Mechanical tape separation package and method

Information

  • Patent Grant
  • 8337657
  • Patent Number
    8,337,657
  • Date Filed
    Wednesday, October 27, 2010
    14 years ago
  • Date Issued
    Tuesday, December 25, 2012
    12 years ago
Abstract
A method of fabricating a plurality of electronic component packages includes coupling a tape to a panel. Electronic components are coupled to the tape and encapsulated to form a molded wafer. The molded wafer is mechanically separated from the panel without heating by breaking a mechanical separation adhesive of the tape. By mechanically separating the molded wafer from the panel without heating, warpage of the molded wafer associated with heating is avoided.
Description
TECHNICAL FIELD

The present application relates to the field of electronics, and more particularly, to methods of forming electronic component packages and related structures.


BACKGROUND

To form an electronic component package, dies are mounted to a thermal release tape mounted to a panel. After encapsulating the dies to form a molded wafer, the thermal release tape is heated to release the molded wafer from the panel. However, heating the thermal release tape causes undesirable warpage in the molded wafer.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of a mechanical tape separation package formation method in accordance with one embodiment;



FIG. 2 is a cross-sectional view of an assembly during fabrication of a plurality of electronic component packages in accordance with one embodiment;



FIGS. 3, 4, 5, 6, and 7 are cross-sectional views of the assembly of FIG. 2 at later stages during fabrication of a plurality of electronic component packages in accordance with various embodiments; and



FIG. 8 is a cross-sectional view of a molded wafer of the assembly of FIG. 7 at a later stage during fabrication of a plurality of electronic component packages in accordance with one embodiment.





In the following description, the same or similar elements are labeled with the same or similar reference numbers.


DETAILED DESCRIPTION

As an overview and in accordance with one embodiment, referring to FIGS. 2 and 3, a method of fabricating a plurality of electronic component packages includes coupling a tape 202 to a panel 204. Referring now to FIG. 4, electronic components 422 are coupled to tape 202. Referring now to FIG. 5, electronic components 422 are encapsulated to form a molded wafer 534. Referring now to FIGS. 5 and 6, molded wafer 534 is mechanically separated from panel 204 without heating by breaking a mechanical separation adhesive 212 of tape 202. By mechanically separating molded wafer 534 from panel 204 without heating, warpage of molded wafer 534 associated with heating is avoided.


Now in more detail, FIG. 1 is a block diagram of a mechanical tape separation package formation method 100 in accordance with one embodiment. FIG. 2 is a cross-sectional view of an assembly 200 during fabrication of a plurality of electronic component packages in accordance with one embodiment.


Referring now to FIGS. 1 and 2 together, in an attach tape to panel operation 102, a tape 202 is attached to a panel 204, sometimes called a carrier. Generally, panel 204 is a rigid material used to support electronic components during encapsulation as discussed further below. In one embodiment, panel 204 is a stainless steel plate although is formed of other materials in other embodiments.


Tape 202 acts as a bond agent for holding electronic components in place during molding as discussed below. Further, tape 202 allows for mechanical separation of panel 204 from the molded wafer as also discussed below.


Tape 202, sometimes called a die attach tape, includes five layers and two protective liners. More particularly, tape 202 includes an top, e.g., first, liner 206, a top, e.g., first, electronic component permanent adhesive 208, an upper, e.g., first, support tape 210, a mechanical separation adhesive 212, a lower, e.g., second, support tape 214, a bottom, e.g., second, panel permanent adhesive 216, and a bottom, e.g., second, liner 218.


Top electronic component permanent adhesive 208 includes an upper, e.g., first, surface 208U and a lower, e.g., second, surface 208L. Top electronic component permanent adhesive 208 is formed of an adhesive such that both upper and lower surfaces 208U, 208L are adhesive.


Top liner 206 is mounted to upper surface 208U of top electronic component permanent adhesive 208. Top liner 206, e.g., polyester or other removable material, protects upper surface 208U from contamination and/or from unintentional adherence to other structures.


Upper support tape 210 includes an upper, e.g., first, surface 210U and a lower, e.g., second, surface 210L. Upper support tape 210 provides support for tape 202 and separates top electronic component adhesive 208 from mechanical separation adhesive 212. In one embodiment, upper support tape 210 is formed of polyester or other supporting material.


Top electronic component permanent adhesive 208 is mounted to upper support tape 210. More particularly, lower surface 208L of top electronic component permanent adhesive 208 is mounted to upper surface 210U of upper support tape 210.


Mechanical separation adhesive 212 includes an upper, e.g., first, surface 212U and a lower, e.g., second, surface 212L. Mechanical separation adhesive 212 is formed of an adhesive such that both upper and lower surfaces 212U, 212L are adhesive.


Mechanical separation adhesive 212 provides a means for mechanically separating tape 202 as discussed further below. Mechanical separation adhesive 212 has less mechanical strength than the other layers of tape 202, i.e., has less mechanical strength than top electronic component permanent adhesive 208, upper support tape 210, lower support tape 214, and bottom panel permanent adhesive 216. Accordingly, mechanical separation adhesive 212 will preferentially break, sometimes called separate, before the other layers of tape 202, i.e., before top electronic component permanent adhesive 208, upper support tape 210, lower support tape 214, and bottom panel permanent adhesive 216. Stated another way, mechanical separation adhesive 212 is the weak link of tape 202 that will break before the other layers of tape 202.


Upper support tape 210 is mounted to mechanical separation adhesive 212. More particularly, lower surface 210L of upper support tape 210 is mounted to upper surface 212U of mechanical separation adhesive 212.


Lower support tape 214 includes an upper, e.g., first, surface 214U and a lower, e.g., second, surface 214L. Lower support tape 214 provides support for tape 202 and separates mechanical separation adhesive 212 from bottom panel permanent adhesive 216. In one embodiment, lower support tape 214 is formed of polyester or other supporting material.


Mechanical separation adhesive 212 is mounted to lower support tape 214. More particularly, lower surface 212L of mechanical separation adhesive 212 is mounted to upper surface 214U of lower support tape 214.


Bottom panel permanent adhesive 216 includes an upper, e.g., first, surface 216U and a lower, e.g., second, surface 216L. Bottom panel permanent adhesive 216 is formed of an adhesive such that both upper and lower surfaces 216U, 216L are adhesive.


Lower support tape 214 is mounted to bottom panel permanent adhesive 216. More particularly, lower surface 214L of lower support tape 214 is mounted to upper surface 216U of bottom panel permanent adhesive 216.


Bottom liner 218 is mounted to lower surface 216L of bottom panel permanent adhesive 216. Bottom liner 218, e.g., polyester or other removable material, protects lower surface 216L from contamination and/or from unintentional adherence to other structures.



FIG. 3 is a cross-sectional view of assembly 200 of FIG. 2 at a later stage during fabrication of a plurality of electronic component packages in accordance with one embodiment. Referring now to FIGS. 1, 2, and 3 together, in attach tape to panel operation 102, bottom liner 218 (FIG. 2) is removed to expose bottom surface 216L of bottom panel permanent adhesive 216. Tape 202 is moved towards panel 204 as indicated by the arrow 220 in FIG. 2 to press bottom surface 216L of bottom panel permanent adhesive 216 against panel 204. As bottom surface 216L is adhesive, pressing bottom surface 216L against panel 204 adheres bottom surface 216L, and thus tape 202, to panel 204 as illustrated in FIG. 3.



FIG. 4 is a cross-sectional view of assembly 200 of FIG. 3 at a later stage during fabrication of a plurality of electronic component packages in accordance with one embodiment. Referring now to FIGS. 1, 3 and 4 together, from attach tape to panel operation 102, flow moves to an attach electronic components to tape operation 104.


In attach electronic components to tape operation 104, electronic components 422 are attached to tape 202 as illustrated in FIG. 4. More particularly, top liner 206 (FIG. 3) is removed to expose upper surface 208U of top electronic component permanent adhesive 208.


Active surfaces 424 including bond pads 426 formed thereon are pressed against upper surface 208U of top electronic component permanent adhesive 208. As upper surface 208U is adhesive, pressing active surfaces 424 against upper surface 208U adheres active surfaces 424, and thus electronic components 422, to tape 202 as illustrated in FIG. 4.


In one embodiment, electronic components 422 are integrated circuit chips, e.g., are active components. However, in other embodiments, electronic components 422 are passive components such as capacitors, resistors, or inductors. In another embodiment, electronic components 422 are pre-packaged devices. In yet another embodiment, a plurality of electronic components are mounted, e.g., in a stacked or side by side configuration.


In accordance with this embodiment, electronic components 422 include active surfaces 424 including bond pads 426, opposite inactive surfaces 428, and sides 430 extending perpendicularly between active surfaces 424 and inactive surfaces 428.



FIG. 5 is a cross-sectional view of assembly 200 of FIG. 4 at a later stage during fabrication of a plurality of electronic component packages in accordance with one embodiment. Referring now to FIGS. 1 and 5 together, from attach electronic components to tape operation 104, flow moves to an encapsulate to form molded wafer operation 106.


In encapsulate to form molded wafer operation 106, electronic components 422 are encapsulated, sometimes called encased, enclosed, molded, and/or covered, with a package body 532 to form a molded wafer 534. Package body 532 is a dielectric material, e.g., is molding compound formed by molding or encapsulant.


Package body 532 protects electronic components 422 from the ambient environment, e.g., from contact, moisture and/or shorting to other structures.


Package body 532 directly contacts and encapsulates inactive surfaces 428 and sides 430 of electronic components 422. Further, package body 532 directly contacts and encapsulates the portion of upper surface 208U of top electronic component permanent adhesive 208 exposed between electronic components 422.


Molded wafer 534 includes both electronic components 422 and package body 532. Generally, molded wafer 534 includes a lower, e.g., first, surface 534L defined by active surfaces 424 and a lower, e.g., first, surface 532L of package body 532. Further, molded wafer 534 includes an upper, e.g., second, surface 534U defined by an upper, e.g., second, surface 532U of package body 532.


Package body 532 is relatively rigid and provides strength and support for molded wafer 534. Accordingly, after formation of package body 532 and molded wafer 534, molded wafer 534 is removed from panel 204.


More particularly, from encapsulate to form molded wafer operation 106, flow moves to a mechanically separate molded wafer from panel operation 108. In mechanically separate molded wafer from panel operation 108, molded wafer 534 is mechanically separated from panel 204 without the application of heat.



FIG. 6 is a cross-sectional view of assembly 200 of FIG. 5 at a later stage during fabrication of a plurality of electronic component packages in accordance with one embodiment. Referring now to FIGS. 1, 5 and 6 together, generally, mechanical force is applied to mechanic separation adhesive 212 to break mechanical separation adhesive 212 apart as illustrated in FIG. 6. Breaking mechanical separation adhesive 212 causes molded wafer 534 to be mechanically separated from panel 204.


In one embodiment, mechanical force is applied to molded wafer 534 relative to panel 204. For example, as indicated by the arrow 535 in FIG. 5, panel 204 is held stationary while molded wafer 534 is twisted, or vice versa. This twisting force, sometimes called rotational force, is applied to tape 202 between molded wafer 534 and panel 204. As mechanical separation adhesive 212 is the weak link of tape 202, the twisting force causes mechanical separation adhesive 212 to break, sometimes called split or mechanically separate.


In one embodiment, a rotational force is applied to molded wafer 534 relative to panel 204 in the direction of a circle lying in a plane parallel to upper surface 532U of package body 532 to break mechanical separation adhesive 212.


In another embodiment, a shear force, sometimes called a linear force, is applied to molded wafer 534 relative to panel 204 for example by forcing molded wafer right in the view of FIG. 5 and in the direction parallel to upper surface 532U of package body 532 to break mechanical separation adhesive 212.


In another embodiment, a normal force, sometimes called a pulling force, is applied to molded wafer 534 relative to panel 204 for example by forcing molded wafer 534 up in the view of FIG. 5 and in the direction perpendicular to upper surface 532U of package body 532 to break mechanical separation adhesive 212.


However, other mechanical separation techniques to mechanically separate mechanical separation adhesive 212 are used in other embodiments. In one embodiment, a wedge such as a chisel is driven into mechanical separation adhesive 212 to break mechanical separation adhesive 212. In yet another example, mechanical separation adhesive 212 is cut, e.g., with a knife, to break mechanical separation adhesive 212.


Of importance, mechanical separation adhesive 212 is broken at ambient temperature, e.g., room temperature. More particularly, mechanical separation adhesive 212 is broken without heating of assembly 200. In this manner, warpage of molded wafer 534 associated with heating is avoided.


Paying particular attention now to FIG. 6, after mechanical separation of mechanical separation adhesive 212, mechanical separation adhesive 212 has been split into an upper, e.g., first, portion 636 and a lower, e.g., second, portion 638. Generally, tape 202 has been split into an upper, e.g., first, portion 640 and a lower, e.g., second portion 642. Top electronic component permanent adhesive 208, upper support tape 210, lower support tape 214, and bottom panel permanent adhesive 216 remain intact.


Upper portion 640 of tape 202 is attached to molded wafer 534 and lower portion 642 of tape 202 is attached to panel 204. Upper portion 640 of tape 202 includes top electronic component permanent adhesive 208, upper support tape 210, and upper portion 636 of mechanical separation adhesive 212. Lower portion 642 of tape 202 includes lower portion 638 of mechanical separation adhesive 212, lower support tape 214, and bottom panel permanent adhesive 216.



FIG. 7 is a cross-sectional view of assembly 200 of FIG. 6 at a later stage during fabrication of a plurality of electronic component packages in accordance with one embodiment. Referring now to FIGS. 1 and 7 together, from mechanically separate molded wafer from panel operation 108, flow moves to a remove tape operation 110. In remove tape operation 110, tape 202 is removed from molded wafer 534 and, optionally, from panel 204.


More particularly, upper portion 640 of tape 202 is removed from molded wafer 534, e.g., by peeling. Of importance, upper portion 640 of tape 202 is removed from molded wafer 534 at ambient temperature, e.g., room temperature. More particularly, upper portion 640 of tape 202 is removed from molded wafer 534 without heating of assembly 200. In this manner, warpage of molded wafer 534 associated with heating is avoided.


Further, lower portion 642 of tape 202 is removed from panel 204, e.g., by peeling. In one embodiment, after removal of lower portion 642 of tape 202, panel 204 is reused to fabricate another assembly.



FIG. 8 is a cross-sectional view of molded wafer 534 of assembly 200 of FIG. 7 at a later stage during fabrication of a plurality of electronic component packages in accordance with one embodiment. Referring now to FIGS. 1 and 8 together, from remove tape operation 110, flow moves to a form interconnection structures operation 112.


In form interconnection structures operation 112, interconnection structures to provide electrical interconnection with bond pads 426 are provided. Although a particular interconnection structure is illustrated in FIG. 8 and discussed below, in light of this disclosure, those of skill in the art will understand that any one of a number of interconnection structures can be formed depending upon the particular application.


Referring now to FIG. 8, in accordance with this embodiment, a first dielectric layer 844 is applied to lower surface 534L of molded wafer 534. Via apertures are formed through dielectric layer 844 to expose bond pads 426.


A circuit pattern 846 is formed within the via apertures and electrically connected to bond pads 426. In accordance with this embodiment, circuit pattern 846 includes traces 848 formed on dielectric layer 844 and vias 850 extending through dielectric layer 844 to bond pads 426. Although traces 848 are illustrated as being formed on dielectric layer 844, in another embodiment, traces 848 are embedded within dielectric layer 844.


Interconnection balls 852, e.g., solder balls for example in a Ball Grid Array (BGA), are formed on traces 848, e.g., lands thereof. A second dielectric layer 854, e.g., a solder mask, is applied to cover and protect traces 848.


From form interconnection structures operation 112, flow moves to a singulate operation 114. In singulate operation 114, molded wafer 534 is singulated to form a plurality of electronic component packages 856, sometimes called Wafer Level Fan Out (WLFO) packages. Illustratively, molded wafer 534 is cut, e.g., by sawing, with a laser, or other cutting technique, on singulation streets 858 to form a plurality of individual electronic component packages 856.


Although specific embodiments were described herein, the scope of the invention is not limited to those specific embodiments. Numerous variations, whether explicitly given in the specification or not, such as differences in structure, dimension, and use of material, are possible. The scope of the invention is at least as broad as given by the following claims.

Claims
  • 1. A method comprising: coupling a tape to a panel, the tape comprises a mechanical separation adhesive;coupling electronic components to the tape;encapsulating the electronic components to form a molded wafer; andmechanically separating the molded wafer from the panel at ambient temperature comprising breaking the mechanical separation adhesive.
  • 2. The method of claim 1 wherein the breaking the mechanical separation adhesive comprises applying a mechanical force to the molded wafer relative to the panel.
  • 3. The method of claim 2 wherein the mechanical force comprises a rotational force.
  • 4. The method of claim 2 wherein the mechanical force comprises a shear force.
  • 5. The method of claim 2 wherein the mechanical force comprises a normal force.
  • 6. The method of claim 1 wherein the breaking the mechanical separation adhesive comprises driving a wedge into the mechanical separation adhesive.
  • 7. The method of claim 1 wherein the breaking the mechanical separation adhesive comprises cutting the mechanical separation adhesive.
  • 8. The method of claim 1 wherein the mechanically separating is performed at room temperature.
  • 9. The method of claim 1 wherein the mechanically separating is performed without heating the molded wafer.
  • 10. A method comprising: coupling a panel permanent adhesive of a tape to a panel;coupling electronic components to an electronic component permanent adhesive of the tape, wherein the tape further comprises a mechanical separation adhesive between the panel permanent adhesive and the electronic component permanent adhesive.
  • 11. The method of claim 10 wherein the mechanical separation adhesive has less mechanical strength than the panel permanent adhesive and the electronic component permanent adhesive.
  • 12. The method of claim 10 wherein the mechanical separation adhesive provides a means for mechanically separating the tape.
  • 13. The method of claim 10 further comprising encapsulating the electronic components to form a molded wafer; and breaking the mechanical separation adhesive at ambient temperature while leaving the electronic component permanent adhesive and the panel permanent adhesive intact.
  • 14. The method of claim 13 wherein after the breaking, the tape comprises a first portion coupled to the molded wafer and a second portion coupled to the panel.
  • 15. The method of claim 14 further comprising removing the first portion from the molded wafer at ambient temperature.
  • 16. The method of claim 15 wherein the removing comprises peeling the first portion from the molded wafer.
  • 17. A method comprising: coupling a tape to a panel, the tape comprising: an electronic component permanent adhesive;a first support tape coupled to the electronic component permanent adhesive;a mechanical separation adhesive coupled to the first support tape;a second support tape coupled to the mechanical separation adhesive; anda panel permanent adhesive coupled to the second support tape, wherein the mechanical separation adhesive has less mechanical strength than the panel permanent adhesive and the electronic component permanent adhesive;coupling electronic components to the electronic component permanent adhesive;encapsulating the electronic components to form a molded wafer; andbreaking the mechanical separation adhesive.
  • 18. The method of claim 17 wherein the breaking the mechanical separation adhesive separates the molded wafer from the panel.
  • 19. The method of claim 17 wherein the coupling a tape to a panel comprises coupling the panel to the panel permanent adhesive.
US Referenced Citations (187)
Number Name Date Kind
3868724 Perrino Feb 1975 A
3916434 Garboushian Oct 1975 A
4322778 Barbour et al. Mar 1982 A
4532419 Takeda Jul 1985 A
4642160 Burgess Feb 1987 A
4645552 Vitriol et al. Feb 1987 A
4685033 Inoue Aug 1987 A
4706167 Sullivan Nov 1987 A
4716049 Patraw Dec 1987 A
4786952 MacIver et al. Nov 1988 A
4806188 Rellick Feb 1989 A
4811082 Jacobs et al. Mar 1989 A
4870476 Solstad Sep 1989 A
4897338 Spicciati et al. Jan 1990 A
4905124 Banjo et al. Feb 1990 A
4964212 Deroux-Dauphin et al. Oct 1990 A
4974120 Kodai et al. Nov 1990 A
4996391 Schmidt Feb 1991 A
5021047 Movern Jun 1991 A
5072075 Lee et al. Dec 1991 A
5072520 Nelson Dec 1991 A
5081520 Yoshii et al. Jan 1992 A
5091769 Eichelberger Feb 1992 A
5108553 Foster et al. Apr 1992 A
5110664 Nakanishi et al. May 1992 A
5191174 Chang et al. Mar 1993 A
5229550 Bindra et al. Jul 1993 A
5239448 Perkins et al. Aug 1993 A
5247429 Iwase et al. Sep 1993 A
5250843 Eichelberger Oct 1993 A
5278726 Bernardoni et al. Jan 1994 A
5283459 Hirano et al. Feb 1994 A
5353498 Fillion et al. Oct 1994 A
5371654 Beaman et al. Dec 1994 A
5379191 Carey et al. Jan 1995 A
5404044 Booth et al. Apr 1995 A
5463253 Waki et al. Oct 1995 A
5474957 Urushima Dec 1995 A
5474958 Djennas et al. Dec 1995 A
5497033 Fillion et al. Mar 1996 A
5508938 Wheeler Apr 1996 A
5530288 Stone Jun 1996 A
5531020 Durand et al. Jul 1996 A
5546654 Wojnarowski et al. Aug 1996 A
5574309 Papapietro et al. Nov 1996 A
5581498 Ludwig et al. Dec 1996 A
5582858 Adamopoulos et al. Dec 1996 A
5616422 Ballard et al. Apr 1997 A
5637832 Danner Jun 1997 A
5674785 Akram et al. Oct 1997 A
5719749 Stopperan Feb 1998 A
5726493 Yamashita et al. Mar 1998 A
5739581 Chillara Apr 1998 A
5739585 Akram et al. Apr 1998 A
5739588 Ishida et al. Apr 1998 A
5742479 Asakura Apr 1998 A
5774340 Chang et al. Jun 1998 A
5784259 Asakura Jul 1998 A
5798014 Weber Aug 1998 A
5822190 Iwasaki Oct 1998 A
5826330 Isoda et al. Oct 1998 A
5835355 Dordi Nov 1998 A
5847453 Uematsu et al. Dec 1998 A
5883425 Kobayashi Mar 1999 A
5894108 Mostafazadeh et al. Apr 1999 A
5898219 Barrow Apr 1999 A
5903052 Chen et al. May 1999 A
5907477 Tuttle et al. May 1999 A
5936843 Ohshima et al. Aug 1999 A
5952611 Eng et al. Sep 1999 A
6004619 Dippon et al. Dec 1999 A
6013948 Akram et al. Jan 2000 A
6021564 Hanson Feb 2000 A
6028364 Ogino et al. Feb 2000 A
6034427 Lan et al. Mar 2000 A
6035527 Tamm Mar 2000 A
6040622 Wallace Mar 2000 A
6060778 Jeong et al. May 2000 A
6069407 Hamzehdoost May 2000 A
6072243 Nakanishi Jun 2000 A
6081036 Hirano et al. Jun 2000 A
6119338 Wang et al. Sep 2000 A
6122171 Akram et al. Sep 2000 A
6127833 Wu et al. Oct 2000 A
6160705 Stearns et al. Dec 2000 A
6172419 Kinsman Jan 2001 B1
6175087 Keesler et al. Jan 2001 B1
6184463 Panchou et al. Feb 2001 B1
6194250 Melton et al. Feb 2001 B1
6204453 Fallon et al. Mar 2001 B1
6214641 Akram Apr 2001 B1
6235554 Akram et al. May 2001 B1
6239485 Peters et al. May 2001 B1
D445096 Wallace Jul 2001 S
D446525 Okamoto et al. Aug 2001 S
6274821 Echigo et al. Aug 2001 B1
6280641 Gaku et al. Aug 2001 B1
6316285 Jiang et al. Nov 2001 B1
6351031 Iijima et al. Feb 2002 B1
6353999 Cheng Mar 2002 B1
6365975 DiStefano et al. Apr 2002 B1
6376906 Asai et al. Apr 2002 B1
6392160 Andry et al. May 2002 B1
6395578 Shin et al. May 2002 B1
6405431 Shin et al. Jun 2002 B1
6406942 Honda Jun 2002 B2
6407341 Anstrom et al. Jun 2002 B1
6407930 Hsu Jun 2002 B1
6448510 Neftin et al. Sep 2002 B1
6451509 Keesler et al. Sep 2002 B2
6479762 Kusaka Nov 2002 B2
6489676 Taniguchi et al. Dec 2002 B2
6497943 Jimarez et al. Dec 2002 B1
6517995 Jacobson et al. Feb 2003 B1
6534391 Huemoeller et al. Mar 2003 B1
6544638 Fischer et al. Apr 2003 B2
6586682 Strandberg Jul 2003 B2
6608757 Bhatt et al. Aug 2003 B1
6660559 Huemoeller et al. Dec 2003 B1
6715204 Tsukada et al. Apr 2004 B1
6727645 Tsujimura et al. Apr 2004 B2
6730857 Konrad et al. May 2004 B2
6734542 Nakatani et al. May 2004 B2
6740964 Sasaki May 2004 B2
6753612 Adae-Amoakoh et al. Jun 2004 B2
6774748 Ito et al. Aug 2004 B1
6787443 Boggs et al. Sep 2004 B1
6803528 Koyanagi Oct 2004 B1
6815709 Clothier et al. Nov 2004 B2
6815739 Huff et al. Nov 2004 B2
6838776 Leal et al. Jan 2005 B2
6888240 Towle et al. May 2005 B2
6919514 Konrad et al. Jul 2005 B2
6921968 Chung Jul 2005 B2
6921975 Leal et al. Jul 2005 B2
6931726 Boyko et al. Aug 2005 B2
6946325 Yean et al. Sep 2005 B2
6953995 Farnworth et al. Oct 2005 B2
6963141 Lee et al. Nov 2005 B2
7015075 Fay et al. Mar 2006 B2
7030469 Mahadevan et al. Apr 2006 B2
7081661 Takehara et al. Jul 2006 B2
7087514 Shizuno Aug 2006 B2
7125744 Takehara et al. Oct 2006 B2
7185426 Hiner et al. Mar 2007 B1
7189593 Lee Mar 2007 B2
7198980 Jiang et al. Apr 2007 B2
7202107 Fuergut et al. Apr 2007 B2
7242081 Lee Jul 2007 B1
7282394 Cho et al. Oct 2007 B2
7285855 Foong Oct 2007 B2
7345361 Mallik et al. Mar 2008 B2
7372151 Fan et al. May 2008 B1
7420809 Lim et al. Sep 2008 B2
7429786 Karnezos et al. Sep 2008 B2
7459202 Magera et al. Dec 2008 B2
7548430 Huemoeller et al. Jun 2009 B1
7550857 Longo et al. Jun 2009 B1
7633765 Scanlan et al. Dec 2009 B1
7671457 Hiner et al. Mar 2010 B1
7777351 Berry et al. Aug 2010 B1
7825520 Longo et al. Nov 2010 B1
7863088 Brunnbauer et al. Jan 2011 B2
8035213 Lee et al. Oct 2011 B2
8193647 Hsieh et al. Jun 2012 B2
20020017712 Bessho et al. Feb 2002 A1
20020061642 Haji et al. May 2002 A1
20020066952 Taniguchi et al. Jun 2002 A1
20020195697 Mess et al. Dec 2002 A1
20030025199 Wu et al. Feb 2003 A1
20030128096 Mazzochette Jul 2003 A1
20030134450 Lee Jul 2003 A1
20030141582 Yang et al. Jul 2003 A1
20030197284 Khiang et al. Oct 2003 A1
20040063246 Karnezos Apr 2004 A1
20040145044 Sugaya et al. Jul 2004 A1
20040159462 Chung Aug 2004 A1
20050046002 Lee et al. Mar 2005 A1
20050139985 Takahashi Jun 2005 A1
20050242425 Leal et al. Nov 2005 A1
20060008944 Shizuno Jan 2006 A1
20060270108 Farnworth et al. Nov 2006 A1
20070273049 Khan et al. Nov 2007 A1
20070281471 Hurwitz et al. Dec 2007 A1
20070290376 Zhao et al. Dec 2007 A1
20080230887 Sun et al. Sep 2008 A1
20110119910 Xu et al. May 2011 A1
Foreign Referenced Citations (5)
Number Date Country
05-109975 Apr 1993 JP
05-136323 Jun 1993 JP
07-017175 Jan 1995 JP
08-190615 Jul 1996 JP
10-334205 Dec 1998 JP