The following description relates to integrated circuits (“ICs”). More particularly, the following description relates to manufacturing IC dies and wafers.
Microelectronic elements often comprise a thin slab of a semiconductor material, such as silicon or gallium arsenide, commonly called a semiconductor wafer. A wafer can be formed to include multiple integrated chips or dies on a surface of the wafer and/or partly embedded within the wafer. Dies that are separated from a wafer are commonly provided as individual, prepackaged units. In some package designs, the die is mounted to a substrate or a chip carrier, which is in turn mounted on a circuit panel, such as a printed circuit board (PCB). For example, many dies are provided in packages suitable for surface mounting.
Packaged semiconductor dies can also be provided in “stacked” arrangements, wherein one package is provided, for example, on a circuit board or other carrier, and another package is mounted on top of the first package. These arrangements can allow a number of different dies or devices to be mounted within a single footprint on a circuit board and can further facilitate high-speed operation by providing a short interconnection between the packages. Often, this interconnect distance can be only slightly larger than the thickness of the die itself. For interconnection to be achieved within a stack of die packages, interconnection structures for mechanical and electrical connection may be provided on both sides (e.g., faces) of each die package (except for the topmost package).
Additionally, dies or wafers may be stacked in a three-dimensional arrangement as part of various microelectronic packaging schemes. This can include stacking a layer of one or more dies, devices, and/or wafers on a larger base die, device, wafer, substrate, or the like, stacking multiple dies or wafers in a vertical or horizontal arrangement, and various combinations of both.
Dies or wafers may be bonded in a stacked arrangement using various bonding techniques, including direct dielectric bonding, non-adhesive techniques, such as ZiBond® or a hybrid bonding technique, such as DBI®, both available from Invensas Bonding Technologies, Inc. (formerly Ziptronix, Inc.), an Xperi company. The bonding includes a spontaneous process that takes place at ambient conditions when two prepared surfaces are brought together (see for example, U.S. Pat. Nos. 6,864,585 and 7,485,968, which are incorporated herein in their entirety).
Respective mating surfaces of the bonded dies or wafers often include embedded conductive interconnect structures (which may be metal), or the like. In some examples, the bonding surfaces are arranged and aligned so that the conductive interconnect structures from the respective surfaces are joined during the bonding. The joined interconnect structures form continuous conductive interconnects (for signals, power, etc.) between the stacked dies or wafers.
There can be a variety of challenges to implementing stacked die and wafer arrangements. When bonding stacked dies using a direct bonding or hybrid bonding technique, it is usually desirable that the surfaces of the dies to be bonded be extremely flat, smooth, and clean. For instance, in general, the surfaces should have a very low variance in surface topology (i.e., nanometer scale variance), so that the surfaces can be closely mated to form a lasting bond.
Double-sided dies can be formed and prepared for stacking and bonding, where both sides of the dies will be bonded to other substrates or dies, such as with multiple die-to-die or die-to-wafer applications. Preparing both sides of the die includes finishing both surfaces to meet dielectric roughness specifications and metallic layer (e.g., copper, etc.) recess specifications. For instance, conductive interconnect structures at the bonding surfaces may be slightly recessed, just below the insulating material of the bonding surface. The amount of recess below the bonding surface may be determined by a dimensional tolerance, specification, or physical limitation of the device or application. The hybrid surface may be prepared for bonding with another die, wafer, or other substrate using a chemical mechanical polishing (CMP) process, or the like.
In general, when direct bonding surfaces containing a combination of a dielectric layer and one or more metal features (e.g., embedded conductive interconnect structures) are bonded together, the dielectric surfaces bond first at lower temperatures and the metal of the features expands afterwards, as the metal is heated during annealing. The expansion of the metal can cause the metal from both bonding surfaces to join into a unified conductive structure (metal-to-metal bond). While both the substrate and the metal are heated during annealing, the coefficient of thermal expansion (CTE) of the metal relative to the CTE of the substrate generally dictates that the metal expands much more than the substrate at a particular temperature (e.g., ˜300 C). For instance, the CTE of copper is 16.7, while the CTE of fused silica is 0.55, and the CTE of silicon is 2.56.
In some cases, the greater expansion of the metal relative to the substrate can be problematic for direct bonding stacked dies or wafers. If a metal pad is positioned over a through-silicon via (TSV), the expansion of the TSV metal can contribute to the expansion of the pad metal. In some cases, the combined metal expansion can cause localized delamination of the bonding surfaces, as the expanding metal rises above the bonding surface. For instance, the expanded metal can separate the bonded dielectric surfaces of the stacked dies.
The detailed description is set forth with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different figures indicates similar or identical items.
For this discussion, the devices and systems illustrated in the figures are shown as having a multiplicity of components. Various implementations of devices and/or systems, as described herein, may include fewer components and remain within the scope of the disclosure. Alternatively, other implementations of devices and/or systems may include additional components, or various combinations of the described components, and remain within the scope of the disclosure.
Representative techniques and devices are disclosed, including process steps for preparing various microelectronic devices for bonding, such as for direct bonding without adhesive. In various embodiments, techniques may be employed to mitigate the potential for delamination due to metal expansion, particularly when a TSV or a bond pad over a TSV is presented at the bonding surface of one or both devices to be bonded. For example, in one embodiment, a metal pad having a larger diameter or surface area (e.g., oversized for the application) may be used when a contact pad is positioned over a TSV. For instance, the contact pad, including the size (e.g., surface area, diameter, etc.) of the contact pad, or the amount of oversize of the contact pad may be selected based on the material of the pad, its thickness, and anticipated recess during processing.
When using surface preparation processes such as CMP to prepare the bonding surface of the substrate, the metal pads on the bonding surface can become recessed relative to the dielectric, due to the softer material of the pads relative to the material of the dielectric. A larger diameter metal pad may become recessed to a greater degree (e.g., a deeper recess) than a smaller diameter pad. In an embodiment where a contact pad is positioned over a TSV, the deeper recess can compensate for a combined metal expansion of the pad and the TSV, allowing more room for expansion of the metal, which can reduce or eliminate delamination that could occur otherwise when the metal expands.
In various implementations, an example process includes embedding a first through silicon via (TSV) into a first substrate having a first bonding surface, where the first TSV is normal to the first bonding surface (i.e., vertical within a horizontally oriented substrate with a like horizontally oriented bonding surface. The process may include estimating an amount that a material of the first TSV will expand when heated to a preselected temperature, based on a volume of the material of the first TSV and a coefficient of thermal expansion (CTE) of the material of the first TSV. The process includes forming a first metal contact pad at the first bonding surface and coupled to the first TSV, based on the estimate or based on a volume of the material of the first TSV and a coefficient of thermal expansion (CTE) of the material of the first TSV.
The first metal contact pad is disposed at the first bonding surface (and may be disposed directly over the first TSV), and extends partially into the first substrate below the first bonding surface, electrically coupling the first metal contact pad to the first TSV. In the embodiment, the process includes planarizing the first bonding surface to have a predetermined maximum surface variance for direct bonding, and the first metal contact pad to have a predetermined recess relative to the first bonding surface, based on the volume of the material of the first TSV and the coefficient of thermal expansion (CTE) of the material of the first TSV.
In various examples, selecting or forming the contact pad comprises selecting a diameter or a surface area of the first metal contact pad. For instance, a first metal contact pad may be selected or formed to have an oversized diameter, an oversized surface area, or the like, than typical for a like application. In an embodiment, the process includes determining a desired recess for the first metal contact pad relative to the first bonding surface, to allow for expansion of the material of the first TSV and the material of the first metal contact pad, based on the predicting, and selecting the first metal contact pad to have a perimeter shape likely to result in the desired recess when the first metal contact pad is planarized. This may include forecasting an amount of recess that is likely to occur in a surface of the first metal contact pad as a result of the planarizing. In another embodiment, the process includes forming the desired recess in a surface of the first metal contact pad (prior to bonding), based on the determining.
In various embodiments, the process includes reducing or eliminating delamination of bonded microelectronic components by selecting the first metal contact pad. In an alternate implementation, the process includes recessing or eroding material of the first bonding surface directly around the first metal contact pad to allow for expansion of the material of the first TSV and the material of the first metal contact pad, based on the volume of the material of the first TSV and the coefficient of thermal expansion (CTE) of the material of the first TSV.
Additionally or alternatively, the back side of the first substrate may also be processed for bonding. One or more insulating layers of preselected materials may be deposited on the back side of the first substrate to provide stress relief when the back side of the first substrate is to be direct bonded.
Further, the first TSV, as well as other TSVs within the first substrate may be used to direct or transfer heat within the first substrate and/or away from the first substrate. In some implementations, the thermal transfer TSVs may extend partially or fully through a thickness of the first substrate and may include a thermally conductive barrier layer. In such examples, barrier layers normally used around the TSVs that tend to be thermally insulating may be replaced with thermally conductive layers instead. In various implementations, some TSVs may be used for signal transfer and thermal transfer.
In an embodiment, a microelectronic assembly comprises a first substrate including a first bonding surface with a planarized topography having a first predetermined maximum surface variance. A first through silicon via (TSV) is embedded into the first substrate and a first metal contact pad is disposed at the first bonding surface and is electrically coupled to the first TSV. The first contact pad may be disposed over the first TSV, for instance. The first metal contact pad may be selected or formed based on an estimate of an amount that a material of the first TSV will expand when heated to a preselected temperature and/or based on a volume of the material of the first TSV and a coefficient of thermal expansion (CTE) of the material of the first TSV. A predetermined recess is disposed in a surface of the first metal contact pad, having a volume equal to or greater than an amount of expansion of the material of the first TSV and an amount of expansion of a material of the first metal contact pad when heated to the preselected temperature.
In an implementation, the first metal contact pad is positioned over the first TSV and the first metal contact pad has an oversized diameter or an oversized surface area than a pad typically used for a like application.
Various implementations and arrangements are discussed with reference to electrical and electronics components and varied carriers. While specific components (i.e., dies, wafers, integrated circuit (IC) chip dies, substrates, etc.) are mentioned, this is not intended to be limiting, and is for ease of discussion and illustrative convenience. The techniques and devices discussed with reference to a wafer, die, substrate, or the like, are applicable to any type or number of electrical components, circuits (e.g., integrated circuits (IC), mixed circuits, ASICS, memory devices, processors, etc.), groups of components, packaged components, structures (e.g., wafers, panels, boards, PCBs, etc.), and the like, that may be coupled to interface with each other, with external circuits, systems, carriers, and the like. Each of these different components, circuits, groups, packages, structures, and the like, can be generically referred to as a “microelectronic component.” For simplicity, unless otherwise specified, components being bonded to another component will be referred to herein as a “die.”
This summary is not intended to give a full description. Implementations are explained in more detail below using a plurality of examples. Although various implementations and examples are discussed here and below, further implementations and examples may be possible by combining the features and elements of individual implementations and examples.
Referring to
A bonding surface 108 of the device wafer 102 can include conductive features 110, such as traces, pads, and interconnect structures, for example, embedded into the insulating layer 106 and arranged so that the conductive features 110 from respective bonding surfaces 108 of opposing devices can be mated and joined during bonding, if desired. The joined conductive features 110 can form continuous conductive interconnects (for signals, power, etc.) between stacked devices.
Damascene processes (or the like) may be used to form the embedded conductive features 110 in the insulating layer 106. The conductive features 110 may be comprised of metals (e.g., copper, etc.) or other conductive materials, or combinations of materials, and include structures, traces, pads, patterns, and so forth. In some examples, a barrier layer may be deposited in the cavities for the conductive features 110 prior to depositing the material of the conductive features 110, such that the barrier layer is disposed between the conductive features 110 and the insulating layer 106. The barrier layer may be comprised of tantalum, for example, or another conductive material, to prevent or reduce diffusion of the material of the conductive features 110 into the insulating layer 106. After the conductive features 110 are formed, the exposed surface of the device wafer 102, including the insulating layer 106 and the conductive features 110 can be planarized (e.g., via CMP) to form a flat bonding surface 108.
Forming the bonding surface 108 includes finishing the surface 108 to meet dielectric roughness specifications and metallic layer (e.g., copper, etc.) recess specifications, to prepare the surface 108 for direct bonding. In other words, the bonding surface 108 is formed to be as flat and smooth as possible, with very minimal surface topology variance. Various conventional processes, such as chemical mechanical polishing (CMP), dry or wet etching, and so forth, may be used to achieve the low surface roughness. This process provides the flat, smooth surface 108 that results in a reliable bond.
In the case of double-sided dies 102, a patterned metal and insulating layer 106 with prepared bonding surfaces 108 may be provided on both sides of the die 102. The insulating layer 106 is typically highly planar (usually to nm-level roughness) with the metal layer (e.g., embedded conductive features) at or recessed just below the bonding surface 108. The amount of recess below the surface 108 of the insulating layer 106 is typically determined by a dimensional tolerance, specification, or physical limitation. The bonding surfaces 108 are often prepared for direct bonding with another die, wafer, or other substrate using a chemical-mechanical polishing (CMP) step and/or other preparation steps.
Some embedded conductive features or interconnect structures may comprise metal pads 110 or conductive traces 112 that extend partially into the dielectric substrate 106 below the prepared surface 108. For instance, some patterned metal (e.g., copper) features 110 or 112 may be about 0.5-2 microns thick. The metal of these features 110 or 112 may expand as the metal is heated during annealing. Other conductive interconnect structures may comprise metal (e.g., copper) through silicon vias (TSVs) 114 or the like, that extend normal to the bonding surface 108, partly or fully through the substrate 102 and include a larger quantity of metal. For instance, a TSV 114 may extend about 50 microns, depending on the thickness of the substrate 102. The metal of the TSV 114 may also expand when heated. Pads 110 and/or traces 112 may or may not be electrically coupled to TSVs 114, as shown in
Referring to
Referring to
As shown in
The contact pad 302 is planarized along with the bonding surface 108 of the dielectric layer 106, including recessing the contact pad 302 to have a predetermined recess depth (or amount) relative to the bonding surface 108 based on estimating and predicting the expansion of the TSV 114 material and the contact pad 302 material at the preselected temperature.
Referring to
Referring to
In various embodiments, a contact pad 302 with a larger diameter or surface area A2 than a contact pad 110 with a smaller diameter or surface area A1 (shown at
In various embodiments, the amount of recessing (e.g., d1, d2, etc.) of a metal pad 110 or 302 may be predictable, based on the surface preparation technique used (e.g., the chemical combination used, the speed of the polishing equipment, etc.), the materials of the dielectric layer 106 and the metal pads 110 and 302, the spacing or density of the metal pads 110 and 302, and the size (e.g., area or diameter) of the metal pads 110 and 302. In the embodiments, the area or diameter of the metal pads 110 and 302 may be selected (e.g., for a particular metal thickness) to avoid delamination of bonded dies 102 based on the recess prediction and the expected metal expansion of the TSV 114 and metal pad 110 or 302 combination. For example, larger sized pads 302 may be used over TSVs 114 and smaller sized pads 110 may be used over dielectric 106 (to avoid excessive recessing of these pads 110). This technique can result in reduced or eliminated delamination, as well as dependable mechanical coupling of the dielectric 106 and metal structures (110, 302, 112, and/or 114) on the bonding surfaces 108 and reliable electrical continuity of the bonded metal structures (110, 302, 112, and/or 114).
In one embodiment, a metal pad 110, 302 may be selectively etched (via acid etching, plasma oxidation, etc.) to provide a desired recess depth (to accommodate a predicted metal expansion). In another embodiment, a pad 110, 302 or a corresponding TSV 114 may be selected, formed, or processed to have an uneven top surface as an expansion buffer. For example, referring to
As shown at
Additionally or alternately, as shown in
In an embodiment, the dielectric 106 can be recessed (e.g., with CMP) while the bonding surface 108 is being prepared. In the embodiment, the metal pad 110 or 302 and the dielectric 106 may be recessed concurrently (but at different rates). For instance, the process may form erosion 802 in the dielectric 106 around the edges of the metal pad 110 or 302 while recessing the metal pad 110 or 302.
In various embodiments, the pad 110 or 302 and/or the TSV 114 are comprised of copper, a copper alloy, or the like. In a further embodiment, the materials of the pad 110 or 302 and/or the TSV 114 may be varied to control metal expansion and potential resulting delamination. For instance, in some embodiments, the pad 110 or 302 and/or the TSV 114 may be comprised of different conductive materials, perhaps with lower CTEs. In some embodiments the TSV 114 may be comprised of a different conductive material (with a lower CTE) than the contact pad 110 or 302. For example, the TSV 114 may be comprised of tungsten, an alloy, or the like.
In other embodiments the volume of material of the TSV 114 may be varied to control metal expansion and the potential for resulting delamination. For instance, in some embodiments, a TSV 114 with a preselected material volume (e.g., less volume of material) may be used to control delamination, when this is allowable within the design specifications. The preselection of volume of the TSV 114 may be based on predicted material expansion (of the TSV 114 and a contact pad 110 or 302, when applicable).
In an alternate embodiment, the metal contact pad 110 or 302 may be offset or relocated from the TSV 114, rather than being positioned directly over the TSV 114. For instance, the metal pad 110 or 302 may be positioned so that it is not directly over the TSV 114, and be coupled to the TSV 114 by a metal trace 112, or the like, if desired. If the contact pad 110 or 302 is offset from the TSV 114, a cavity may be created to allow the TSV 114 to expand in the z-direction without affecting the bond interface. The cavity may be left open or may be filled with a material, such as a compliant material.
Alternately, the top surface of the TSV 114 can be arranged to be exposed at the bonding surface 108 and used as a contact pad. These arrangements can avoid combining the expansion of the metal pad 110 or 302 with that of the TSV 114, and so minimizing or eliminating delamination.
In a further embodiment, the TSV 114 can be formed so that the TSV 114 extends partially (rather than fully) through the thickness of the substrate 102, terminating below the bonding surface 108. A gap or recess can be provided in the bonding surface 108 over the TSV 114 to allow room for the metal of the TSV 114 to expand, without causing delamination. For instance, the gap can be formed by etching the dialectic layer 106. The gap may or may not expose the TSV 114. The gap can be tuned, for example, to the volume of the TSV 114, using a prediction of the expansion of the TSV 114, based on the volume of the particular metal of the TSV 114.
In one implementation, the backside 902 is prepared so that the backend of the TSV 114 is exposed, to be used as a contact surface for bonding to a conductive pad, interconnect, or other conductive bonding surface. The preparation may include thinning and selectively etching the base substrate 104 to expose the TSV 114 with the liner/barrier layer 904 intact, depositing one or more layers of insulating materials and planarizing (via CMP, for example) the backside 902 to reveal the TSV 114. In some cases, however, the expansion of the material of the TSV 114 during heated annealing can cause the insulating material and/or the substrate 104 to deform and rise above the planarized surface.
In an embodiment, as shown in
As shown at
In various embodiments, one or more inorganic dielectric layers which may have different residue stress characteristics are then deposited onto the backside 902 of the die 102 to enable proper reveal of the TSV 114 and to balance stress on the device side (front side) of the die 102 to minimize die warpage after singulation. For example, a first layer 908, comprising a first low temperature dielectric, such as an oxide, may be deposited over the backside 902, including the diffusion layer 906.
In some embodiments, a second layer 910, comprising a second low temperature dielectric, such as a second oxide, may be deposited over the backside 902, including the first layer 908. The second oxide layer 910 may have a similar or a different residue stress characteristic than the first layer 908 (for example, the first layer 908 may be compressive and the second layer 910 may be tensile, or vice versa, or both layers 908 and 910 may be compressive or tensile with similar or different values). In various implementations, the first layer 908 and the second 910 layer are comprised of similar or the same materials (in varying thicknesses). In other implementations, the first layer 908 and the second 910 layer are comprised of different materials. In alternate implementations, additional dielectric layers may also be deposited over the first 908 and second 910 layers.
As shown at
In another embodiment, as shown in
In an embodiment, the opening 1102 for the contact pad 1204 extends through the second layer 910 and partially (10-1000 nm) into the first layer 908. A barrier/adhesion layer 1202 (comprising titanium/titanium nitride, tantalum/tantalum nitride, etc.) may be deposited into the opening 1102 (and may cover the entire surface of the opening 1102), as shown at
In an alternate embodiment, a dual damascene process may be used to form the contact pad 1204, as shown in
A thickness of the second dielectric layer 910 (top layer) and a thickness of the contact pad 1204 may be adjusted to minimize thin die warpage, and to achieve a desired anneal temperature. In other embodiments, alternate techniques may be used to reduce or eliminate delamination due to metal feature expansion, and remain within the scope of the disclosure.
At
At
In various embodiments, as illustrated at
In the embodiments, as shown at
In an implementation, some of the TSVs 114, contact pads 110 and 302, traces 112, and the like are electrically floating or “dummy” structures, which can be used for thermal transfer. These structures may conduct heat away from a high power die 102 to another die 102 or substrate as desired. Dummy contact pads 110 or 302 may be coupled to via last or via mid thermal TSVs 114 for thermal conduction.
In the embodiments, diffusion barrier/oxide liner layers 904, which surround the TSVs 114 and can be thermally restrictive or thermal barriers may be replaced by diffusion barrier/oxide liners of a different material having some thermal conductivity (such as metal or alloy barriers, or the like).
Example Process
The order in which the process is described is not intended to be construed as limiting, and any number of the described process blocks in the process can be combined in any order to implement the process, or alternate processes. Additionally, individual blocks may be deleted from the process without departing from the spirit and scope of the subject matter described herein. Furthermore, the process can be implemented in any suitable hardware, software, firmware, or a combination thereof, without departing from the scope of the subject matter described herein. In alternate implementations, other techniques may be included in the process in various combinations and remain within the scope of the disclosure.
In an implementation, a die, wafer, or other substrate (a “substrate”) is formed using various techniques to include a base substrate and one or more dielectric layers. In the implementation, at block 1802, the process 1800 includes embedding a first through silicon via (TSV) (such as TSV 114, for example) into a first substrate (such as die 102, for example) having a first bonding surface (such as bonding surface 108, for example), the first TSV normal to the first bonding surface.
In the implementation, at block 1804, the process includes forming a first metal contact pad (such as contact pad 302, for example) at the first bonding surface and electrically coupled to the first TSV, based on a volume of the material of the first TSV and a coefficient of thermal expansion (CTE) of the material of the first TSV. In an embodiment, the first metal contact pad extends partially into the first substrate below the first bonding surface.
At block 1806, the process includes planarizing the first bonding surface to have a predetermined maximum surface variance for direct bonding and the first metal contact pad to have a predetermined recess relative to the first bonding surface based on the volume of the material of the first TSV and the coefficient of thermal expansion (CTE) of the material of the first TSV. In an implementation, the process includes predicting an amount that a material of the first metal contact pad will expand when heated to a preselected temperature, based on a volume of the material of the first metal contact pad and a CTE of the material of the first metal contact pad, and determining a size of the first metal contact pad based on the estimating combined with the predicting. In one implementation, the process includes selecting a diameter or a surface area of the first metal contact pad.
In an implementation, the process includes electrically coupling the first metal contact pad to the first TSV.
In an implementation, the process includes determining a desired recess for the first metal contact pad relative to the first bonding surface, to allow for expansion of the material of the first TSV and the material of the first metal contact pad, based on the estimating and the predicting; and selecting the first metal contact pad to have a perimeter shape likely to result in the desired recess when the first metal contact pad is planarized.
In another implementation, the process includes determining a desired recess for the first metal contact pad relative to the first bonding surface, to allow for expansion of the material of the first TSV and the material of the first metal contact pad based on the predicting; and forming the desired recess in a surface of the first metal contact pad.
In another implementation, the process includes selecting the first metal contact pad to have an oversized diameter or an oversized surface area than typical for a like application.
In a further implementation, the process includes forecasting an amount of recess that is likely to occur in a surface of the first metal contact pad as a result of the planarizing.
In another implementation, the process includes recessing or eroding material of the first bonding surface directly around the first metal contact pad to allow for expansion of the material of the first TSV and a material of the first metal contact pad, based on the estimating.
In an implementation, the process includes reducing or eliminating delamination of bonded microelectronic components by offsetting a position of the first metal contact pad relative to the first TSV so that the first metal contact pad is not disposed directly over the first TSV. In another implementation, the process includes forming a recess in the first bonding surface over the first TSV to allow for expansion of the material of the first TSV. In another implementation, the process includes tuning a volume of the recess in the first bonding surface based on the estimating.
In an implementation, the process includes reducing or eliminating delamination of bonded microelectronic components by extending the first TSV to the first bonding surface and using a top surface of the first TSV as a contact pad at the first bonding surface.
In various embodiments, some process steps may be modified or eliminated, in comparison to the process steps described herein.
The techniques, components, and devices described herein are not limited to the illustrations of
Although the implementations of the disclosure have been described in language specific to structural features and/or methodological acts, it is to be understood that the implementations are not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as representative forms of implementing example devices and techniques.
This application is a continuation of U.S. application Ser. No. 16/439,622, filed Jun. 12, 2019, which claims the priority of U.S. Provisional Application No. 62/846,081, filed May 10, 2019 and U.S. Provisional Application No. 62/684,505, filed Jun. 13, 2018, the disclosures of each of which are hereby incorporated by reference in their entireties for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4612083 | Yasumoto et al. | Sep 1986 | A |
4818728 | Rai et al. | Apr 1989 | A |
4904328 | Beecher et al. | Feb 1990 | A |
4939568 | Kato et al. | Jul 1990 | A |
4998665 | Hayashi | Mar 1991 | A |
5087585 | Hayashi | Feb 1992 | A |
5236118 | Bower et al. | Aug 1993 | A |
5322593 | Hasegawa et al. | Jun 1994 | A |
5413952 | Pages et al. | May 1995 | A |
5419806 | Huebner | May 1995 | A |
5442235 | Parrillo et al. | Aug 1995 | A |
5489804 | Pasch | Feb 1996 | A |
5501003 | Bernstein | Mar 1996 | A |
5503704 | Bower et al. | Apr 1996 | A |
5504376 | Sugahara et al. | Apr 1996 | A |
5516727 | Broom | May 1996 | A |
5563084 | Ramm et al. | Oct 1996 | A |
5610431 | Martin | Mar 1997 | A |
5696406 | Ueno | Dec 1997 | A |
5734199 | Kawakita et al. | Mar 1998 | A |
5753536 | Sugiyama et al. | May 1998 | A |
5771555 | Eda et al. | Jun 1998 | A |
5821692 | Rogers et al. | Oct 1998 | A |
5866942 | Suzuki et al. | Feb 1999 | A |
5985739 | Plettner et al. | Nov 1999 | A |
5998808 | Matsushita | Dec 1999 | A |
6008126 | Leedy | Dec 1999 | A |
6054363 | Sakaguchi et al. | Apr 2000 | A |
6063968 | Hubner et al. | May 2000 | A |
6071761 | Jacobs | Jun 2000 | A |
6080640 | Gardner et al. | Jun 2000 | A |
6097096 | Gardner et al. | Aug 2000 | A |
6123825 | Uzoh et al. | Sep 2000 | A |
6147000 | You et al. | Nov 2000 | A |
6183592 | Sylvester | Feb 2001 | B1 |
6218203 | Khoury et al. | Apr 2001 | B1 |
6232150 | Lin et al. | May 2001 | B1 |
6258625 | Brofman et al. | Jul 2001 | B1 |
6259160 | Lopatin et al. | Jul 2001 | B1 |
6265775 | Seyyedy | Jul 2001 | B1 |
6297072 | Tilmans et al. | Oct 2001 | B1 |
6316786 | Mueller et al. | Nov 2001 | B1 |
6322600 | Brewer et al. | Nov 2001 | B1 |
6333120 | DeHaven et al. | Dec 2001 | B1 |
6333206 | Ito et al. | Dec 2001 | B1 |
6348709 | Graettinger et al. | Feb 2002 | B1 |
6359235 | Hayashi | Mar 2002 | B1 |
6374770 | Lee | Apr 2002 | B1 |
6409904 | Uzoh et al. | Jun 2002 | B1 |
6423640 | Lee et al. | Jul 2002 | B1 |
6465892 | Suga | Oct 2002 | B1 |
6515343 | Shroff et al. | Feb 2003 | B1 |
6528894 | Akram et al. | Mar 2003 | B1 |
6552436 | Burnette et al. | Apr 2003 | B2 |
6555917 | Heo | Apr 2003 | B1 |
6579744 | Jiang | Jun 2003 | B1 |
6583515 | James et al. | Jun 2003 | B1 |
6589813 | Park | Jul 2003 | B1 |
6593645 | Shih et al. | Jul 2003 | B2 |
6600224 | Farquhar et al. | Jul 2003 | B1 |
6624003 | Rice | Sep 2003 | B1 |
6627814 | Stark | Sep 2003 | B1 |
6632377 | Brusic et al. | Oct 2003 | B1 |
6642081 | Patti | Nov 2003 | B1 |
6656826 | Ishimaru | Dec 2003 | B2 |
6660564 | Brady | Dec 2003 | B2 |
6667225 | Hau-Riege et al. | Dec 2003 | B2 |
6720212 | Robl et al. | Apr 2004 | B2 |
6759738 | Fallon et al. | Jul 2004 | B1 |
6828686 | Park | Dec 2004 | B2 |
6837979 | Uzoh et al. | Jan 2005 | B2 |
6847527 | Sylvester et al. | Jan 2005 | B2 |
6864585 | Enquist | Mar 2005 | B2 |
6867073 | Enquist | Mar 2005 | B1 |
6887769 | Kellar et al. | May 2005 | B2 |
6902987 | Tong et al. | Jun 2005 | B1 |
6908027 | Tolchinsky et al. | Jun 2005 | B2 |
6909194 | Farnworth et al. | Jun 2005 | B2 |
6960492 | Miyamoto | Nov 2005 | B1 |
6962835 | Tong et al. | Nov 2005 | B2 |
6974769 | Basol et al. | Dec 2005 | B2 |
7037755 | Enquist | May 2006 | B2 |
7045453 | Canaperi et al. | May 2006 | B2 |
7078811 | Suga | Jul 2006 | B2 |
7105980 | Abbott et al. | Sep 2006 | B2 |
7109063 | Jiang | Sep 2006 | B2 |
7109092 | Tong | Sep 2006 | B2 |
7126212 | Enquist et al. | Oct 2006 | B2 |
7193239 | Leedy | Mar 2007 | B2 |
7193423 | Dalton et al. | Mar 2007 | B1 |
7247948 | Hedler et al. | Jul 2007 | B2 |
7335572 | Tong et al. | Feb 2008 | B2 |
7354798 | Pogge et al. | Apr 2008 | B2 |
7385283 | Wu | Jun 2008 | B2 |
7387944 | Tong et al. | Jun 2008 | B2 |
7485968 | Enquist et al. | Feb 2009 | B2 |
7553744 | Tong et al. | Jun 2009 | B2 |
7750488 | Patti et al. | Jul 2010 | B2 |
7803693 | Trezza | Sep 2010 | B2 |
7807549 | Tong et al. | Oct 2010 | B2 |
7998335 | Feeney et al. | Aug 2011 | B2 |
8183127 | Patti et al. | May 2012 | B2 |
8241961 | Kim et al. | Aug 2012 | B2 |
8314007 | Vaufredaz | Nov 2012 | B2 |
8349635 | Gan et al. | Jan 2013 | B1 |
8357931 | Schieck et al. | Jan 2013 | B2 |
8377798 | Peng et al. | Feb 2013 | B2 |
8435421 | Keleher et al. | May 2013 | B2 |
8441131 | Ryan | May 2013 | B2 |
8476146 | Chen et al. | Jul 2013 | B2 |
8476165 | Trickett et al. | Jul 2013 | B2 |
8482132 | Yang et al. | Jul 2013 | B2 |
8501537 | Sadaka et al. | Aug 2013 | B2 |
8524533 | Tong et al. | Sep 2013 | B2 |
8620164 | Heck et al. | Dec 2013 | B2 |
8647987 | Yang et al. | Feb 2014 | B2 |
8697493 | Sadaka | Apr 2014 | B2 |
8716105 | Sadaka et al. | May 2014 | B2 |
8802538 | Liu | Aug 2014 | B1 |
8809123 | Liu et al. | Aug 2014 | B2 |
8841002 | Tong | Sep 2014 | B2 |
8916448 | Cheng et al. | Dec 2014 | B2 |
8988299 | Kam et al. | Mar 2015 | B2 |
9040385 | Chen et al. | May 2015 | B2 |
9064937 | Edelstein et al. | Jun 2015 | B2 |
9082627 | Tong et al. | Jul 2015 | B2 |
9082644 | Ossimitz et al. | Jul 2015 | B2 |
9093350 | Endo et al. | Jul 2015 | B2 |
9142517 | Liu et al. | Sep 2015 | B2 |
9171756 | Enquist et al. | Oct 2015 | B2 |
9184125 | Enquist et al. | Nov 2015 | B2 |
9224704 | Landru | Dec 2015 | B2 |
9230941 | Chen et al. | Jan 2016 | B2 |
9257399 | Kuang et al. | Feb 2016 | B2 |
9299736 | Chen et al. | Mar 2016 | B2 |
9312229 | Chen et al. | Apr 2016 | B2 |
9331032 | Liu et al. | May 2016 | B2 |
9331149 | Tong et al. | May 2016 | B2 |
9337235 | Chen et al. | May 2016 | B2 |
9343330 | Brusic et al. | May 2016 | B2 |
9343369 | Du et al. | May 2016 | B2 |
9368866 | Yu | Jun 2016 | B2 |
9385024 | Tong et al. | Jul 2016 | B2 |
9394161 | Cheng et al. | Jul 2016 | B2 |
9425155 | Liu et al. | Aug 2016 | B2 |
9431368 | Enquist et al. | Aug 2016 | B2 |
9437572 | Chen et al. | Sep 2016 | B2 |
9443796 | Chou et al. | Sep 2016 | B2 |
9461007 | Chun | Oct 2016 | B2 |
9496239 | Edelstein et al. | Nov 2016 | B1 |
9536848 | England et al. | Jan 2017 | B2 |
9559081 | Lai et al. | Jan 2017 | B1 |
9620481 | Edelstein et al. | Apr 2017 | B2 |
9656852 | Cheng et al. | May 2017 | B2 |
9723716 | Meinhold | Aug 2017 | B2 |
9728521 | Tsai et al. | Aug 2017 | B2 |
9741620 | Uzoh et al. | Aug 2017 | B2 |
9799587 | Fujii et al. | Oct 2017 | B2 |
9852988 | Enquist et al. | Dec 2017 | B2 |
9859254 | Yu et al. | Jan 2018 | B1 |
9865581 | Jang et al. | Jan 2018 | B2 |
9881882 | Hsu et al. | Jan 2018 | B2 |
9893004 | Yazdani | Feb 2018 | B2 |
9899442 | Katkar | Feb 2018 | B2 |
9929050 | Lin | Mar 2018 | B2 |
9941241 | Edelstein et al. | Apr 2018 | B2 |
9941243 | Kim et al. | Apr 2018 | B2 |
9953941 | Enquist | Apr 2018 | B2 |
9960129 | Liu et al. | May 2018 | B2 |
9960142 | Chen et al. | May 2018 | B2 |
10002844 | Wang et al. | Jun 2018 | B1 |
10026605 | Doub et al. | Jul 2018 | B2 |
10075657 | Fahim et al. | Sep 2018 | B2 |
10103122 | Liu et al. | Oct 2018 | B2 |
10147641 | Enquist et al. | Dec 2018 | B2 |
10204893 | Uzoh et al. | Feb 2019 | B2 |
10211166 | Matsuo | Feb 2019 | B2 |
10269708 | Enquist et al. | Apr 2019 | B2 |
10269756 | Uzoh | Apr 2019 | B2 |
10269778 | Lin et al. | Apr 2019 | B2 |
10276619 | Kao et al. | Apr 2019 | B2 |
10276909 | Huang et al. | Apr 2019 | B2 |
10312275 | Hynecek | Jun 2019 | B2 |
10418277 | Cheng et al. | Sep 2019 | B2 |
10431614 | Gambino et al. | Oct 2019 | B2 |
10446456 | Shen et al. | Oct 2019 | B2 |
10446487 | Huang et al. | Oct 2019 | B2 |
10446532 | Uzoh et al. | Oct 2019 | B2 |
10707087 | Uzoh et al. | Jul 2020 | B2 |
10790262 | Uzoh et al. | Sep 2020 | B2 |
10796913 | Lin | Oct 2020 | B2 |
10840135 | Uzoh | Nov 2020 | B2 |
10840205 | Fountain, Jr. et al. | Nov 2020 | B2 |
10854578 | Morein | Dec 2020 | B2 |
10879212 | Uzoh et al. | Dec 2020 | B2 |
10886177 | DeLaCruz et al. | Jan 2021 | B2 |
10892246 | Uzoh | Jan 2021 | B2 |
10923413 | DeLaCruz | Feb 2021 | B2 |
10937755 | Shah et al. | Mar 2021 | B2 |
10950547 | Mohammed et al. | Mar 2021 | B2 |
10964664 | Mandalapu et al. | Mar 2021 | B2 |
10985133 | Uzoh | Apr 2021 | B2 |
10991804 | DeLaCruz et al. | Apr 2021 | B2 |
10998292 | Lee et al. | May 2021 | B2 |
11011494 | Gao et al. | May 2021 | B2 |
11011503 | Wang et al. | May 2021 | B2 |
11031285 | Katkar et al. | Jun 2021 | B2 |
11037919 | Uzoh et al. | Jun 2021 | B2 |
11056348 | Theil | Jul 2021 | B2 |
11069734 | Katkar | Jul 2021 | B2 |
11088099 | Katkar et al. | Aug 2021 | B2 |
11127738 | DeLaCruz et al. | Sep 2021 | B2 |
11158606 | Gao et al. | Oct 2021 | B2 |
11171117 | Gao et al. | Nov 2021 | B2 |
11176450 | Teig et al. | Nov 2021 | B2 |
11256004 | Haba et al. | Feb 2022 | B2 |
11264357 | DeLaCruz et al. | Mar 2022 | B1 |
11276676 | Enquist et al. | Mar 2022 | B2 |
11329034 | Tao et al. | May 2022 | B2 |
11348898 | DeLaCruz et al. | May 2022 | B2 |
11355443 | Huang et al. | Jun 2022 | B2 |
11393779 | Gao et al. | Jul 2022 | B2 |
20020000328 | Motomura et al. | Jan 2002 | A1 |
20020003307 | Suga | Jan 2002 | A1 |
20020025665 | Juengling | Feb 2002 | A1 |
20020074670 | Suga | Jun 2002 | A1 |
20020094661 | Enquist et al. | Jul 2002 | A1 |
20020113241 | Kubota et al. | Aug 2002 | A1 |
20030092220 | Akram | May 2003 | A1 |
20030109083 | Ahmad | Jun 2003 | A1 |
20030129796 | Bruchhaus et al. | Jul 2003 | A1 |
20030157748 | Kim et al. | Aug 2003 | A1 |
20040084414 | Sakai et al. | May 2004 | A1 |
20040157407 | Tong et al. | Aug 2004 | A1 |
20040217483 | Hedler et al. | Nov 2004 | A1 |
20040262772 | Ramanathan et al. | Dec 2004 | A1 |
20050104224 | Huang et al. | May 2005 | A1 |
20050181542 | Enquist | Aug 2005 | A1 |
20060024950 | Choi et al. | Feb 2006 | A1 |
20060057945 | Hsu et al. | Mar 2006 | A1 |
20070096294 | Ikeda et al. | May 2007 | A1 |
20070111386 | Kim et al. | May 2007 | A1 |
20070145367 | Chen et al. | Jun 2007 | A1 |
20070212870 | Yang et al. | Sep 2007 | A1 |
20070222048 | Huang | Sep 2007 | A1 |
20070295456 | Gudeman et al. | Dec 2007 | A1 |
20070296073 | Wu | Dec 2007 | A1 |
20080006938 | Patti et al. | Jan 2008 | A1 |
20080122092 | Hong | May 2008 | A1 |
20080142990 | Yu et al. | Jun 2008 | A1 |
20090108469 | Kang et al. | Apr 2009 | A1 |
20090197408 | Lehr et al. | Aug 2009 | A1 |
20090200668 | Yang et al. | Aug 2009 | A1 |
20100130003 | Lin et al. | May 2010 | A1 |
20100164066 | Di Franco | Jul 2010 | A1 |
20110074040 | Frank et al. | Mar 2011 | A1 |
20110290552 | Palmateer et al. | Dec 2011 | A1 |
20120168935 | Huang | Jul 2012 | A1 |
20120211894 | Aoyagi | Aug 2012 | A1 |
20120212384 | Kam et al. | Aug 2012 | A1 |
20120241981 | Hirano | Sep 2012 | A1 |
20120319280 | Suganuma et al. | Dec 2012 | A1 |
20130020704 | Sadaka | Jan 2013 | A1 |
20130075900 | Shim et al. | Mar 2013 | A1 |
20130161824 | Choi et al. | Jun 2013 | A1 |
20130187287 | Park et al. | Jul 2013 | A1 |
20130221527 | Yang et al. | Aug 2013 | A1 |
20130256913 | Black et al. | Oct 2013 | A1 |
20130284885 | Chen et al. | Oct 2013 | A1 |
20130320556 | Liu | Dec 2013 | A1 |
20130328186 | Uzoh et al. | Dec 2013 | A1 |
20140065738 | Bhoovaraghan et al. | Mar 2014 | A1 |
20140131869 | Pendse | May 2014 | A1 |
20140145338 | Fujii et al. | May 2014 | A1 |
20140175614 | Wang et al. | Jun 2014 | A1 |
20140175655 | Chen et al. | Jun 2014 | A1 |
20140225795 | Yu | Aug 2014 | A1 |
20140252635 | Tran et al. | Sep 2014 | A1 |
20140264948 | Chou et al. | Sep 2014 | A1 |
20140332980 | Sanders et al. | Nov 2014 | A1 |
20150064498 | Tong | Mar 2015 | A1 |
20150097022 | Di Cioccio et al. | Apr 2015 | A1 |
20150108644 | Kuang et al. | Apr 2015 | A1 |
20150137325 | Hong et al. | May 2015 | A1 |
20150155263 | Farooq et al. | Jun 2015 | A1 |
20150206823 | Lin et al. | Jul 2015 | A1 |
20150214191 | Lee et al. | Jul 2015 | A1 |
20150228621 | Kumar et al. | Aug 2015 | A1 |
20150364434 | Chen et al. | Dec 2015 | A1 |
20150380341 | Chiou et al. | Dec 2015 | A1 |
20160086923 | Best | Mar 2016 | A1 |
20160181228 | Higuchi et al. | Jun 2016 | A1 |
20160190103 | Tatsuya et al. | Jun 2016 | A1 |
20160322414 | Chen et al. | Nov 2016 | A1 |
20160343682 | Kawasaki | Nov 2016 | A1 |
20170053897 | Lai et al. | Feb 2017 | A1 |
20170062366 | Enquist | Mar 2017 | A1 |
20170110388 | Park et al. | Apr 2017 | A1 |
20170179029 | Enquist et al. | Jun 2017 | A1 |
20170194271 | Hsu et al. | Jul 2017 | A1 |
20170250160 | Wu et al. | Aug 2017 | A1 |
20170330859 | Soares et al. | Nov 2017 | A1 |
20170358551 | Liu et al. | Dec 2017 | A1 |
20180175012 | Wu et al. | Jun 2018 | A1 |
20180182639 | Uzoh et al. | Jun 2018 | A1 |
20180182665 | Uzoh et al. | Jun 2018 | A1 |
20180182666 | Uzoh et al. | Jun 2018 | A1 |
20180190580 | Haba et al. | Jul 2018 | A1 |
20180190583 | DeLaCruz et al. | Jul 2018 | A1 |
20180204798 | Enquist et al. | Jul 2018 | A1 |
20180204868 | Kao et al. | Jul 2018 | A1 |
20180219038 | Gambino et al. | Aug 2018 | A1 |
20180226371 | Enquist | Aug 2018 | A1 |
20180226375 | Enquist et al. | Aug 2018 | A1 |
20180273377 | Katkar et al. | Sep 2018 | A1 |
20180286805 | Huang et al. | Oct 2018 | A1 |
20180323177 | Yu et al. | Nov 2018 | A1 |
20180323227 | Zhang et al. | Nov 2018 | A1 |
20180331066 | Uzoh et al. | Nov 2018 | A1 |
20190057756 | Kim et al. | Feb 2019 | A1 |
20190088535 | Yan et al. | Mar 2019 | A1 |
20190096741 | Uzoh et al. | Mar 2019 | A1 |
20190096842 | Fountain, Jr. et al. | Mar 2019 | A1 |
20190109042 | Katkar et al. | Apr 2019 | A1 |
20190115277 | Yu et al. | Apr 2019 | A1 |
20190131277 | Yang et al. | May 2019 | A1 |
20190157334 | Wei et al. | May 2019 | A1 |
20190189603 | Wang et al. | Jun 2019 | A1 |
20190198407 | Huang et al. | Jun 2019 | A1 |
20190198409 | Katkar et al. | Jun 2019 | A1 |
20190265411 | Huang et al. | Aug 2019 | A1 |
20190333550 | Fisch | Oct 2019 | A1 |
20190348336 | Katkar et al. | Nov 2019 | A1 |
20190363079 | Thei | Nov 2019 | A1 |
20190385935 | Gao et al. | Dec 2019 | A1 |
20200013637 | Haba | Jan 2020 | A1 |
20200013765 | Fountain, Jr. et al. | Jan 2020 | A1 |
20200035630 | Kameshima | Jan 2020 | A1 |
20200035641 | Fountain, Jr. et al. | Jan 2020 | A1 |
20200075520 | Gao et al. | Mar 2020 | A1 |
20200075534 | Gao et al. | Mar 2020 | A1 |
20200075553 | DeLaCruz et al. | Mar 2020 | A1 |
20200126906 | Uzoh et al. | Apr 2020 | A1 |
20200194396 | Uzoh | Jun 2020 | A1 |
20200227367 | Haba et al. | Jul 2020 | A1 |
20200243380 | Uzoh et al. | Jul 2020 | A1 |
20200279821 | Haba et al. | Sep 2020 | A1 |
20200294908 | Haba et al. | Sep 2020 | A1 |
20200328162 | Haba et al. | Oct 2020 | A1 |
20200328164 | DeLaCruz et al. | Oct 2020 | A1 |
20200328165 | DeLaCruz et al. | Oct 2020 | A1 |
20200335408 | Gao et al. | Oct 2020 | A1 |
20200365575 | Uzoh et al. | Nov 2020 | A1 |
20200371154 | DeLaCruz et al. | Nov 2020 | A1 |
20200395321 | Katkar et al. | Dec 2020 | A1 |
20200411483 | Uzoh et al. | Dec 2020 | A1 |
20210098412 | Haba et al. | Apr 2021 | A1 |
20210118864 | DeLaCruz et al. | Apr 2021 | A1 |
20210143125 | DeLaCruz et al. | May 2021 | A1 |
20210181510 | Katkar et al. | Jun 2021 | A1 |
20210193603 | Katkar et al. | Jun 2021 | A1 |
20210193624 | DeLaCruz et al. | Jun 2021 | A1 |
20210193625 | DeLaCruz et al. | Jun 2021 | A1 |
20210242152 | Fountain, Jr. et al. | Aug 2021 | A1 |
20210257341 | Lee et al. | Aug 2021 | A1 |
20210296282 | Gao et al. | Sep 2021 | A1 |
20210305202 | Uzoh et al. | Sep 2021 | A1 |
20210366820 | Uzoh | Nov 2021 | A1 |
20210407941 | Haba | Dec 2021 | A1 |
20220005784 | Gao et al. | Jan 2022 | A1 |
20220077063 | Haba | Mar 2022 | A1 |
20220077087 | Haba | Mar 2022 | A1 |
20220139867 | Uzoh | May 2022 | A1 |
20220139869 | Gao et al. | May 2022 | A1 |
20220208650 | Gao et al. | Jun 2022 | A1 |
20220208702 | Uzoh | Jun 2022 | A1 |
20220208723 | Katkar et al. | Jun 2022 | A1 |
20220246497 | Fountain, Jr. et al. | Aug 2022 | A1 |
20220285303 | Mirkarimi et al. | Sep 2022 | A1 |
20220319901 | Suwito et al. | Oct 2022 | A1 |
20220320035 | Uzoh et al. | Oct 2022 | A1 |
20220320036 | Gao et al. | Oct 2022 | A1 |
20230005850 | Fountain, Jr. | Jan 2023 | A1 |
20230019869 | Mirkarimi et al. | Jan 2023 | A1 |
20230036441 | Haba et al. | Feb 2023 | A1 |
20230067677 | Lee et al. | Mar 2023 | A1 |
20230069183 | Haba | Mar 2023 | A1 |
20230100032 | Haba et al. | Mar 2023 | A1 |
20230115122 | Uzoh et al. | Apr 2023 | A1 |
20230122531 | Uzoh | Apr 2023 | A1 |
20230123423 | Gao et al. | Apr 2023 | A1 |
20230125395 | Gao et al. | Apr 2023 | A1 |
20230130259 | Haba et al. | Apr 2023 | A1 |
20230132632 | Katkar et al. | May 2023 | A1 |
20230140107 | Uzoh et al. | May 2023 | A1 |
20230142680 | Guevara et al. | May 2023 | A1 |
20230154816 | Haba et al. | May 2023 | A1 |
20230154828 | Haba et al. | May 2023 | A1 |
20230187264 | Uzoh et al. | Jun 2023 | A1 |
20230187317 | Uzoh | Jun 2023 | A1 |
20230187412 | Gao et al. | Jun 2023 | A1 |
20230197453 | Fountain, Jr. et al. | Jun 2023 | A1 |
20230197496 | Theil | Jun 2023 | A1 |
20230197559 | Haba et al. | Jun 2023 | A1 |
20230197560 | Katkar et al. | Jun 2023 | A1 |
20230197655 | Theil et al. | Jun 2023 | A1 |
20230207402 | Fountain, Jr. et al. | Jun 2023 | A1 |
20230207437 | Haba | Jun 2023 | A1 |
20230207474 | Uzoh et al. | Jun 2023 | A1 |
20230207514 | Gao et al. | Jun 2023 | A1 |
20230215836 | Haba et al. | Jul 2023 | A1 |
20230245950 | Haba et al. | Aug 2023 | A1 |
20230268300 | Uzoh et al. | Aug 2023 | A1 |
Number | Date | Country |
---|---|---|
105140144 | Dec 2015 | CN |
106653720 | May 2017 | CN |
106920795 | Jul 2017 | CN |
107039380 | Aug 2017 | CN |
107731668 | Feb 2018 | CN |
107993927 | May 2018 | CN |
107993928 | May 2018 | CN |
109155301 | Jan 2019 | CN |
109417073 | Mar 2019 | CN |
109417075 | Mar 2019 | CN |
109417077 | Mar 2019 | CN |
109643643 | Apr 2019 | CN |
109844915 | Jun 2019 | CN |
0 465 227 | Jan 1992 | EP |
2 863 420 | Apr 2015 | EP |
61-030059 | Feb 1986 | JP |
01-168040 | Jul 1989 | JP |
4-259249 | Sep 1992 | JP |
05-029183 | Feb 1993 | JP |
5-198739 | Aug 1993 | JP |
6-13456 | Jan 1994 | JP |
6-260594 | Sep 1994 | JP |
H07-66093 | Mar 1995 | JP |
H7-249749 | Sep 1995 | JP |
7-283382 | Oct 1995 | JP |
8-78645 | Mar 1996 | JP |
8-125121 | May 1996 | JP |
8-186235 | Jul 1996 | JP |
9-120979 | May 1997 | JP |
10-135404 | May 1998 | JP |
10-223636 | Aug 1998 | JP |
10-242383 | Sep 1998 | JP |
11-186120 | Jul 1999 | JP |
2000-100679 | Apr 2000 | JP |
2000-260934 | Sep 2000 | JP |
2000-299379 | Oct 2000 | JP |
2000-311982 | Nov 2000 | JP |
2001-102479 | Apr 2001 | JP |
2001-326326 | Nov 2001 | JP |
2002-026123 | Jan 2002 | JP |
2002-516033 | May 2002 | JP |
2002-353416 | Dec 2002 | JP |
2002-368159 | Dec 2002 | JP |
2003-023071 | Jan 2003 | JP |
2004-200547 | Jul 2004 | JP |
2005-086089 | Mar 2005 | JP |
2005-093486 | Apr 2005 | JP |
2005-135988 | May 2005 | JP |
2013-033786 | Feb 2013 | JP |
2013-033900 | Feb 2013 | JP |
2013-243333 | Dec 2013 | JP |
2018-160519 | Oct 2018 | JP |
2019-129199 | Aug 2019 | JP |
10-2010-0112852 | Oct 2010 | KR |
10-2012-0106366 | Sep 2012 | KR |
10-2015-0097798 | Aug 2015 | KR |
476145 | Feb 2002 | TW |
201528473 | Jul 2015 | TW |
WO 0161743 | Aug 2001 | WO |
WO 03054954 | Jul 2003 | WO |
WO 2005043584 | May 2005 | WO |
WO 2006100444 | Sep 2006 | WO |
WO 2012013162 | Feb 2012 | WO |
WO 2012133760 | Oct 2012 | WO |
WO 2016185883 | Nov 2016 | WO |
WO 2017151442 | Sep 2017 | WO |
WO 2017155002 | Sep 2017 | WO |
WO 2018076700 | May 2018 | WO |
WO 2019146427 | Aug 2019 | WO |
Entry |
---|
Amirfeiz et al., “Formation of silicon structures by plasma-activated wafer bonding,” Journal of The Electrochemical Society, 2000, vol. 147, No. 7, pp. 2693-2698. |
Appeal Decision of Rejection dated Apr. 12, 2016 in Japanese Patent Application No. 2008-526104, in 14 pages. |
Aspar, B. et al., “The smart-cut process: Status and developments,” Proc. Electrochem Soc., 1999, vol. 99-53, pp. 48-59. |
Bower, R. et al., “Low temperature Si3N4 direct bonding,” Appl. Phys. Lett., Jun. 28, 1993, vol. 62, No. 26, pp. 3485-3487. |
Canadian Office Action dated Aug. 1, 2013 in Canadian Patent Application No. 2,618,191, 4 pages. |
Canadian Office Action, dated May 16, 2012 for Canadian Patent Application No. 2,515,375, with international preliminary report, 2 pages. |
Ceramic Microstructures: Control at the Atomic Level, Recent Progress in Surface Activated Bonding, 1998, pp. 385-389. |
“Chemical Mechanical Polishing (CMP) Metrology with Advanced Surface Polisher,” Park Systems, 4 pages. |
Chung et al., “Room temperature GaAseu +Si and InPeu +Si wafer direct bonding by the surface activate bonding method,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Jan. 2, 1997, vol. 121, Issues 1-4, pp. 203-206. |
Chung et al., “Wafer direct bonding of compound semiconductors and silicon at room temperature by the surface activated bonding method,” Applied Surface Science, Jun. 2, 1997, vols. 117-118, pp. 808-812. |
D'Agostino, R., “Plasma etching of Si and SiO2 in SF6-O2 mixtures,” J. Appl. Phys., Jan. 1981, vol. 52, No. 1, pp. 162-167. |
Decision—Request for Trail Granted, Inter Partes Review, U.S. Pat. No. 7,485,968, Case IPR2013-00381, dated Dec. 18, 2013, in 27 pages. |
Declaration of Richard A. Blanchard in Support of Petition for inter partes review of U.S. Pat. No. 7,485,968, dated Jun. 13, 2013, pp. 1-18. |
Derbyshire, Katherine, “The darker side of hybrid bonding,” Semiconductor Engineering, Dec. 17, 2020, https://semiengineering.com/author/katherine/, 6 pages. |
Dysard, Jeffrey M. et al., “CMP solutions for the integration of high-k metal gate technologies,” ECS Transactions, 2010, vol. 33, Issue 10, pp. 77-89. |
Extended European Search Report dated Mar. 30, 2022, European Application No. 19820162.6, 14 pages. |
Fan et al., “Copper water bonding,” Electrochem. Solid-State Lett., U.S.A., The Electrochemical Society, Aug. 6, 1999, vol. 2, No. 10, pp. 534-536. |
Fang, S.J. et al., “Advanced process control in dielectric chemical mechanical polishing (CMP),” Texas Instruments, Silicon Technology Development, 8 pages. |
Farrens et al., “Chemical free room temperature wafer to wafer direct bonding,” J. Electrochem. Soc., The Electrochemical Society, Inc., Nov. 1995, vol. 142, No. 11. pp. 3949-3955. |
Farrens et al., “Chemical free wafer bonding of silicon to glass and sapphire,” Electrochemical Society Proceedings vol. 95-7, 1995, pp. 72-77. |
Final Written Decision, Inter PartesReview, U.S. Pat. No. 7,485,968, Case IPR2013-00381, dated Feb. 27, 2014, in 3 pages. |
Gösele et al., “Semiconductor Wafer Bonding: A flexible approach to materials combinations in microelectronics; micromechanics and optoelectronics,” IEEE, 1997, pp. 23-32. |
Gösele et al., “Silicon layer transfer by wafer bonding,” Proceedings of the Second International Symposium on Semiconductor Wafer Bonding: Science, Technology and Applications, The Electrochemical Society Proceedings, vol. 93-29 (1993), pp. 395-409. |
Handbook of Thin Film Technology, Maissel and Glang, 1983 Reissue, pp. 12-24. |
Harendt, C. et al., “Vertical polysilicon interconnects by aligned wafer bonding,” Electrochemical Society Proceedings, 1998, vol. 97-36, pp. 501-508. |
Hayashi, Y. et al., “Fabrication of three-dimensional IC using cumulatively bonded IC (CUBIC) technology,” VSLI Tech. Dog., 1990, pp. 95-96. |
Hizukuri, M. et al., “Dynamic strain and chip damage during ultrasonic flip chip bonding,” Jpn. J. Appl. Phys. 40, 2001, pp. 3044-3048. |
Hosoda et al., “Effect of the surface treatment on the room-temperature bonding of Al to Si and SiO2,” Journal of Materials Science, Jan. 1, 1998, vol. 33, Issue 1, pp. 253-258. |
Hosoda et al., “Room temperature GaAs-Si and InP-Si wafer direct bonding by the surface activated bonding method,” Nuclear Inst. and Methods in Physics Research B, 1997, vol. 121, Nos. 1-4, pp. 203-206. |
Howlader et al., “A novel method for bonding of ionic wafers,” Electronics Components and Technology Conference, 2006, IEEE, pp. 7. |
Howlader et al., “Bonding of p-Si/n-InP wafers through surface activated bonding method at room temperature,” Indium Phosphide and Related Materials, 2001, IEEE International Conference On, pp. 272-275. |
Howlader et al., “Characterization of the bonding strength and interface current of p-Si/ n-InP wafers bonded by surface activated bonding method at room temperature,” Journal of Applied Physics, Mar. 1, 2002, vol. 91, No. 5, pp. 3062-3066. |
Howlader et al., “Investigation of the bonding strength and interface current of p-SionGaAs wafers bonded by surface activated bonding at room temperature,” J. Vac. Sci. Technol. B 19, Nov./Dec. 2001, pp. 2114-2118. |
“Hybrid Bonding—Patent Landscape Analysis,” from Technologies to IP Business Intelligence, KnowMade Patent & Technology Intelligence, www.kmowmade.com, Nov. 2019, 81 pages. |
Hymes, S. et al., “Determination of the planarization distance for copper CMP process,” 6 pages. |
Iida, A. et al., “The study of initial mechanism for Al—Au solid phase diffusion flip-chip bonding,” Jpn. J. Appl. Phys. 40, 1997, pp. 3044-3661. |
International Search Report and Written Opinion dated Apr. 22, 2019 in International Application No. PCT/US2018/064982, 13 pages. |
International Search Report and Written Opinion dated Mar. 7, 2019, in International Application No. PCT/US2018/060044, 14 pages. |
International Search Report and Written Opinion dated Oct. 8, 2019, in International Application No. PCT/US2019/037072, 13 pages. |
Itoh et al., “Characteristics of fritting contacts utilized for micromachined wafer probe cards,” 2000 American Institute of Physics, AIP Review of Scientific Instruments, vol. 71, 2000, pp. 2224. |
Itoh et al., “Characteristics of low force contact process for MEMS probe cards,” Sensors and Actuators A: Physical, Apr. 1, 2002, vols. 97-98, pp. 462-467. |
Itoh et al., “Development of MEMS IC probe card utilizing fritting contact,” Initiatives of Precision Engineering at the Beginning of a Millennium: 10th International Conference on Precision Engineering (ICPE) Jul. 18-20, 2001, Yokohama, Japan, 2002, Book Part 1, pp. 314-318. |
Itoh et al., “Room temperature vacuum sealing using surface activated bonding method,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, Jun. 8-12, 2003, 2003 IEEE, pp. 1828-1831. |
Juang, Jing-Ye et al., “Copper-to-copper direct bonding on highly (111)—oriented nanotwinned copper in no-vacuum ambient,” Scientific Reports, Sep. 17, 2018, vol. 8, 11 pages. |
Ker, Ming-Dou et al., “Fully process-compatible layout design on bond pad to improve wire bond reliability in CMOS Ics,” IEEE Transactions on Components and Packaging Technologies, Jun. 2002, vol. 25, No. 2, pp. 309-316. |
Kim et al., “Low temperature direct Cu—Cu bonding with low energy ion activation method,” Electronic Materials and Packaging, 2001, IEEE, pp. 193-195. |
Kim et al., “Room temperature Cu—Cu direct bonding using surface activated bonding method,” J. Vac. Sci. Technol., 2003 American Vacuum Society, Mar./Apr. 2003, vol. 21, No. 2, pp. 449-453. |
Kim et al., “Wafer-scale activated bonding of Cu—CU, Cu—Si, and Cu—SiO2 at low temperature,” Proceedings—Electrochemical Society, 2003, vol. 19, pp. 239-247. |
Kissinger, G. et al., “Void-free silicon-wafer-bond stregthening in the 200-400 C range,” Sensors and Actuators A, 1993, vol. 36, pp. 149-156. |
Krauter, G. et al., “Low temperature silicon direct bonding for application in micromechanics: bonding energies for different combinations of oxides,” Sensors and Actuators A, 1998, vol. 70, pp. 271-275. |
Kunio, Takemitsu, “Three dimensional IC technology, using cubic method,” Journal of the JWS, Japan Welding Society, Apr. 5, 1994, vol. 63, No. 3, pp. 185-189. |
Lee, D. et al., “Slurry components in metal chemical mechanical planarization (CMP) process: A review,” International Journal of Precision Engineering and Manufacturing, Dec. 2016, vol. 17, No. 12, pp. 1751-1762. |
Li, Yuzhuo, “Key factors that influence step height reduction efficiency and defectivity during metal CMP,” Clarkson University, Levitronix CMP Users' Conference 2006, 2006, 32 pages. |
Li, Y.A. et al., “Low temperature copper to copper direct bonding,” Jpn. Appl. Phys. 37, 1998, pp. L1068-L1069. |
Li, Y.A. et al., “Systematic low temperature silicon bonding using pressure and temperature,” Jpn. J. Appl. Phys., vol. 37, 1998, pp. 737-741. |
Liu, Zi-Yu et al. “Detection and formation mechanism of micro-defects in ultrafine pitch Cu—Cu direct bonding,” Chin. Phys. B, 2016, vol. 25, No. 1, pp. 018103-1-018103-7. |
Liu, C. et al., “Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu,” Scientific Reports, May 12, 2015, 5:09734, pp. 1-11. |
Lu, L. et al., “Grain growth and strain release in nanocrystalline copper,” Journal of Applied Physics, vol. 89, Issue 11, pp. 6408. |
Luo, Ying, “Slurry Chemistry Effects on Copper Chemical Mechanical Planarization,” University of Central Florida STARS, Electronic Theses and Disserations, 2004, Paper 36, 111 pages. |
Matsuzawa et al., “Room-temperature interconnection of electroplated Au microbump by means of surface activated bonding method,” Electornic Components and Technology Confererence, 2001, 51st Proceedings, IEEE, pp. 384-387. |
Monsma et al., “Development of the spin-valve transistor,” IEEE Tran. Magnet., vol. 33, No. 5, Sep. 1997, pp. 3495-3499. |
Moriceau, H. et al., “Overview of recent direct wafer bonding advances and applications,” Advances in Natural Sciences-Nanoscience and Nanotechnology, 2010, 11 pages. |
Mott, D. et al., “Synthesis of size-controlled and shaped copper nanoparticles,” Langmuir, 2007, vol. 23, No. 10, pp. 5740-5745. |
Nakanishi, H. et al., “Studies on SiO2—SiO2 bonding with hydrofluoric acid. Room temperature and low stress bonding technique for MEMS,” Sensors and Actuators, 2000, vol. 79, pp. 237-244. |
Oberhammer, J. et al., “Sealing of adhesive bonded devices on wafer level,” Sensors and Actuators A, 2004, vol. 110, No. 1-3, pp. 407-412, see pp. 407-412, and Figures 1 (a)-1 (I), 6 pages. |
Onodera et al., “The effect of prebonding heat treatment on the separability of Au wire from Ag-plated Cu alloy substrate,” Electronics Packaging Manufacturing, IEEE Transactions, Jan. 2002, vol. 25, Issue 1, pp. 5-12. |
Ortleb, Thomas et al., “Controlling macro and micro surface topography for a 45nm copper CMP process using a high resolution profiler,” Proc. of SPIE, 2008, vol. 6922, 11 pages. |
Paul, E. et al., “A model of copper CMP,” J. Electrochem. Soc., 2005, vol. 152, Issue 4, pp. G322-G328. |
Petition for Inter Partes Review of U.S. Pat. No. 7,485,968, IPR 2013-00381, filed Jun. 21, 2013, pp. 1-49. |
Plobi, A. et al., “Wafer direct bonding: tailoring adhesion between brittle materials,” Materials Science and Engineering Review Journal, 1999, R25, 88 pages. |
Reiche et al., “The effect of a plasma pretreatment on the Si/Si bonding behaviouir,” Electrochemical Society Proceedings, 1998, vol. 97-36, pp. 437-444. |
Rhoades, Robert L., “The Dark Art of CMP,” Future Fab International, Issue 24, 10 pages. |
Roberds et al., “Low temperature , in situ, plasma activated wafer bonding,” Electrochecmical Society Proceedings, 1997, vol. 97-36, pp. 598-606. |
Rosales-Yeomans, D. et al., “Evaluation of pad groove designs under reduced slurry flow rate conditions during copper CMP,” Journal of The Electrochemical Society, 2008, vol. 155, No. 10, pp. H812-H818. |
Schmidt, Martin A., Wafer-to-Wafer Bonding for Microstructure Formation, Proceedings of the IEEE, vol. 86, No. 8, 1998, pp. 1575-1586. |
Shigetou et al., “Cu—Cu direct bonding for bump-less interconnect,” Research Center for Advanced Science and Technolog., University of Tokyo, Optoelectronic Packaging and Solder Bumps, (2002), pp. 628-639. |
Shigetou et al., “Room temperature bonding of ultra-fine pitch and low-profiled Cu electrodes for bump-less interconnect,” 2003 Electronic Components and Technology Conference, pp. 848-852. |
Shigetou et al., “Room-temperature direct bonding of CMP-Cu film for bumpless interconnection,” Electronic Components and Technology Confererence, 51st Proceedings, 2001, IEEE, pp. 755-760. |
Shimatsu, T. et al., “Metal bonding during sputter film deposition,” J. Vac. Sci. Technol. A 16(4), 1998, pp. 2125-2131. |
Shingo et al., “Design and fabrication of an electrostatically actuated MEMS probe card,” TRANDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference, Jun. 8-12, 2003, vol. 2, pp. 1522-1525. |
Steinkirchner, J. et al., “Silicon wafer bonding via designed monolayers,” Advanced Materials, 1995, vol. 7, No. 7, 7 pages. |
Suga et al., “A new approach to Cu—Cu direct bump bonding,” IEMT/IMC Symposium, 1997, Joint International Electronic Manufacturing Symposium and the International Microelectronics Conference, Apr. 16-18, 1997, IEEE, pp. 146-151. |
Suga et al., “A new bumping process using lead-free solder paste,” Electronics Packaging Manufacturing, IEEE Transactions on (vol. 25, Issue 4), IEEE, Oct. 2002, pp. 253-256. |
Suga et al., “A new wafer-bonder of ultra-high precision using surface activated bonding (SAB) concept,” Electronic Components and Technology Conference, 2001, IEEE, pp. 1013-1018. |
Suga et al., “Bump-less interconnect for next generation system packaging,” Electronic Components and Technology Conference, 2001, IEEE, pp. 1003-1008. |
Suga et al., “Surface activated bonding—an approach to joining at room temperature,” Ceramic Transactions: Structural Ceramics Joining II, The American Ceramic Society, 1993, pp. 323-331. |
Suga et al., “Surface activated bonding for new flip chip and bumpless interconnect systems,” Electronic Components and Technology Conference, 2002, IEEE, pp. 105-111. |
Suga, “UHV room temperature joining by the surface activated bonding method,” Advances in science and technology, Techna, Faenza, Italie, 1999, pp. C1079-C1089. |
Suga, T., “Feasibility of surface activated bonding for ultra-fine pitch interconnection—A new concept of bump-less direct bonding for system level packaging,” The University of Tokyo, Research Center for Science and Technology, 2000 Electronic Components and Technology Conference, 2000 IEEE, pp. 702-705. |
Suga, T., “Room-temperature bonding on metals and ceramics,” Proceedings of the Second International Symposium on Semiconductor Wafer Bonding: Science, Technology and Applications, The Electrochemical Society Proceedings, vol. 93-29 (1993), pp. 71-80. |
Takagi et al., “Wafer-scale room-temperature bonding between silicon and ceramic wafers by means of argon-beam surface activation,” Micro Electro Mechanical Systems, 2001, MEMS 2001, The 14th IEEE International Conference, Jan. 25, 2001, IEEE, pp. 60-63. |
Takagi et al., “Effect of surface roughness on room-temperature wafer bonding by Ar beam surface activation,” Japanese Journal of Applied Physics, 1998, vol. 37, Part 1, No. 1, pp. 4197. |
Takagi et al., “Low temperature direct bonding of silicon and silicon dioxide by the surface activation method,” Solid State Sensors and Actuators, 1997, TRANSDUCERS '97 Chicago, 1997 International Conference, vol. 1, pp. 657-660. |
Takagi et al., “Room temperature silicon wafer direct bonding in vacuum by Ar beam irradiation,” Micro Electro Mehcanical Systems, MEMS '97 Proceedings, 1997, IEEE, pp. 191-196. |
Takagi et al., “Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation,” Appl. Phys. Lett., 1999. vol. 74, pp. 2387. |
Takagi et al., “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5012 by Ar-beam surface activation,” Journal of Micromechanics and Microengineering, 2001, vol. 11, No. 4, pp. 348. |
Takagi et al., “Room-temperature wafer bonding of silicon and lithium niobate by means of arbon-beam surface activation,” Integrated Ferroelectrics: An International Journal, 2002, vol. 50, Issue 1, pp. 53-59. |
Takagi et al., “Surface activated bonding silicon wafers at room temperature,” Appl. Phys. Lett. 68, 2222 (1996). |
Takagi et al., “Wafer-scale spontaneous bonding of silicon wafers by argon-beam surface activation at room temperature,” Sensors and Actuators A: Physical, Jun. 15, 2003, vol. 105, Issue 1, pp. 98-102. |
Tong et al., “Low temperature wafer direct bonding,” Journal of Microelectomechanical systems, Mar. 1994, vol. 3, No. 1, pp. 29-35. |
Tong et al., “Low temperature wafer direct bonding,” Journal of Microelectromechanical Systems, IEEE Service Center, Piscataway, NJ, vol. 3, No. 1, Mar. 1, 1994, pp. 29-35, XP-000885425, ISSN 1057-7157. |
Tong, Q.Y. et al., “Semiconductor wafer bonding,” Materials Chemistry and Physics, R25, 1999, 239 pages (exerpts). |
Tong, Q.Y. et al., “Semiconductor wafer bonding: recent developments,” Materials Chemistry and Physics, vol. 37, 1994, pp. 101-127. |
Tong, Q.Y. et al., “Semiconductor wafer bonding: science and technology,” 1999, 120 pages. |
Tong, Q.Y. et al., “Semiconductor wafer bonding: science and technology,” 1999, 159 pages. |
Tong, Q.Y. et al., “Wafer bonding and layer splitting for microsystems,” Advanced Materials, 1999, vol. 11, No. 17, pp. 1409-1425. |
Topol et al., “Enabling technologies for wafer-level bonding of 3D MEMS and integrated circuit structures,” 2004 Electronics Components and Technology Conference, 2004 IEEE, pp. 931-938. |
Tsau et al., “Fabrication process and plasticity of gold-gold thermocompression bonds,” Mater. Soc. Symp. Proc. 605, 171 (1999). |
Tsau, C.H. et al., “Characterization of low temperature wafer-level gold—gold thermocompression bonds,” Mater. Soc. Symp. Proc. 605, 1999, pp. 171-176. |
Vossen, J. et al., “Thin Film Processes II,” Academic Press, 1991, 62 pages. |
Vossen, J. et al., “Thin Film Processes,” Academic Press, 1978, 62 pages. |
Wang et al., “Reliability and microstructure of Au—Al and Au—Cu direct bonding fabricated by the Surface Activated Bonding,” Electronic Components and Technology Conference, 2002, IEEE, pp. 915-919. |
Wang et al., “Reliability of Au bump—Cu direct interconnections fabricated by means of surface activated bonding method,” Microelectronics Reliability, May 2003, vol. 43, Issue 5, pp. 751-756. |
Warner, K. et al., “Low-temperature oxide-bonded three-dimensional integrated circuits,” IEEE International SOI Conference, Oct. 2012, pp. 123-125. |
Weldon et al., “Physics and chemistry of silicon wafer bonding investigated by infrared absorption spectroscopy,” Journal of Vacuum Science & Technology B, Jul./Aug. 1996, vol. 14, No. 4, pp. 3095-3106. |
Wikipedia, “Chemical bond,” URL http://en.wikipedia.org/wiki/chemical_bond, accessed on Mar. 31, 2010, 10 pages. |
Wikipedia, “Van der Waals force,” URL https://en.wikipedia.org/wiki/Van_der_Waals_force, originally accessed on Mar. 31, 2010, 7 pages. |
Xu et al., “New Au—Al interconnect technology and its reliability by surface activated bonding,” Electronic Packaging Technology Proceedings, Oct. 28-30, 2003, Shanghai, China, pp. 479-483. |
Yablonovitch, E. et al., “Van der Waals bonding of GaAs on Pd leads to a permanent, solid-phase-topotaxial metallurgical bond,” Appl. Phys. Lett. 59, 1991, pp. 3159-3161. |
Image showing a partial cross-section of Sony IMX260 BSI image sensor from Samsung Galaxy S7; product believed to be released Mar. 2016. |
Image showing a partial cross-section of Omnivision OV16B10 16MP BSI image sensor from Huawei P20 Lite Phone; product believed to be released May 2018. |
Kumar, N. et al., “Robust TSV Via-Middle and Via-Reveal Process Integration Accomplished through Characterization and Management of Sources of Variation,” Electronic Components and Technology Conference (ECTC), 2012 IEEE 62nd, May 29, 2012-Jun. 1, 2012, pp. 787-793. |
Bush, Steve, “Electronica: Automotive power modules from On Semi,” ElectronicsWeekly.com, indicating an ONSEMI AR0820 product was to be demonstrated at a Nov. 2018 trade show, https://www.electronicsweekly.com/news/products/power-supplies/electronica-automotive-power-modules-semi-2018-11/ (published Nov. 8, 2018; downloaded Jul. 26, 2023). |
Morrison, Jim et al., “Samsung Galaxy S7 Edge Teardown,” Tech Insights (posted Apr. 24, 2016), includes description of hybrid bonded Sony IMX260 dual-pixel sensor, https://www.techinsights.com/blog/samsung-galaxy-s7-edge-teardown, downloaded Jul. 11, 2023, 9 pages. |
ONSEMI AR0820 image, cross section of a CMOS image sensor product. The part in the image was shipped on Sep. 16, 2021. Applicant makes no representation that the part in the image is identical to the part identified in the separately submitted reference BUSH, Nov. 8, 2018, ElectronicsWeekly.com (“BUSH article”); however, the imaged part and the part shown in the BUSH article share the part number “ONSEMI AR0820.”. |
SONY IMX260 image, cross section of Sony dual-pixel sensor product labeled IMX260, showing peripheral probe and wire bond pads in a bonded structure. The part in the image was shipped in Apr. 2016. Applicant makes number representation that the part in the image is identical to the part identified in the separately submitted reference Morrison et al. (Tech Insights article dated Apr. 24, 2016), describing and showing a similar sensor product within the Samsung Galaxy S7; however the imaged part and the part shown in the Morrison et al. article share the part name “SONY IMX260.” |
Number | Date | Country | |
---|---|---|---|
20220302058 A1 | Sep 2022 | US |
Number | Date | Country | |
---|---|---|---|
62846081 | May 2019 | US | |
62684505 | Jun 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16439622 | Jun 2019 | US |
Child | 17836840 | US |