pulse out ion packets.


The pulsed ion accelerator may be a gridless orthogonal accelerator.


The drift direction may be linear (i.e. a dimension) or it may be curved, e.g. to form a cylindrical or elliptical drift region.


The mass analyser or ion trap may have a dimension in the drift direction of: ≤1 m; ≤0.9 m; ≤0.8 m; ≤0.7 m; ≤0.6 m; or ≤0.5 m. The mass analyser or trap may have the same or smaller size in the oscillation dimension and/or the dimension orthogonal to the drift direction and oscillation dimension.


The mass analyser or ion trap may provide an ion flight path length of: between 55 and 15 m; between 6 and 14 m; between 7 and 13 m; or between 8 and 12 m.


The mass analyser or ion trap may provide an ion flight path length of: ≤20 m; ≤15 m; ≤14 m; ≤13 m; ≤12 m; or ≤11 m. Additionally, or alternatively, the mass analyser or ion trap may provide an ion flight path length of: ≥5 m; ≥6 m; ≥7 m; ≥8 m; ≥9 m; or ≥10 m. Any ranges from the above two lists may be combined where not mutually exclusive.


The mass analyser or ion trap may be configured to reflect or turn the ions N times in the oscillation dimension, wherein N is: ≥5; ≥6; ≥7; ≥8; ≥9; ≥10; ≥11; ≥12; ≥13; ≥14; ≥15; ≥16; ≥17; ≥18; ≥19; or ≥20. The mass analyser or ion trap may be configured to reflect or turn the ions N times in the oscillation dimension, wherein N is: ≤20; ≤19; ≤18; ≤17; ≤16; ≤15; ≤14; ≤13; ≤12; or ≤11. Any ranges from the above two lists may be combined where not mutually exclusive.


The spectrometer may have a resolution of: ≥30,000; ≥40,000; ≥50,000; ≥60,000; ≥70,000; or ≥80,000.


The spectrometer may be configured such that the pulsed ion accelerator receives ions having a kinetic energy of: ≥20 eV; ≥30 eV; ≥40 eV; ≥50 eV; ≥60 eV; between 20 and 60 eV; or between 30 and 50 eV. Such ion energies may reduce angular spread of the ions and cause the ions to bypass the rims of the orthogonal accelerator.


The spectrometer may comprise an ion detector.


The detector may be an image current detector configured such that ions passing near to it induce an electrical current in it. For example, the spectrometer may be configured to oscillate ions in the oscillation dimension proximate to the detector, inducing a current in the detector, and the spectrometer may be configured to determine the mass to charge ratios of these ions from the frequencies of their oscillations (e.g. using Fourier transform technology). Such techniques may be used in the electrostatic ion trap embodiments.


Alternatively, the ion detector may be an impact ion detector that detects ions impacting on a detector surface. The detector surface may be parallel to the drift dimension.


The ion detector may be arranged between the ion mirrors or sectors, e.g. midway between (in the oscillation dimension) opposing ion mirrors or sectors.


The spectrometer may comprise an ion source and a lens system between the ion source and pulsed ion accelerator for telescopically expanding the ion beam from the ion source.


The lens system may form a substantially parallel ion beam along the first direction (Z-direction). The telescopic expansion may be used to optimise phase balancing of the ion beam within the ion guide portion, e.g. where the initial angular divergence and width of the ion beam provide for about equal impact onto the thickness of the confined ion beam.


The spectrometer may comprise an ion source in a first vacuum chamber and the pulsed ion accelerator in a second vacuum chamber, wherein the vacuum chambers are separated by a wall and are configured to be differentially pumped, and wherein the ion guide portion protrudes from the second vacuum chamber through an aperture in the wall and into the first vacuum chamber.


The present invention also provides a method of mass spectrometry comprising: providing a pulsed ion accelerator or mass spectrometer as described hereinabove; receiving ions in said ion guide portion of the pulsed ion accelerator; applying different DC potentials to different ones of said DC electrodes such ions travelling through the ion guide portion along said first direction experience an ion confining force in at least one dimension (X- or Y-dimension) orthogonal to the first direction; and then applying a pulsed voltage to at least one of the electrodes of the pulsed ion accelerator so as to pulse ions out of the ion accelerator in the second direction (X-dimension).


Proposed herein is a spatially alternated DC quadrupolar field within a pulsed accelerator or converter for indefinite confinement of an ion beam without limits on ion mass to charge ratio and enabling for instant switching off of the confining fields. The accelerator may be further improved with “balancing” of ion beam spatial and angular spreads by entrance ion optics for minimizing the phase space of the confined ion beam. The accelerator may further be improved by forming “adiabatic” spatial entrance and temporal exit conditions.


Embodiments comprise PCB variants for implementing the guide, gently curved guides and guides protruding through differentially pumped walls.


The coupling of elongated pulsed converters to MPTOF and E-traps may be enhanced by introducing embodiments for bypassing the converter and by introducing multiple embodiments for isochronous spatial focusing of elongated ion packets.


Embodiments of the present invention provide a method of mass spectrometric analysis within isochronous electrostatic fields, comprising the following steps:

    • (a) forming electrostatic quadrupolar field in the XY-plane, which is spatially alternated along the orthogonal Z-direction;
    • (b) passing an ion beam along the Z-direction;
    • (b) pulsed accelerating of the moving ions in the X-direction, thus forming ion packets;


Preferably, the method may further comprise a step of forming a constant per Z-direction quadrupolar electrostatic field in said XY-plane to produce an additional ion beam confinement in the X-direction.


Preferably, the step of pulsed orthogonal acceleration in the X-direction may further comprise a step of switching off of said quadrupolar confining fields to a different field being uniform in the Z-direction for minimizing time, and/or angular aberrations, and/or energy spread of said extracted ion packets.


Preferably, the method may further comprise a step of arranging adiabatic conditions at ion beam entrance and the ion packet exit into and from said quadrupolar fields comprising at least one step of the group: (i) arranging spatial gradual in space rise of said quadrupolar confining field; and (ii) arranging gradual in time switching of said quadrupolar field; wherein gradual means that the moving ions sense the quadrupolar field rise and fall within several cycles of the quadrupolar field alternations.


Preferably, said Z-axis is generally curved.


Preferably, said quadrupolar confining field is arranged to protrude through walls separating differentially pumped stages of an ion source generating said ion beam.


Preferably, said fields of isochronous electrostatic analyzer may comprise either isochronous fields of gridless ion mirrors or isochronous fields of electrostatic sectors; and wherein said fields may be arranged for either time-of-flight analysis or for ion trapping with measuring frequency of their oscillations within said isochronous electrostatic fields.


Preferably, said field of electrostatic analyzer may be two-dimensional and substantially extended along a tilted Z′-axis; wherein axes Z and Z′ may be arranged as mall angle for isochronous steering of ion packets; wherein said steering angles are adjusted for aligning the ion packets time front with the axis Z′.


Preferably, the method may further comprise a step of ion packet spatial focusing in the Z-direction past said step of ion pulsed ejection; wherein said spatial focusing may comprise one step of the group: (i) spatial focusing or steering by a field of trans-axial lens/wedge, complimented with curved electrodes in the pulsed extraction region; (ii) spatial focusing and/or steering by multiple segments of deflecting fields, forming a Fresnel lens/deflector; (iii) by arranging a negative spatial-temporal correlation of ion beam within said ion storage gap at ion beam injection into said storage gap; (iv) by arranging a Z-dependent deceleration of ion beam within said ion guide.


Preferably, the method may further comprise a step of pulsed displacing of said ion packets in the Y-direction to bring said ion packets onto an isochronous surface of mean ion trajectory within said fields of isochronous electrostatic analyzers.


Preferably, the timing and the duration of said pulsed ion packet displacement in the Y-direction is arranged for reducing the mass range of the ion packet and wherein the period of said pulsed acceleration is arranged shorter compared to flight time of the heaviest ion species in said isochronous analyzer.


Embodiments of the present invention provide a mass spectrometer, comprising:

    • (a) An ion source, generating an ion beam along a first drift Z-direction at some initial energy;
    • (b) An orthogonal accelerator, admitting said ion beam into a storage gap, pulsed accelerating a portion of said ion beam in the second orthogonal X-direction, thus forming ion packets with a smaller velocity component in the Z-direction and with the major velocity component in the X-direction;
    • (c) An electrostatic multi-pass (multi-reflecting or multi-turn) mass analyzer, built of ion mirrors or electrostatic sectors, substantially elongated in said Z-direction to form an electrostatic field in an XY-plane orthogonal to said Z-direction; said two-dimensional field provides for a field-free ion drift in the Z-direction towards a detector, and for an isochronous repetitive multi-pass ion motion within an isochronous mean ion trajectory surface—either symmetry s-XY plane of said ion mirrors or curved s-surface of electrostatic sectors;
    • (d) within said storage gap of said orthogonal accelerator, an ion guide composed of electrodes, symmetrically surrounding said ion beam; said electrodes are energized by at least two distinct DC potentials to form an electrostatic quadrupolar field in the XY-plane, which is spatially alternated along the Z-direction;


Preferably, said Z-axis may be generally curved.


Preferably, said ion guide may be arranged extended beyond said storage gap of said orthogonal accelerator.


Preferably, said ion guide may be arranged to protrude through walls of differentially pumped stages.


Preferably, said isochronous electrostatic analyzer may comprise either isochronous gridless ion mirrors or isochronous electrostatic sectors; and wherein said fields may be arranged for either time-of-flight analysis or for ion trapping with measuring frequency of their oscillations within said isochronous electrostatic fields.


Preferably, said electrostatic analyzer may form two-dimensional fields substantially extended along a Z′-axis; wherein axes Z and Z′ may be arranged at small angle for isochronous steering of ion packets; wherein said steering angles may be adjusted for aligning the ion packets time front with the axis Z′.


Preferably, past said orthogonal accelerator, the spectrometer may further comprise one means for ion packet spatial focusing in the Z-direction of the group: (i) a trans-axial lens/wedge, complimented with curved electrodes in the pulsed extraction region; (ii) a Fresnel lens/deflector; (iii) pulsed or time variable signals applied upstream of said orthogonal accelerator for arranging a negative spatial-temporal correlation of ion beam within said ion storage gap; (iv) a Z-dependent voltage gradient within said guide for deceleration of said ion beam.


Preferably, past said orthogonal accelerator, the spectrometer may further comprise at least a pair of deflectors or sectors, placed immediately after said orthogonal accelerator for pulsed displacing of said ion packets in the Y-direction to bring said ion packets onto an isochronous surface of mean ion trajectory.


Embodiments improve the process of ion beam confinement within elongated OA; extend the mass range and remove the mass dependent and RF dependent effects at pulsed ejection; and improve coupling of elongated pulsed converters with MRTOF and E-trap mass spectrometers for higher sensitivities and duty cycles.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments will now be described, by way of example only, and with reference to the accompanying drawings in which:



FIG. 1 shows prior art methods of ion beam spatial confinement within storage gaps of elongated orthogonal accelerators;



FIG. 2 illustrates method of an embodiment of the present invention of ion beam spatial confinement by spatially alternated electrostatic quadrupolar fields;



FIG. 3 shows electrode details and improved boundaries of the quadrupolar field of FIG. 2



FIG. 4 shows construction principles to form the novel quadrupolar electrostatic guide within orthogonal accelerators.



FIG. 5 shows an MRTOF embodiment employing an elongated accelerator, novel confinement means and a method of side bypassing of the elongated accelerator by ion packets;



FIG. 6 shows embodiments of trans-axial lens/wedge, used for spatial focusing of elongated ion packets produced in MRTOF of FIG. 5; and



FIG. 7 illustrates methods of spatial ion packet focusing for MRTOF of FIG. 5, arranged by spatial-temporal correlation of ions in the novel confinement means used for spatial focusing of elongated ion packets.





DETAILED DESCRIPTION

Referring to FIG. 1, prior art orthogonal accelerators (OA) 15 and 17 are shown in the XZ-view 10 and the XY-view 11. OA 15 employs a radio-frequency (RF) field for ion beam confinement, and OA 17 employs a DC field for ion beam confinement. Both OA 15 and 17 sequentially comprise: push electrode P; auxiliary confining electrodes 13; grounded mesh G; pull mesh N; and a set of electrodes for DC acceleration denoted DC with the mesh covered exit electrode.


Continuous ion beam 11 propagates along the Z-axis and enters the space between push P and mesh G electrodes. Within this space, confining electric field 12 is arranged with the aid of auxiliary electrodes 13, connected to some electric signal U, either RF (in device 15) or DC (in device 17). Periodic pulses are applied to electrodes P and N to extract ion packets 14 out of continuous beam 11 for injection into a TOF MS mass analyser.


OA 15 of prior art U.S. Pat. No. 5,763,878 or 8,373,120, proposes the spatial confinement of the ion beam 11 by radiofrequency RF radial field 16, generated by applying an RF signal to side electrodes 13. Optionally, the RF field is switched off before ion extraction pulses are applied (to P and N). Both the effective potential well of the RF field and the micro-oscillations of the ions depend on ion mass to charge ratio m/z=μ. Parameters of the ion beam 11 and of pulsed ion packets 14 depend on μ, on the RF phase at switching off, and on the time delay to pulses. In addition, OA 15 has two major drawbacks: (a) the RF field limits the transmitted mass range and (b) the extraction pulses induce strong oscillations onto resonant RF generators, thus impeding transmission, resolution and mass accuracy of TOF MS.


OA 17, proposed in RU2013149761 employs a rectilinear electrostatic quadrupolar field 18, formed by applying a negative DC potential to electrodes 13. A weak electrostatic quadrupolar field focuses and confines the ion beam in the critical TOF X-direction (towards the ion mirror), while defocusing the ion beam in the non-critical transverse Y-direction. The method allows moderate elongation of ion packets 14, estimated to a length in the z-direction of about LZ≤50 mm. Longer OAs suffer strong ion losses in the Y-direction.


Referring to FIG. 2, there are shown XZ 20, XY 25 and XYZ 26 views of an embodiment 20 of the present invention, depicting a gridless orthogonal accelerator with novel means for ion beam spatial confinement. Embodiment 20 comprises: a push electrode P; a pair of pull electrodes N with a slit S in-between; a set of electrodes 23 forming an ion guide for spatial ion beam confinement, located in the space between plates P and N and connected to at least two DC signals DC1 and DC2; a DC acceleration stage DC; and a lens L for terminating DC field at nearly zero ion packet divergence in the XY-plane. All electrodes of the OA may be aligned with the drift Z-axis. The OA 20 may be preceded by an ion source 27 generating an ion beam at specific energy per charge UZ and by a lens system 28.


In operation, downstream of ion source 27, lens system 28 may expand the ion beam telescopically and form a nearly parallel ion beam 21 along the Z-axis. The telescopic expansion is preferably used to optimize so-called phase balancing of the ion beam 21 within ion guide 23, where initial angular divergence and width of the ion beam 21 provide for about equal impact onto thickness of the confined ion beam 29.


Ion beam 21 enters the P-N gap and becomes spatially confined in the region 22 by a set of alternating electrodes with distinct DC voltages DC1 and DC2, generating a spatially alternating quadrupolar DC field E(X,Y), approximated at the field axis by a transverse field distribution:

E(X,Y)=E0*(X−Y)/R*sin(2πZ/H)  (Eq.1)


where E, Y and Z are the dimensions of the ion guide; H is spatial period of quadrupolar field alternation, and R is the characteristic field radius.


For ions having mass to charge ratio μ=m/z at specific axial (along Z-axis) energy UZ, the axial velocity is VZ=(2UZ/μ)0.5. The spatial alternation of the quadrupolar DC field is sensed by ions moving through the DC field as if a periodic RF signal was being applied, which is known to radially confine ions to the field axis. The frequency of the sensed RF field F=H/VZ is inversely proportional to μ0.5. Then the effective potential well D(r) of the sensed RF field depends on the ion radial position r (where r2=X2+Y2). It is important to note that D(r) is independent of the ion mass to charge ratio μ:

D(r)=E02*(r2/R2)/μ(2πF)2=[E02H2/2πUZ]*(r2/R2)  (Eq. 2)
[For reference: D(r)=E02*(r2/R2)/μ(2πF)2=E02*(r2/R2)/μVZ2(2π/H)2]


Thus, the novel electrostatic ion guide equally confines ions of all mass to charge ratios μ, e.g. assuming they have similar axial and radial energies.


The alternating quadrupolar field indefinitely (per Z) confines ion beam 29 in both transverse directions (i.e. X and Y directions), producing a spatially tight ion beam within substantially elongated orthogonal accelerators or other pulsed converters. Electrical pulses may be applied to electrodes P and N to convert the continuous ion beam 29 into pulsed ion packets 24 by orthogonal pulsed extraction. Preferably, voltages DC1 and DC2 are switched to zero or to different setting U1 and U2 at the time of the pulsed ion ejection so as to improve the electric field distribution at ion ejection.


The novel electrostatic quadrupolar ion guide 23 provides for indefinite ion beam confinement. Relative to the RF confinement of prior art device 15 (see FIG. 1), the novel electrostatic confinement provides multiple advantages: it is mass independent; it does not require resonant RF circuits and can be readily switched on and off; the strength and shape of the transverse confining field can be readily varied along the guide length (i.e. along the z-direction); it can provide an axial gradient, slight wedge or curvatures of the confining field without constructing complex RF circuits.


Referring to FIG. 3, the electrode structure of ion guide 23 for quadrupolar electrostatic ion confinement within OA 20 (of FIG. 2) is illustrated in multiple views 30, 31, and 32 of embodiment 30. The ion guide 23 in embodiment 30 comprises four rows 33 (in the z-direction) of electrodes 34,35. Electric potential DC1 is applied to alternating electrodes 35 in each row, as shown by the darker coloured electrodes 35. Electric potential DC2 is applied to alternating electrodes 34 in each row, as shown by the lighter coloured electrodes 34. Electrodes 34 and 35 are interleaved in the z-direction.


In operation, as best seen in 3D view 31, electrodes 34 and 35 form a local quadrupolar electrostatic field 22 in every XY-cross section. The polarity of the quadrupolar field changes when shifting in the Z-direction. Ion beam 21 at specific mean energy UZ may be formed in an ion source 27, and may be shaped by lens 28. Ion beam 21 enters quadrupolar field 22 along the Z-axis. From this point the ion beam is denoted by number 29. Because of the periodically spatially alternating DC quadrupolar field, ions moving along the Z-axis sense a quadrupolar field that periodically changes with time, which is known to provide radial ion confinement towards the field axis (in a similar manner to an RF field acting on a static ion). The ion beam stays spatially confined in the x-y plane at limited angular divergence, without limits on the Z-length. The beam 29 is refocused multiple times by the quadratic field, eventually mixing ions within a limited phase space.


Preferably, lens 28 reshapes the phase space of the ion beam 21 entering the ion guide 23 for optimal balance between width and divergence of the confined ion beam 29. Preferably, the average potential (DC1+DC2)/2 is slightly negative relative to P and N electrodes to form a combination of the alternating quadrupolar field 22 with a constant per Z quadrupolar field, thus providing stronger compression of the ion beam 29 in the X-direction Vs Y-direction.


Embodiment 30 is further improved by arranging so-called “adiabatic entrance” 36 and “adiabatic exit” 37 conditions for ion beam 29.


For adiabatic entrance 36, there is arranged a smooth spatial rise of quadrupolar DC field, spread for at least 2-3 spatial periods of the DC field alternation. The smooth rise of the quadrupolar field may be arranged either by the illustrated Y-spreading of ion guide 23 electrodes, and/or by narrowing of the storage gap between electrodes N and P in the X-direction, and/or by arranging a gradient of DC voltages in the Z-direction, e.g. by resistive dividers.


Ions staying on axis of the guide 23 experience zero transverse field and have zero micro-motion, however, radially distant ions do not. For “adiabatic exit” 37 of radially distant ions at pulsed extraction of ion packets, embodiments of the invention initially maintain the DC1 and DC2 amplitudes constant and then switch the amplitudes to gradually decrease with time, e.g. as shown for DC1 in graph 37. The switching time may correspond to the time after the ion has passed through several DC alternations of the ion guide 23, as shown in plot 37 by time variation 38 of sensed quadrupolar field for some probe ion. This adiabatic switching reduces the energy of “micro-motion” of the ions within the confined ion beam 29 before pulsed ejection.


Referring to FIG. 4, multiple construction principles 40 to 46 are proposed for forming confining means 23 within OA 20 of FIG. 2.


One particular embodiment 40 of the static quadrupolar guide 23 comprises a set of four parallel-aligned printed circuit boards (PCB) 47. Conductive pads on each board 47 form a row of alternated electrodes 34 and 35, distinct in the drawing by color coding as described above. Two DC potentials are interconnected with the conductive pads through displaced PCB vias, DC1 to electrodes 35 and DC2 to electrodes 34. Each side (in the Y-direction) of ion guide 40 is formed by a pair of boards 47, separated by an insulating plate, which is preferably also a PCB. Alternatively, the pair may be arranged within a single thick multilayer PCB for better precision. Since boards 47 are set distant from spatially confined ion beam 29, only limited care shall be used to shield insulating surfaces from stray ions. Since DC1 and DC2 potentials are expected to be in the range of several tens of Volts, the insulating ridges may be thin. Still, edge slots and edge conductive coatings are preferred for the ion guide robustness against the charging by stray ions.


Another particular embodiment 41 employs conductive electrodes 34 and 35 attached to both sides of a single PCB support 47. This is equivalent to one pair of boards 47 shown in embodiment 40. Another PCB support 47 with conductive electrodes 34 and 35 attached to both sides thereof would be required to form the ion guide 23 according to embodiment 41.


Yet another particular embodiment 42 comprises a row of alternating electrodes 34 and 35 constructed of two thin electrode plates that are spaced apart by a thin insulator such as a film, say, PTFE or Kapton film. Extending electrode ribs appear mutually displaced in the X-direction by the thickness of the insulator, which is expected to generate only minor Z-modulation of the quadrupolar field on the beam 29 axis. This is equivalent to one pair of boards 47 shown in embodiment 40. Another corresponding structure would be required to form the ion guide 23 according to embodiment 42.


Ion guides 42-44 are preferred for their compatibility with heating to approximately 150-200° C. for robust operation of the guide, for preventing built-up of insulating coatings or deposition of droplets from ESI sources.


Yet another particular embodiment 43 comprises machined (say by EDM) electrodes with bent extending electrode ribs. Optionally, ribs may be slightly bent in embodiment 42 as well.


Yet another particular embodiment 44 may have a curved Z axis, e.g. for reducing gas flux, for removal of charged droplets from ESI ion source, for removal of light and metastable particles from EI source, or for convenience of instrumental packaging. Initially turned electrodes may be machined by EDM.


Again referring to FIG. 4, in embodiment 45, electrostatic quadrupolar guides 40-44 may be further improved by seamless extending of the ion guides beyond the ion OA ion storage gap of electrodes N and P, e.g. so as to guide ions passed gaseous RF ion guides or passed ion optics, already forming a nearly parallel ion beam. Preferably, the ion guiding PCBs 47 (or set of conductive electrode 34 and 35) may pass through a wall 48 that separates differentially pumped stages of the spectrometer, with the pumping denoted by white arrows. The guide is expected to operate in the pressure range of, for example, up to 0.1-1 mTorr. Beyond this pressure threshold, ions may start losing their kinetic energy and may be lost on the ion guide walls.


Again referring to FIG. 4, in embodiment 46 an array of ion guides 49 may be formed for operating with multiple ion sources, or multiple beam 21 fractions for increased throughput of mass spectral analyses with various TOF MS, or for mapping or imaging MRTOF, e.g. for use with the systems as described in WO2017091501, WO2017087470, and WO2017087456.


Referring to FIG. 5, an OA-MRTOF embodiment 50 according to the present invention is shown in two variants: 50L—with linear Z-axis and 50C—with circular Z-axis, where functionally similar components are denoted with the same numbers between variants. Embodiment 50L comprises the novel electrostatic quadrupolar ion guide 51 for ion beam spatial confinement within a Z-elongated orthogonal accelerator 52. Embodiment 50 further comprises a pair of parallel gridless ion mirrors M, separated by a floated field-free drift space to form a multi-reflecting analyzer. Electrodes of OA 52 and of ion mirrors M are substantially elongated in the linear drift Z-direction to provide a two-dimensional electrostatic field in the X-Y plane, symmetric around s-XZ symmetry plane of isochronous trajectory surface and having zero field component in the Z-direction. Embodiment 50 further comprises: a continuous ion source 27; a lens system 28 to form a substantially parallel ion beam 21; an isochronous Z-focusing trans-axial lens 53; a set of dual Y-deflectors 54 and 55; and a TOF detector 59. Preferably, ion source 27 comprises an RF ion guide with pulsed exit gate, denoted by RF and by pulse symbol.


In operation, ion beam 21 is generated by source 27, formed by ion optics 28, and entering OA 51 along the Z-direction. Ion beam is transverse confined with guide 51, as described in FIGS. 2 to 4, becoming a confined portion 29 of the ion beam 21. Pulsed OA 52 extracts elongated ion packets 58. The mean ion trajectory of the ion packets 58 moves at a small inclination angle α to the x-axis, which is controlled by the UZ specific energy of ion beam 21 and by the acceleration voltage UX of the drift space.


Downstream of OA 51, elongated ion packets 58 are pulsed displaced in the Y direction by deflectors 54 and 55, thus bypassing the Y-displaced OA 52 and returning to the axis of ion mirrors M (best seen in the X-Y plane view). Ions are reflected between ion mirrors M in the X-direction within the s-XZ symmetry plane while drifting towards the detector 59 in the z-direction. Since ion packets are focused by trans-axial lens 53 in the Z-direction, they reach the face of detector 59 without hitting the rims of the detector. The duty cycle of the OA-MPTOF 50 may be improved, e.g. to above 50% from the several percent in conventional MPTOFs. The method becomes possible because of ion beam spatial confinement within the OA by the novel quadrupolar electrostatic ion guides. While embodiment 50 depicts multi-reflecting TOF MS (MR TOF), similar improvements are applicable to sector multi-turn TOF MS (MT TOF) and to singly reflecting TOF MS. The injection scheme of circular embodiment 50C may be useful for ion injection into cylindrical electrostatic traps.


Referring to FIG. 6, there are shown two embodiments 60 and 61 of Z-elongated gridless orthogonal accelerators (52 in FIG. 5) with quadrupolar electrostatic ion guide 23 (51 in FIG. 5). Both embodiments comprise push plate P, pull slit electrode N, slit electrodes DC for static acceleration, and a particular trans-axial lens 53. The trans-axial lens 53 may be a slit electrode (i.e. through which the ions may be pulsed) that is divided into two electrodes (in the x-direction) by a constant width gap that is curved in the X-Z plane at a curvature radius, e.g. R˜1 m. Trans-axial lens 53 may be chosen for being slim in the Y-direction, which useful for ion packet Y-displacement as shown in FIG. 5. Embodiments 61 and 60 differ by using curvature of extraction field 64, here depicted by trans-axially curved pull electrode P. Embodiment 61 further comprises an optional trans-axial wedge 62 for ion steering. The wedge 62 may be combined with lens 53, which also may be achieved by tilting lens 53 relative to the Z axis.


The figures show iso-potential lines and ion trajectories. According to simulations, the trans-axial lens 53 serves for: (a) terminating the electrostatic DC accelerating field; (b) providing for ion spatial focusing in the XZ-plane to focal plane f2, in all cases simulated for F=5 m focal distance; and (c) providing substantial parallel beam in the XY-plane. Graph 63 shows time spreads introduced by spatial ion Z-focusing, simulated for 1000 amu ions. The trans-axial lens 53 alone in the embodiment 60 introduces positive T|ZZ aberration with additional time spread dT(z)=T|ZZ*z2. The long focal distance F=5 m helps keeping the aberration moderate and allows focusing LZ=20 mm long ion packets at dT(z)=0.3 ns amplitude.


Use of curved extraction field 64 in the embodiment 61 allows reverting the sign of the overall T|ZZ aberration, which may be further optimized for complete mutual compensation of T|ZZ aberrations. Without describing exhaustive details of ion optical simulation, the novel quadrupolar electrostatic ion guide 23 was found an important part of the Z-focusing trans-axial system: it retains the ion beam at limited width and diameter; it controls initial starting position at acceleration; it helps forming a T|ZZ compensating curvature of extracting pulsed field; it helps forming spatially focusing in Y-directions, while eliminating multiple time per Y aberrations.


Referring to FIG. 7, similar to FIG. 5, OA-MRT embodiment 70 of the present invention comprises: two parallel gridless ion mirrors M; an Z-elongated orthogonal accelerator OA 52, an optional trans-axial wedge/lens 53 for ion packet focusing; a dual Y-deflector 54 and 55 for the side OA bypassing by ion packets; and a detector 59. Ion beam 29 is retained within elongated OA 52 by any of described spatial confinement means 23/51.


Within ion packets 58, ions retain the VZ velocity of ion beam in the z-direction. If forming a negative correlation between VZ and z-coordinate in guide 51, ion packets 58 would be naturally focused onto detector 59.


Focusing condition 71 for a narrow range of mass to charge ratios μ=m/z may be achieved by pulsing of ion source or transfer optics, where VZ(z) is the ion axial velocity in guide 51, VZ0=VZ(z=0), and DZ is the OA-detector distance:

VZ(z)/VZ0=1−z/Dz@μ=m/z  (eq. 3)


For this purpose, the embodiment 70 may comprise one of the following means: an RF ion guide 73 with optional auxiliary electrodes 74 and an exit gate 75; a pulse generator; a time dependent U(t) signal generator.


In one method, an ion extracting pulse is applied to gate 75. The extracting pulse is known to generate an ion bunch with an energy spread in spite of gaseous dampening at about 10 mTorr gas pressures. Deeper starting ions will arrive to the OA 52 at later time, appear at smaller z within the guide 51, but will have larger VZ. This produces ion packet compression 71 (eq. 3) at the detector 59. Though the method looks similar to the known Pulsar method, here ions are Z-compressed at the DZ distance of detector 59, rather than at the OA center of conventional TOF instruments. Note that the correlation 71 (eq. 3) occurs for narrow μ range only, controlled by the time delay between extraction and OA pulses. The embodiment is attractive for target analysis, where a narrow mass range is selected intentionally, while TOF data may be acquired at maximal OA frequency and at maximal dynamic range of the MRTOF detector.


In another method, to arrange the correlation 71 (eq. 3), either ion guide 73 and/or extraction electrode 75 and/or lens 28 are arranged into an elevator system, whose reference potential is time variable U(t). The effect of the time variable elevator is very similar to the above described bunching effect, though the elevator exit may be set closer to the OA entrance and may allow somewhat wider μ range. In both above methods, a nearly unity duty cycle of OA is expected for narrow μ range, thanks to the novel confinement means 51, permitting substantial OA elongation.


Yet in another method, to obtain focusing conditions for a wide mass range i.e. for all μ, the z-dependent specific energy U(z) (energy per charge) may be arranged with a resistive divider within confining means 51. For optimal ion packet compression onto detector 59, the U(z) shall satisfy condition 72, where UZ0=U(z=0):

U(z)/UZ0=(1−z/DZ)2  (eq. 4)


Ion beam 29 slows down in a Z-dependent axial potential distribution U(z) of confinement means 51. The desired z-focusing of ion packets is achieved for the entire ionic mass range, i.e. occurs for ions of all μ, while confinement means 51 provide mass independent radial confinement, as has been explained with equation Eq. 2. The method may be particularly attractive when using a “soft and prolonged” Pulsar mode, where open gate forms a prolonged quasi-continuous ion beams.


Again referring to FIG. 7, particular OA-MRTOF embodiments 76 and 77 of the present invention employ components and methods of embodiment 70. Embodiment 76 is improved by using higher energies of continuous ion beam 21, the OA 52 is tilted at angle δ to the z-axis and ions are back steered (in the z-direction) within a trans-axial lens/wedge 53 and 63. Embodiment 77 also allows using higher beam energies with back deflection with trans-axial lens/wedge 53 and 63, however, to compensate for time-front tilting and bending by TA wedge/lens 53 and 63, the OA 52 remains straight, while a wedge pulsed accelerating field is arranged for compensating tilting of ion packets time fronts, similar to a co-pending PCT application having the same filing date as this application and entitled “ACCELERATOR FOR MULTI-PASS MASS SPECTROMETERS” (and claiming from GB 1712613.7 filed 6 Aug. 2017). In both embodiments 76 and 77, ion confinement means 51 are useful for confining ion beam 29 within a precisely defined region of accelerating field.


Referring to FIG. 8, improved accelerator 52 with ion confining means 51 by spatially alternated electrostatic quadrupolar field is applicable to a wider variety of isochronous electrostatic analyzers, exampled here by embodiment 80 of multi-turn sector TOF MS, embodiment 81 of singly reflecting TOF MS, and embodiment 82 of circular (also referred as “elliptical”) electrostatic trap. All those embodiments comprise the same components of FIG. 5: continuous ion beam 21, quadrupolar electrostatic ion guide 51 for spatial confinement of ion beam 29, being a confined portion of beam 21, an orthogonal accelerator 52, a trans-axial wedge/lens 53, a deflector 54, and a detector 59.


Annotations


Coordinates and Times:

  • x,y,z—Cartesian coordinates;
  • X, Y, Z—directions, denoted as: X for time-of-flight, Z for drift, Y for transverse;
  • Z0—initial width of ion packets in the drift direction;
  • ΔZ—full width of ion packet on the detector;
  • DX and DZ—used height (e.g. cap-cap) and usable width of ion mirrors
  • L—overall flight path
  • N—number of ion reflections in mirror MRTOF or ion turns in sector MTTOF
  • u—x-component of ion velocity;
  • w—z-component of ion velocity;
  • T—ion flight time through TOF MS from accelerator to the detector;
  • ΔT—time spread of ion packet at the detector;


Potentials and Fields:

  • U—potentials or specific energy per charge;
  • UZ and ΔUZ—specific energy of continuous ion beam and its spread;
  • UX—acceleration potential for ion packets in TOF direction;
  • K and ΔK—ion energy in ion packets and its spread;
  • δ=ΔK/K—relative energy spread of ion packets;
  • E—x-component of accelerating field in the OA or in ion mirror around “turning” point;
  • μ=m/z—ions specific mass or mass-to-charge ratio;


Angles:

  • α—inclination angle of ion trajectory relative to X-axis;
  • Δα—angular divergence of ion packets;
  • γ—tilt angle of time front in ion packets relative to Z-axis
  • λ—tilt angle of “starting” equipotential to axis Z, where ions either start accelerating or are reflected within wedge fields of ion mirror
  • θ—tilt angle of the entire ion mirror (usually, unintentional);
  • φ—steering angle of ion trajectories or rays in various devices;
  • Ψ—steering angle in deflectors
  • ϵ—spread in steering angle in conventional deflectors;


Aberration Coefficients

  • T|Z, T|ZZ, T|δ, T|δδ, etc;


indexes are defined within the text


Although the present invention has been describing with reference to preferred embodiments, it will be apparent to those skilled in the art that various modifications in form and detail may be made without departing from the scope of the present invention as set forth in the accompanying claims.

Claims
  • 1. A pulsed ion accelerator for a mass spectrometer comprising: an ion guide portion having electrodes arranged to receive ions travelling along a first dimension, including a plurality of DC electrodes spaced along the first dimension;DC voltage supplies configured to apply different DC potentials to different ones of said DC electrodes such that when ions travel through the ion guide portion along the first dimension they experience an ion confining force, generated by the DC potentials, in at least one dimension orthogonal to the first dimension; anda pulsed voltage supply configured to apply a pulsed voltage to at least one electrode for pulsing ions in a second dimension substantially orthogonal to the first dimension.
  • 2. The pulsed ion accelerator of claim 1, wherein the ion guide portion comprises a first pair of opposing rows of said DC electrodes on opposing sides of the ion guide portion, wherein each row extends in the first dimension, and wherein the DC voltage supplies are configured to maintain at least some of the adjacent DC electrodes in each row at potentials having opposite polarities.
  • 3. The pulsed ion accelerator of claim 2, wherein the ion guide portion comprises a second pair of opposing rows of said DC electrodes on opposing sides of the ion guide portion, wherein each row extends in the first dimension, and wherein the DC voltage supplies are configured to maintain at least some of the adjacent DC electrodes in each row at potentials having opposite polarities.
  • 4. The pulsed ion accelerator of claim 1, wherein the DC voltage supplies are configured to maintain the DC electrodes at potentials so as to form an electrostatic quadrupolar field in a plane orthogonal to the first dimension, wherein the polarity of the quadrupolar field alternates as a function of distance along the first dimension.
  • 5. The pulsed ion accelerator of claim 1, wherein the DC electrodes are arranged to form a quadrupole ion guide that is axially segmented in the first dimension, and wherein the DC voltage supplies are configured to maintain DC electrodes that are axially adjacent in the first dimension at opposite polarities, and DC electrodes that are adjacent in a direction orthogonal to the first dimension at opposite polarities.
  • 6. The pulsed ion accelerator of claim 1, wherein the DC electrodes are arranged on one or more printed circuit board (PCB), insulating substrate, or insulating film.
  • 7. The pulsed ion accelerator of claim 1, wherein the DC voltage supplies are configured to apply different DC voltages to the DC electrodes so as to form a voltage gradient in the first dimension that increases the ion confining force as a function of distance in the first dimension.
  • 8. The pulsed ion accelerator of claim 1, wherein the DC electrodes are arranged in rows that are spaced apart in at least one dimension orthogonal to the first dimension for confining the ions between the rows, and wherein the DC electrodes are spaced apart in said at least one dimension by an amount that decreases as a function of distance in the first dimension.
  • 9. The pulsed ion accelerator of claim 1, configured to control the DC voltage supplies to switch off at least some of said DC potentials applied to the DC electrodes and then subsequently control the pulsed voltage supply to apply the pulsed voltage for pulsing ions out of the ion accelerator; and/or wherein the pulsed ion accelerator is configured to control the DC voltage supplies to progressively reduce the amplitudes of the DC potentials applied to the DC electrodes with time, and then subsequently control the pulsed voltage supply to apply the pulsed voltage for pulsing ions out of the ion accelerator.
  • 10. The pulsed ion accelerator of claim 1, comprising electrodes spaced apart in the second dimension on opposite sides of the ion guide portion; wherein these electrodes are spaced apart in said second dimension by an amount that decreases as a function of distance in the first dimension.
  • 11. The pulsed ion accelerator of claim 1, comprising electrodes spaced apart in the second dimension on opposite sides of the ion guide portion; and wherein the average DC potential of said DC potentials is negative relative to said electrodes spaced apart in the second dimension so as to form a quadrupolar field that compresses the ions in the second dimension.
  • 12. A mass spectrometer comprising: a time-of-flight mass analyser or electrostatic ion trap having the pulsed ion accelerator of claim 1, and electrodes arranged and configured to reflect or turn ions.
  • 13. The mass spectrometer of claim 12, comprising: a multi-pass time-of-flight mass analyser or electrostatic ion trap having the pulsed ion accelerator and electrodes arranged and configured so as to provide an ion drift region that is elongated in a drift dimension and to reflect or turn ions multiple times in an oscillating dimension that is orthogonal to the drift dimension.
  • 14. The spectrometer of claim 13, wherein: (i) the multi-pass time-of-flight mass analyser is a multi-reflecting time of flight mass analyser having two ion mirrors that are elongated in the drift dimension and configured to reflect ions multiple times in the oscillation dimension, wherein the pulsed ion accelerator is arranged to receive ions and accelerate them into one of the ion mirrors; or(ii) the multi-pass time-of-flight mass analyser is a multi-turn time of flight mass analyser having at least two electric sectors configured to turn ions multiple times in the oscillation dimension, wherein the pulsed ion accelerator is arranged to receive ions and accelerate them into one of the sectors.
  • 15. The spectrometer of claim 13, comprising an ion deflector located downstream of said pulsed ion accelerator, and that is configured to back-steer the average ion trajectory of the ions, in the drift dimension, thereby tilting the angle of the time front of the ions received by the ion deflector.
  • 16. The spectrometer of claim 13, comprising an ion source and a lens system between the ion source and pulsed ion accelerator for telescopically expanding the ion beam from the ion source.
  • 17. The spectrometer of claim 13, comprising an ion source in a first vacuum chamber and the pulsed ion accelerator in a second vacuum chamber, wherein the vacuum chambers are separated by a wall and are configured to be differentially pumped, and wherein the ion guide portion protrudes from the second vacuum chamber through an aperture in the wall and into the first vacuum chamber.
  • 18. A method of mass spectrometric analysis within an isochronous electrostatic field, comprising the following step: (a) forming electrostatic quadrupolar field in the XY-plane, which is spatially alternated along the orthogonal Z-direction;(b) passing an ion beam along the Z-direction;(c) pulsed accelerating of the moving ions in the X-direction, thus forming ion packets.
  • 19. A mass spectrometer, comprising: (a) An ion source, generating an ion beam along a first drift Z-direction at some initial energy;(b) An orthogonal accelerator, admitting said ion beam into a storage gap, pulsed accelerating a portion of said ion beam in the second orthogonal X-direction, thus forming ion packets with a smaller velocity component in the Z-direction and with the major velocity component in the X-direction;(c) An electrostatic multi-pass (multi-reflecting or multi-turn) mass analyzer, built of ion mirrors or electrostatic sectors, substantially elongated in said Z-direction to form an electrostatic field in an XY-plane orthogonal to said Z-direction; said two-dimensional field provides for a field-free ion drift in the Z-direction towards a detector, and for an isochronous repetitive multi-pass ion motion within an isochronous mean ion trajectory surface—either symmetry s-XY plane of said ion mirrors or curved s-surface of electrostatic sectors;(d) within said storage gap of said orthogonal accelerator, an ion guide composed of electrodes, symmetrically surrounding said ion beam; said electrodes are energized by at least two distinct DC potentials to form an electrostatic quadrupolar field in the XY-plane, which is spatially alternated along the Z-direction.
Priority Claims (7)
Number Date Country Kind
1712612 Aug 2017 GB national
1712613 Aug 2017 GB national
1712614 Aug 2017 GB national
1712616 Aug 2017 GB national
1712617 Aug 2017 GB national
1712618 Aug 2017 GB national
1712619 Aug 2017 GB national
PCT Information
Filing Document Filing Date Country Kind
PCT/GB2018/052099 7/26/2018 WO 00
Publishing Document Publishing Date Country Kind
WO2019/030471 2/14/2019 WO A
US Referenced Citations (310)
Number Name Date Kind
3898452 Hertel Aug 1975 A
4390784 Browning et al. Jun 1983 A
4691160 Ino Sep 1987 A
4731532 Frey et al. Mar 1988 A
4855595 Blanchard Aug 1989 A
5017780 Kutscher et al. May 1991 A
5107109 Stafford, Jr. et al. Apr 1992 A
5128543 Reed et al. Jul 1992 A
5202563 Cotter et al. Apr 1993 A
5331158 Dowell Jul 1994 A
5367162 Holland et al. Nov 1994 A
5396065 Myerholtz et al. Mar 1995 A
5435309 Thomas et al. Jul 1995 A
5464985 Cornish et al. Nov 1995 A
5619034 Reed et al. Apr 1997 A
5654544 Dresch Aug 1997 A
5689111 Dresch et al. Nov 1997 A
5696375 Park et al. Dec 1997 A
5719392 Franzen Feb 1998 A
5763878 Franzen Jun 1998 A
5777326 Rockwood et al. Jul 1998 A
5834771 Yoon et al. Nov 1998 A
5955730 Kerley et al. Sep 1999 A
5994695 Young Nov 1999 A
6002122 Wolf Dec 1999 A
6013913 Hanson Jan 2000 A
6020586 Dresch et al. Feb 2000 A
6080985 Welkie et al. Jun 2000 A
6107625 Park Aug 2000 A
6160256 Ishihara Dec 2000 A
6198096 Le Cocq Mar 2001 B1
6229142 Bateman et al. May 2001 B1
6271917 Hagler Aug 2001 B1
6300626 Brock et al. Oct 2001 B1
6316768 Rockwood et al. Nov 2001 B1
6337482 Francke Jan 2002 B1
6384410 Kawato May 2002 B1
6393367 Tang et al. May 2002 B1
6437325 Reilly et al. Aug 2002 B1
6455845 Li et al. Sep 2002 B1
6469295 Park Oct 2002 B1
6489610 Barofsky et al. Dec 2002 B1
6504148 Hager Jan 2003 B1
6504150 Verentchikov et al. Jan 2003 B1
6534764 Verentchikov et al. Mar 2003 B1
6545268 Verentchikov et al. Apr 2003 B1
6570152 Hoyes May 2003 B1
6576895 Park Jun 2003 B1
6580070 Cornish et al. Jun 2003 B2
6591121 Madarasz et al. Jul 2003 B1
6614020 Cornish Sep 2003 B2
6627877 Davis et al. Sep 2003 B1
6646252 Gonin Nov 2003 B1
6647347 Roushall et al. Nov 2003 B1
6664545 Kimmel et al. Dec 2003 B2
6683299 Fuhrer et al. Jan 2004 B2
6694284 Nikoonahad et al. Feb 2004 B1
6717132 Franzen Apr 2004 B2
6734968 Wang et al. May 2004 B1
6737642 Syage et al. May 2004 B2
6744040 Park Jun 2004 B2
6744042 Zajfman et al. Jun 2004 B2
6747271 Gonin et al. Jun 2004 B2
6770870 Vestal Aug 2004 B2
6782342 LeGore et al. Aug 2004 B2
6787760 Belov et al. Sep 2004 B2
6794643 Russ, IV et al. Sep 2004 B2
6804003 Wang et al. Oct 2004 B1
6815673 Plomley et al. Nov 2004 B2
6833544 Campbell et al. Dec 2004 B1
6836742 Brekenfeld Dec 2004 B2
6841936 Keller et al. Jan 2005 B2
6861645 Franzen Mar 2005 B2
6864479 Davis et al. Mar 2005 B1
6870156 Rather Mar 2005 B2
6870157 Zare Mar 2005 B1
6872938 Makarov et al. Mar 2005 B2
6888130 Gonin May 2005 B1
6900431 Belov et al. May 2005 B2
6906320 Sachs et al. Jun 2005 B2
6940066 Makarov et al. Sep 2005 B2
6949736 Ishihara Sep 2005 B2
7034292 Whitehouse et al. Apr 2006 B1
7071464 Reinhold Jul 2006 B2
7084393 Fuhrer et al. Aug 2006 B2
7091479 Hayek Aug 2006 B2
7126114 Chernushevich Oct 2006 B2
7196324 Verentchikov Mar 2007 B2
7217919 Boyle et al. May 2007 B2
7221251 Menegoli et al. May 2007 B2
7326925 Verentchikov et al. Feb 2008 B2
7351958 Vestal Apr 2008 B2
7365313 Fuhrer et al. Apr 2008 B2
7385187 Verentchikov et al. Jun 2008 B2
7388197 McLean et al. Jun 2008 B2
7399957 Parker et al. Jul 2008 B2
7423259 Hidalgo et al. Sep 2008 B2
7498569 Ding Mar 2009 B2
7501621 Willis et al. Mar 2009 B2
7504620 Sato et al. Mar 2009 B2
7521671 Kirihara et al. Apr 2009 B2
7541576 Belov et al. Jun 2009 B2
7582864 Verentchikov Sep 2009 B2
7608817 Flory Oct 2009 B2
7663100 Vestal Feb 2010 B2
7675031 Konicek et al. Mar 2010 B2
7709789 Vestal et al. May 2010 B2
7728289 Naya et al. Jun 2010 B2
7745780 McLean et al. Jun 2010 B2
7755036 Satoh Jul 2010 B2
7772547 Verentchikov Aug 2010 B2
7800054 Fuhrer et al. Sep 2010 B2
7825373 Willis et al. Nov 2010 B2
7863557 Brown Jan 2011 B2
7884319 Willis et al. Feb 2011 B2
7932491 Vestal Apr 2011 B2
7982184 Sudakov Jul 2011 B2
7985950 Makarov et al. Jul 2011 B2
7989759 Holle Aug 2011 B2
7999223 Makarov et al. Aug 2011 B2
8017907 Willis et al. Sep 2011 B2
8017909 Makarov et al. Sep 2011 B2
8063360 Willis et al. Nov 2011 B2
8080782 Hidalgo et al. Dec 2011 B2
8093554 Makarov Jan 2012 B2
8237111 Golikov et al. Aug 2012 B2
8354634 Green et al. Jan 2013 B2
8395115 Makarov et al. Mar 2013 B2
8492710 Fuhrer et al. Jul 2013 B2
8513594 Makarov Aug 2013 B2
8633436 Ugarov Jan 2014 B2
8637815 Makarov et al. Jan 2014 B2
8642948 Makarov et al. Feb 2014 B2
8642951 Li Feb 2014 B2
8648294 Prather et al. Feb 2014 B2
8653446 Mordehai et al. Feb 2014 B1
8658984 Makarov et al. Feb 2014 B2
8680481 Giannakopulos et al. Mar 2014 B2
8723108 Ugarov May 2014 B1
8735818 Kovtoun et al. May 2014 B2
8772708 Kinugawa et al. Jul 2014 B2
8785845 Loboda Jul 2014 B2
8847155 Vestal Sep 2014 B2
8853623 Verenchikov Oct 2014 B2
8884220 Hoyes et al. Nov 2014 B2
8921772 Verenchikov Dec 2014 B2
8952325 Giles et al. Feb 2015 B2
8957369 Makarov Feb 2015 B2
8975592 Kobayashi et al. Mar 2015 B2
9048080 Verenchikov et al. Jun 2015 B2
9082597 Willis et al. Jul 2015 B2
9082604 Verenchikov Jul 2015 B2
9099287 Giannakopulos Aug 2015 B2
9136101 Grinfeld et al. Sep 2015 B2
9147563 Makarov Sep 2015 B2
9196469 Makarov Nov 2015 B2
9207206 Makarov Dec 2015 B2
9214322 Kholomeev et al. Dec 2015 B2
9214328 Noyes et al. Dec 2015 B2
9281175 Haulier et al. Mar 2016 B2
9312119 Verenchikov Apr 2016 B2
9324544 Rather Apr 2016 B2
9373490 Nishiguchi et al. Jun 2016 B1
9396922 Verenchikov et al. Jul 2016 B2
9417211 Verenchikov Aug 2016 B2
9425034 Verentchikov et al. Aug 2016 B2
9472390 Verenchikov et al. Oct 2016 B2
9514922 Watanabe et al. Dec 2016 B2
9576778 Wang Feb 2017 B2
9595431 Verenchikov Mar 2017 B2
9673033 Grinfeld et al. Jun 2017 B2
9679758 Grinfeld et al. Jun 2017 B2
9683963 Verenchikov Jun 2017 B2
9728384 Verenchikov Aug 2017 B2
9779923 Verenchikov Oct 2017 B2
9786484 Willis et al. Oct 2017 B2
9786485 Ding et al. Oct 2017 B2
9865441 Damoc et al. Jan 2018 B2
9865445 Verenchikov et al. Jan 2018 B2
9870903 Richardson et al. Jan 2018 B2
9870906 Quarmby et al. Jan 2018 B1
9881780 Verenchikov et al. Jan 2018 B2
9899201 Park Feb 2018 B1
9922812 Makarov Mar 2018 B2
9941107 Verenchikov Apr 2018 B2
9972483 Makarov May 2018 B2
10006892 Verenchikov Jun 2018 B2
10037873 Wang et al. Jul 2018 B2
10141175 Verentchikov et al. Nov 2018 B2
10141176 Stewart et al. Nov 2018 B2
10163616 Verenchikov et al. Dec 2018 B2
10186411 Makarov Jan 2019 B2
10192723 Verenchikov et al. Jan 2019 B2
10290480 Crowell et al. May 2019 B2
10373815 Crowell et al. Aug 2019 B2
10388503 Brown et al. Aug 2019 B2
10593525 Hock et al. Mar 2020 B2
10593533 Noyes et al. Mar 2020 B2
10622203 Veryovkin et al. Apr 2020 B2
10629425 Hoyes et al. Apr 2020 B2
10636646 Hoyes et al. Apr 2020 B2
20010011703 Franzen Aug 2001 A1
20010030284 Dresch et al. Oct 2001 A1
20020030159 Chernushevich et al. Mar 2002 A1
20020107660 Nikoonahad et al. Aug 2002 A1
20020190199 Li Dec 2002 A1
20030010907 Hayek et al. Jan 2003 A1
20030111597 Gonin et al. Jun 2003 A1
20030232445 Fulghum Dec 2003 A1
20040084613 Bateman et al. May 2004 A1
20040108453 Kobayashi et al. Jun 2004 A1
20040119012 Vestal Jun 2004 A1
20040144918 Zare et al. Jul 2004 A1
20040155187 Axelsson Aug 2004 A1
20040159782 Park Aug 2004 A1
20040183007 Belov et al. Sep 2004 A1
20050006577 Fuhrer et al. Jan 2005 A1
20050040326 Enke Feb 2005 A1
20050103992 Yamaguchi et al. May 2005 A1
20050133712 Belov et al. Jun 2005 A1
20050151075 Brown Jul 2005 A1
20050194528 Yamaguchi et al. Sep 2005 A1
20050242279 Verentchikov Nov 2005 A1
20050258364 Whitehouse et al. Nov 2005 A1
20060169882 Pau et al. Aug 2006 A1
20060214100 Verentchikov et al. Sep 2006 A1
20060289746 Raznikov et al. Dec 2006 A1
20070023645 Chernushevich Feb 2007 A1
20070029473 Verentchikov Feb 2007 A1
20070176090 Verentchikov Aug 2007 A1
20070187614 Schneider et al. Aug 2007 A1
20070194223 Sato et al. Aug 2007 A1
20080049402 Han et al. Feb 2008 A1
20080197276 Nishiguchi et al. Aug 2008 A1
20080203288 Makarov et al. Aug 2008 A1
20080290269 Saito et al. Nov 2008 A1
20090090861 Willis et al. Apr 2009 A1
20090114808 Bateman et al. May 2009 A1
20090206250 Wollnik Aug 2009 A1
20090250607 Staats et al. Oct 2009 A1
20090272890 Ogawa et al. Nov 2009 A1
20100001180 Bateman et al. Jan 2010 A1
20100044558 Sudakov Feb 2010 A1
20100072363 Giles et al. Mar 2010 A1
20100078551 Loboda Apr 2010 A1
20100140469 Nishiguchi Jun 2010 A1
20100193682 Golikov et al. Aug 2010 A1
20100207023 Loboda Aug 2010 A1
20100301202 Vestal Dec 2010 A1
20110133073 Sato et al. Jun 2011 A1
20110168880 Ristroph et al. Jul 2011 A1
20110180702 Flory et al. Jul 2011 A1
20110180705 Yamaguchi Jul 2011 A1
20110186729 Verentchikov et al. Aug 2011 A1
20120168618 Vestal Jul 2012 A1
20120261570 Shvartsburg et al. Oct 2012 A1
20130048852 Verenchikov Feb 2013 A1
20130056627 Verenchikov Mar 2013 A1
20130068942 Verenchikov Mar 2013 A1
20130187044 Ding et al. Jul 2013 A1
20130240725 Makarov Sep 2013 A1
20130248702 Makarov Sep 2013 A1
20130256524 Brown et al. Oct 2013 A1
20130313424 Makarov et al. Nov 2013 A1
20130327935 Wiedenbeck Dec 2013 A1
20140054456 Kinugawa et al. Feb 2014 A1
20140084156 Ristroph et al. Mar 2014 A1
20140117226 Giannakopulos May 2014 A1
20140138538 Hieftje et al. May 2014 A1
20140183354 Moon et al. Jul 2014 A1
20140191123 Wildgoose Jul 2014 A1
20140239172 Makarov Aug 2014 A1
20140291503 Shchepunov et al. Oct 2014 A1
20140312221 Verenchikov et al. Oct 2014 A1
20140361162 Murray et al. Dec 2014 A1
20150028197 Grinfeld et al. Jan 2015 A1
20150028198 Grinfeld et al. Jan 2015 A1
20150034814 Brown Feb 2015 A1
20150048245 Vestal et al. Feb 2015 A1
20150060656 Ugarov Mar 2015 A1
20150122986 Haase May 2015 A1
20150194296 Verenchikov et al. Jul 2015 A1
20150228467 Grinfeld et al. Aug 2015 A1
20150279650 Verenchikov Oct 2015 A1
20150294849 Makarov et al. Oct 2015 A1
20150318156 Loyd et al. Nov 2015 A1
20150364309 Welkie Dec 2015 A1
20150380233 Verenchikov Dec 2015 A1
20160005587 Verenchikov Jan 2016 A1
20160035558 Verenchikov et al. Feb 2016 A1
20160079052 Makarov Mar 2016 A1
20160024036 Verenchikov Aug 2016 A1
20160225598 Ristroph Aug 2016 A1
20160225602 Ristroph et al. Aug 2016 A1
20160240363 Verenchikov Aug 2016 A1
20170016863 Verenchikov Jan 2017 A1
20170025265 Verenchikov et al. Jan 2017 A1
20170032952 Verenchikov Feb 2017 A1
20170098533 Stewart et al. Apr 2017 A1
20170229297 Green et al. Aug 2017 A1
20170338094 Verenchikov et al. Nov 2017 A1
20180144921 Hoyes et al. May 2018 A1
20180315589 Oshiro Nov 2018 A1
20180366312 Hamish et al. Dec 2018 A1
20190237318 Brown Aug 2019 A1
20200083034 Hoyes et al. Mar 2020 A1
20200126781 Kovtoun Apr 2020 A1
20200152440 Hoyes et al. May 2020 A1
20200168447 Verenchikov May 2020 A1
20200168448 Verenchikov et al. May 2020 A1
Foreign Referenced Citations (141)
Number Date Country
2412657 May 2003 CA
101369510 Feb 2009 CN
102131563 Jul 2011 CN
201946564 Aug 2011 CN
4310106 Oct 1994 DE
10116536 Oct 2002 DE
10116536 Oct 2002 DE
102015121830 Jun 2017 DE
102019129108 Jun 2020 DE
112015001542 Jul 2020 DE
0237259 Sep 1987 EP
1137044 Sep 2001 EP
1566828 Aug 2005 EP
1901332 Mar 2008 EP
2068346 Jun 2009 EP
1665326 Apr 2010 EP
1789987 Sep 2010 EP
1522087 Mar 2011 EP
2599104 Jun 2013 EP
1743354 Aug 2019 EP
3662501 Jun 2020 EP
3662502 Jun 2020 EP
3662503 Jun 2020 EP
2080021 Jan 1982 GB
2217907 Nov 1989 GB
2300296 Oct 1996 GB
2390935 Jan 2004 GB
2396742 Jun 2004 GB
2403063 Dec 2004 GB
2455977 Jul 2009 GB
2476964 Jul 2011 GB
2478300 Sep 2011 GB
2484361 Apr 2012 GB
2484429 Apr 2012 GB
2485825 May 2012 GB
2489094 Sep 2012 GB
2490571 Nov 2012 GB
2495127 Apr 2013 GB
2495221 Apr 2013 GB
2496991 May 2013 GB
2496994 May 2013 GB
2500743 Oct 2013 GB
2501332 Oct 2013 GB
2506362 Apr 2014 GB
2528875 Feb 2016 GB
2555609 May 2018 GB
2556451 May 2018 GB
2556830 Jun 2018 GB
2562990 Dec 2018 GB
2575157 Jan 2020 GB
2575339 Jan 2020 GB
S6229049 Feb 1987 JP
2000036285 Feb 2000 JP
2000048764 Feb 2000 JP
2003031178 Jan 2003 JP
3571546 Sep 2004 JP
2005538346 Dec 2005 JP
2006049273 Feb 2006 JP
2007227042 Sep 2007 JP
2010062152 Mar 2010 JP
4649234 Mar 2011 JP
2011119279 Jun 2011 JP
4806214 Nov 2011 JP
2013539590 Oct 2013 JP
5555582 Jul 2014 JP
2015506567 Mar 2015 JP
2015185306 Oct 2015 JP
2564443 Oct 2015 RU
2564443 May 2017 RU
2015148627 May 2017 RU
2660655 Jul 2018 RU
198034 Jun 1967 SU
1681340 Sep 1991 SU
1725289 Apr 1992 SU
9103071 Mar 1991 WO
13045428 Apr 1992 WO
98001218 Jan 1998 WO
1998001218 Jan 1998 WO
0077823 Dec 2000 WO
200077823 Dec 2000 WO
2005001878 Jan 2005 WO
2006049623 May 2006 WO
2006102430 Sep 2006 WO
2006103448 Oct 2006 WO
2007044696 Apr 2007 WO
2007104992 Sep 2007 WO
2007136373 Nov 2007 WO
2008046594 Apr 2008 WO
2008087389 Jul 2008 WO
2010008386 Jan 2010 WO
2010138781 Dec 2010 WO
2011086430 Jul 2011 WO
2011107836 Sep 2011 WO
2011135477 Nov 2011 WO
2012010894 Jan 2012 WO
2012023031 Feb 2012 WO
2012024468 Feb 2012 WO
2012024570 Feb 2012 WO
2012116765 Sep 2012 WO
2013045428 Apr 2013 WO
13063587 May 2013 WO
2013063587 May 2013 WO
2013067366 May 2013 WO
13093587 Jun 2013 WO
2013093587 Jun 2013 WO
2013098612 Jul 2013 WO
13110587 Aug 2013 WO
13124207 Aug 2013 WO
2013110587 Aug 2013 WO
2013110588 Aug 2013 WO
2013124207 Aug 2013 WO
2014021960 Feb 2014 WO
2014074822 May 2014 WO
14110697 Jul 2014 WO
1998008244 Jul 2014 WO
2014110697 Jul 2014 WO
2014142897 Sep 2014 WO
2015142897 Sep 2015 WO
2015152968 Oct 2015 WO
2015153622 Oct 2015 WO
2015153630 Oct 2015 WO
2015153644 Oct 2015 WO
2015175988 Nov 2015 WO
2016064398 Apr 2016 WO
2016174462 Nov 2016 WO
2017042665 Mar 2017 WO
2018073589 Apr 2018 WO
2018109920 Jun 2018 WO
2018124861 Jul 2018 WO
2019030474 Feb 2019 WO
2019030475 Feb 2019 WO
2019030476 Feb 2019 WO
2019030477 Feb 2019 WO
2019058226 Mar 2019 WO
2019162687 Aug 2019 WO
2019202338 Oct 2019 WO
2019229599 Dec 2019 WO
2020002940 Jan 2020 WO
2020021255 Jan 2020 WO
2020121167 Jun 2020 WO
2020121168 Jun 2020 WO
Non-Patent Literature Citations (94)
Entry
Search Report for United Kingdom Application No. GB1613988.3 dated Jan. 5, 2017, 4 pages.
Sakurai et al., “A New Multi-Passage Time-of-Flight Mass Spectrometer at JAIST”, Nuclear Instruments Methods in Physics Research, Section A, Elsevier, 427(1-2): 182-186, May 11, 1999.
Toyoda et al., “Multi-Turn-Time-of-Flight Mass Spectometers with Electrostatic Sectors”, Journal of Mass Spectrometry, 38: 1125-1142, Jan. 1, 2003.
Wouters et al., “Optical Design of the TOFI (Time-of-Flight Isochronous) Spectrometer for Mass Measurements of Exotic Nuclei”, Nuclear Instruments and Methods in Physics Research, Section A, 240(1): 77-90, Oct. 1, 1985.
Stresau, D., et al.: “Ion Counting Beyond 10ghz Using a New Detector and Conventional Electronics”, European Winter Conference on Plasma Spectrochemistry, Feb. 4-8, 2001, Lillehammer, Norway, Retrieved from the Internet: URL:https://www.etp-ms.com/file-repository/21 [retrieved on Jul. 31, 2019].
Kaufmann, R., et. al., “Sequencing of peptides in a time-of-flight mass spectrometer: evaluation of postsource decay following matrix-assisted laser desorption ionisation (MALDI)”, International Journal of Mass Spectrometry and Ion Processes, Elsevier Scientific Publishing Co. Amsterdam, NL, 131:355-385, Feb. 24, 1994.
Barry Shaulis et al: “Signal linearity of an extended range pulse counting detector: Applications to accurate and precise U—Pb dating of zircon by laser ablation quadrupole ICP-MS”, G3: Geochemistry, Geophysics, Geosystems, 11(11):1-12, Nov. 20, 2010.
Search Report for United Kingdom Application No. GB1708430.2 dated Nov. 28, 2017.
International Search Report and Written Opinion for International Application No. PCT/GB2018/051320 dated Aug. 1, 2018.
International Search Report and Written Opinion for International Application No. PCT/GB2019/051839 dated Sep. 18, 2019.
International Search Report and Written Opinion for International Application No. PCT/GB2019/051234 dated Jul. 29, 2019.
Extended European Search Report for EP Patent Application No. 16866997.6, dated Oct. 16, 2019.
Search Report under Section 17(5) for GB1916445.8, dated Jun. 15, 2020.
International Search Report and Written Opinion for International Application No. PCT/GB20180051320 dated Aug. 1, 2018.
Stresau, D., et al., “Ion Counting Beyond 10ghz Using a New Detector and Conventional Electronics”, European Winter Conference on Plasma Spectrochemistry, Feb. 4-8, 2001, Lillehammer, Norway, Retrieved from the Internet URL htps://www.etp-ms.com/file-repository/21 [retrieved on Jul. 31, 2019].
Shaulis, Barry, et al., “Signal linearity of an extended range pulse counting detector: Applications to accurate and precise U—Pb dating of zircon by laser ablation quadrupole ICP-MS”, G3: Geochemistry, Geophysics, Geosystems, 11(11):1-12, Nov. 20, 2010.
Sakurai, T, et al., “A new multi-passage time-of-flight mass spectrometer at JAIST”, Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, 427(1-2):182-186 (1999).
International Search Report and Written Opinion for International Application No. PCT/US2016/062174 dated Mar. 5, 2017, 8 pages.
IPRP PCT/US2016/062174 issued May 22, 2018, 6 pages.
Search Report for GB Application No. GB1520130.4 dated May 25, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2016/062203 dated Mar. 6, 2017, 8 pages.
Search Report for GB Application No. GB1520134.6 dated May 26, 2016.
IPRP PCT/US2016/062203, issued May 22, 2018, 6 pages.
Search Report Under Section 17(5) for Application No. GB1507363.8 dated Nov. 9, 2015.
International Search Report and Written Opinion of the International Search Authority for Application No. PCT/GB2016/051238 dated Jul. 12, 2016, 16 pages.
IPRP for application PCT/GB2016/051238 dated Oct. 31, 2017, 13 pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/063076 dated Mar. 30, 2017, 9 pages.
Search Report for GB Application No. 1520540.4 dated May 24, 2016.
IPRP for application PCT/US2016/063076, dated May 29, 2018, 7 pages.
IPRP PCT/GB17151981 dated Jan. 8, 2019, 7 pages.
International Search Report and Written Opinion for International Application No. PCT/GB2018/051206, dated Jul. 12, 2018, 9 pages.
Author unknown, “Electrostatic lens,” Wikipedia, Mar. 31, 2017 (Mar. 31, 2017), XP055518392, Retrieved from the Intemet URL https://en.wikipedia.org/w/index.phptitle=Electrostaticlens oldid=773161674[retrieved on Oct. 24, 2018].
Hussein, O.A. et al., “Study the most favorable shapes of electrostatic quadrupole doublet lenses”, AIP Conference Proceedings, vol. 1815, Feb. 17, 2017 (Feb. 17, 2017), p. 110003.
Guan S., et al., “Stacked-ring electrostatic ion guide”, Journal of the American Society for Mass Spectrometry, Elsevier Science Inc, 7(1)101-106 (1996).
Scherer, S., et al., “A novel principle for an ion mirror design in time-of-flight mass spectrometry”, International Journal of Mass Spectrometry, Elsevier Science Publishers, Amsterdam, NL, vol. 251, No. 1, Mar. 15, 2006.
International Search Report and Written Opinion for application No. PCT/GB2018/052104, dated Oct. 31, 2018, 14 pages.
International Search Report and Written Opinion for application No. PCT/GB2018/052105, dated Oct. 15, 2018, 18 pages.
International Search Report and Written Opinion for application PCT/GB2018/052100, dated Oct. 19, 2018, 19 pages.
International Search Report and Written Opinion for application PCT/GB2018/052102, dated Oct. 25, 2018, 14 pages.
International Search Report and Written Opinion for application No. PCT/GB2018/052099, dated Oct. 10, 2018, 16 pages.
International Search Report and Written Opinion for application No. PCT/GB2018/052101, dated Oct. 19, 2018, 15 pages.
Combined Search and Examination Report under Sections 17 and 18(3) for application GB1807605.9, dated Oct. 29, 2018, 6 pages.
Combined Search and Examination Report under Sections 17 and 18(3) for application GB1807626.5, dated Oct. 29, 2018, 8 pages.
Yavor, M.I., et al., “High performance gridless ion mirrors for multi-reflection time-of-flight and electrostatic trap mass analyzers”, International Journal of Mass Spectrometry, vol. 426, Mar. 2018, pp. 1-11.
Search Report under Section 17(5) for application GB1707208.3, dated Oct. 12. 2017, 6 pages.
Communication Relating to the Results of the Partial International Search for International Application No. PCT/GB2019/01118, dated Jul. 19, 2019, 25 pages.
Doroshenko, V.M., and Cotter, R.J., “Ideal velocity focusing in a reflectron time-of-flight mass spectrometer”, American Society for Mass Spectrometry, 10(10):992-999 (1999).
Kozlov, B. et al. “Enhanced Mass Accuracy in Multi-Reflecting TOF MS” www.waters.com/posters, ASMS Conference (2017).
Kozlov, B. et al. “Multiplexed Operation of an Orthogonal Multi-Reflecting TOF Instrument to Increase Duty Cycle by Two Orders” ASMS Conference, San Diego, CA, Jun. 6, 2018.
Kozlov, B. et al. “High accuracy self-calibration method for high resolution mass spectra” ASMS Conference Abstract, 2019.
Kozlov, B. et al. “Fast Ion Mobility Spectrometry and High Resolution TOF MS” ASMS Conference Poster (2014).
Verenchicov, A. N. “Parallel MS-MS Analysis in a Time-Flight Tandem. Problem Statement, Method, and Instrumental Schemes” Institute for Analytical Instrumentation RAS, Saint-Petersburg, (2004).
Yavor, M. I. “Planar Multireflection Time-Of-Flight Mass Analyzer with Unlimited Mass Range” Institute for Analytical Instrumentation RAS, Saint-Petersburg, (2004).
Khasin, Y. I. et al., “Initial Experimental Studies of a Planar Multireflection Time-Of-Flight Mass Spectrometer” Institute for Analytical Instrumentation RAS, Saint-Petersburg, (2004).
Verenchicov, A. N. et al. “Stability of Ion Motion in Periodic Electrostatic Fields” Institute for Analytical Instrumentation RAS, Saint-Petersburg, (2004).
Verenchicov, A. N. “The Concept of Multireflecting Mass Spectrometer for Continuous Ion Sources” Institute for Analytical Instrumentation RAS, Saint-Petersburg, (2006).
Verenchicov, A. N., et al. “Accurate Mass Measurements for Interpreting Spectra of atmospheric Pressure Ionization” Institute for Analytical Instrumentation RAS, Saint-Petersburg, (2006).
Kozlov, B. N. et al., “Experimental Studies of Space Charge Effects in Multireflecting Time-Of-Flight Mass Spectrometes” Institute for Analytical Instrumentation RAS, Saint-Petersburg, (2006).
Kozlov, B. N. et al., “Multireflecting Time-Of-Flight Mass Spectrometer With an Ion Trap Source” Institute for Analytical Instrumentation RAS, Saint-Petersburg, (2006).
Hasin, Y. I., et al., “Planar Time-Of-Flight Multireflecting Mass Spectrometer with an Orthogonal Ion Injection Out of Continuous Ion Sources” Institute for Analytical Instrumentation RAS, Saint-Petersburg, (2006).
Lutvinsky, Y. I., et al., “Estimation of Capacity of High Resolution Mass Spectra for Analysis of Complex Mixtures” Institute for Analytical Instrumentation RAS, Saint-Petersburg, (2006).
International Search Report and Written Opinion for International appliication No. PCT/GB2020/050209, dated Apr. 28, 2020, 12 pages.
Verenchicov., A. N. et al. “Multiplexing in Multi-Reflecting TOF MS” Journal of Applied Solution Chemistry and Modeling, 6:1-22 (2017).
Supplementary Partial EP Search Report for EP Application No. 16869126.9, dated Jun. 13, 2019.
Supplementary Partial EP Search Report for EP Application No. 16866997.6, dated Jun. 7, 2019.
Wikipedia “Reflectron”, Oct. 9, 2015, Retrieved from the Internet URL https://en.wikipedia.org/w/index.php?title=Reflectron&oldid=684843442 [retrieved on May 29, 2019].
Toyoda, M. et al., “Multi-turn time-of-flight mass spectrometers with electrostatic sectors,” Journal of Mass Spectrometry, 38:1125-1142 (2003).
International Search Report and Written Opinion for International Application No. PCT/US2016/062174 dated Mar. 6, 2017, 8 pages.
IPRP PCT/GB17/51981 dated Jan. 8, 2019, 7 pages.
N/a: “Electrostatic lens ,” Wikipedia, Mar. 31, 2017 (Mar. 31, 2017), XP055518392, Retrieved from the Intemet:URL: https://en.wikipedia.org/w/index.phptitle=Electrostatic lens oldid=773161674[retrieved on Oct. 24, 2018].
Combined Search and Examination Report under Sections 17 and 18(3) for application GB1807605.9 dated Oct. 29, 2018, 5 pages.
Combined Search and Examination Report under Sections 17 and 18(3) for application GB1807626.5, dated Oct. 29, 2018, 7 pages.
Search Report under Section 17(5) for application GB1707208.3, dated Oct. 12, 2017, 5 pages.
Verenchicov., A. N. “Parallel MS-MS Analysis in a Time-Flight Tandem. Problem Statement, Method, and Instrucmental Schemes” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2004).
Yavor, M. I. “Planar Multireflection Time-Of-Flight Mass Analyser with Unlimited Mass Range” Institute for Analytical nstrucmentation RAS, Saint-Petersburg, (2004).
Khasin, Y. I. et al. “Initial Experimenatl Studies of a Planar Multireflection Time-Of-Flight Mass Spectrometer” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2004).
Verenchicov., A. N. et al. “Stability of Ion Motion in Periodic Electrostatic Fields” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2004).
Verenchicov., A. N. “The Concept of Mutireflecting Mass Spectrometer for Continuous Ion Sources” Institute for Analytical Instrumentation RAS, Saint-Petersburg, (2006).
Verenchicov., A. N., et al. “Accurate Mass Measurements for Inerpreting Spectra of atmospheric Pressure Ionization” Institute for Analytical Instrumentation RAS, Saint-Petersburg, (2006).
Kozlov, B. N. et al., “Experimental Studies of Space Charge Effects in Multireflecting Time-Of-Flight Mass Spectrometes” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2006).
Kozlov, B. N. et al., “Multireflecting Time-Of-Flight Mass Spectrometer With an Ion Trap Source” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2006).
Hasin, Y. I., et al., “Planar Time-Of-Flight Multireflecting Mass Spectrometer with an Orthogonal Ion Injection Out of Continuous Ion Sources” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2006).
Lutvinsky Y. I. et al., “Estimation of Capacity of High Resolution Mass Spectra for Analysis of Complex Mixtures” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2006).
International Search Report and Written Opinion for International application No. PCT/GB2020/050209, dated Apr. 28, 2020, 12 pages.
Reflectron—Wikipedia, Oct. 9, 2015, Retrieved from the Internet URL:https://en.wikipedia.org/w/index.phptitle=Reflectron oldid=684843442 [retrieved on May 29, 2019].
International Search Report and Written Opinion for International Application No. PCT/EP2017/070508 dated Oct. 16, 2017, 17 pages.
“Einzel Lens”, Wikipedia, https://en.wikipedia.org/wiki/Einzel_lens (Year: 2020).
International Search Report and Written Opinion for International application No. PCT/GB2019/051235, dated Sep. 25, 2019, 22 pages.
International Search Report and Written Opinion for International application No. PCT/GB2019/051416, dated Oct. 10, 2019, 22 pages.
Search and Examination Report under Sections 17 and 18(3) for Application No. GB1906258.7, dated Dec. 11, 2020, 7 pages.
Carey, D.C., “Why a second-order magnetic optical achromat works”, Nucl. Instrum. Meth., 189(203):365-367 (1981). Abstract.
Sakurai, T. et al., “Ion optics for time-of-flight mass spectrometers with multiple symmetry”, Int J Mass Spectrom Ion Proc 63(2-3):273-287 (1985). Abstract.
Wollnik, H., and Casares, A., “An energy-isochronous multi-pass time-of-flight mass spectrometer consisting of two coaxial electrostatic mirrors”, Int J Mass Spectrom 227:217-222 (2003). Abstract.
Examination Report under Section 18(3) for Application No. GB1906258.7, dated May 5, 2021, 4 pages.
Related Publications (1)
Number Date Country
20200168447 A1 May 2020 US