Method for depositing an amorphous carbon layer

Abstract
A method of forming an integrated circuit using an amorphous carbon film. The amorphous carbon film is formed by thermally decomposing a gas mixture comprising a hydrocarbon compound and an inert gas. The amorphous carbon film is compatible with integrated circuit fabrication processes. In one integrated circuit fabrication process, the amorphous carbon film is used as a hardmask. In another integrated circuit fabrication process, the amorphous carbon film is an anti-reflective coating (ARC) for deep ultraviolet (DUV) lithography. In yet another integrated circuit fabrication process, a multi-layer amorphous carbon anti-reflective coating is used for DUV lithography.
Description




BACKGROUND OF THE DISCLOSURE




1. Field of the Invention




The present invention relates to an amorphous carbon film, its use in integrated circuit fabrication, and a method for depositing the film.




2. Description of the Background Art




Integrated circuits have evolved into complex devices that can include millions of transistors, capacitors and resistors on a single chip. The evolution of chip designs continually requires faster circuitry and greater circuit density. The demands for faster circuits with greater circuit densities impose corresponding demands on the materials used to fabricate such integrated circuits. In particular, as the dimensions of integrated circuit components are reduced (e.g., sub-micron dimensions), it has been necessary to use low resistivity conductive materials (e.g., copper) as well as low dielectric constant insulating materials (dielectric constant less than about 4.5) to improve the electrical performance of such components.




The demands for greater integrated circuit densities also impose demands on the process sequences used for integrated circuit manufacture. For example, in process sequences using conventional lithographic techniques, a layer of energy sensitive resist is formed over a stack of material layers on a substrate. An image of a pattern is introduced into the energy sensitive resist layer. Thereafter, the pattern introduced into the energy sensitive resist layer is transferred into one or more layers of the material stack formed on the substrate using the layer of energy sensitive resist as a mask. The pattern introduced into the energy sensitive resist can be transferred into one or more layers of the material stack using a chemical etchant. The chemical etchant is designed to have a greater etch selectivity for the material layers of the stack than for the energy sensitive resist. That is, the chemical etchant etches the one or more layers of the material stack at a much faster rate than it etches the energy sensitive resist. The faster etch rate for the one or more material layers of the stack typically prevents the energy sensitive resist material from being consumed prior to completion of the pattern transfer.




However, demands for greater circuit densities on integrated circuits have necessitated smaller pattern dimensions (e.g., sub-micron dimensions). As the pattern dimensions are reduced, the thickness of the energy sensitive resist must correspondingly be reduced in order to control pattern resolution. Such thinner resist layers (less than about 6000 Å) can be insufficient to mask underlying material layers during a pattern transfer step using a chemical etchant.




An intermediate oxide layer (e.g., silicon dioxide, silicon nitride), called a hardmask, is often used between the energy sensitive resist layer and the underlying material layers to facilitate pattern transfer into the underlying material layers. However, some material structures (e.g., damascene) include silicon dioxide and/or silicon nitride layers. Such material structures cannot be patterned using a silicon dioxide or silicon nitride hardmask as an etch mask.




Resist patterning problems are further compounded when lithographic imaging tools having deep ultraviolet (DUV) imaging wavelengths (e.g., less than about 250 nanometers (nm)) are used to generate the resist patterns. The DUV imaging wavelengths improve resist pattern resolution because diffraction effects are reduced at these shorter wavelengths. However, the increased reflective nature of many underlying materials (e.g., polysilicon and metal silicides) at such DUV wavelengths, can degrade the resulting resist patterns.




One technique proposed to minimize reflections from an underlying material layer uses an anti-reflective coating (ARC). The ARC is formed over the reflective material layer prior to resist patterning. The ARC suppresses the reflections off the underlying material layer during resist imaging, providing accurate pattern replication in the layer of energy sensitive resist.




A number of ARC materials have been suggested for use in combination with energy sensitive resists. For example, U S. Pat. No. 5,626,967 issued May 6, 1997 to Pramanick et al. describes the use of titanium nitride anti-reflective coatings. However, titanium nitride is increasingly metallic as the exposure wavelength is reduced below 248 nm, meaning titanium nitride has high reflectivity for DUV radiation and is not an effective anti-reflective coating for DUV wavelengths.




U.S. Pat. No. 5,710,067 issued Jan. 20, 1998 to Foote et al. discloses the use of silicon oxynitride anti-reflective films. Silicon oxynitride films are difficult to remove, in that they leave residues behind that potentially interfere with subsequent integrated circuit fabrication steps.




Therefore, a need exists in the art for a material layer useful for integrated circuit fabrication, which has good etch selectivity with oxides. Particularly desirable would be a material layer that is also an ARC at DUV wavelengths and is easy to strip.




SUMMARY OF THE INVENTION




The present invention provides a method for forming an amorphous carbon layer for use in integrated circuit fabrication. The amorphous carbon layer is formed by thermally decomposing a gas mixture comprising a hydrocarbon compound and an inert gas. The gas mixture, which may optionally include an additive gas, is introduced into a process chamber where plasma enhanced thermal decomposition of the hydrocarbon compound in close proximity to a substrate surface, results in deposition of an amorphous carbon layer on the substrate surface.




An as-deposited amorphous carbon layer, deposited according to the process of the invention, has an adjustable carbon:hydrogen ratio that ranges from about 10% hydrogen to about 60% hydrogen. The amorphous carbon layer also has a light absorption coefficient, k, that can be varied between about 0.1 to about 1.0 at wavelengths below about 250 nm, making it suitable for use as an anti-reflective coating (ARC) at DUV wavelengths.




The amorphous carbon layer is compatible with integrated circuit fabrication processes. In one integrated circuit fabrication process, the amorphous carbon layer is used as a hardmask. For such an embodiment, a preferred process sequence includes depositing an amorphous carbon layer on a substrate. After the amorphous carbon layer is deposited on the substrate, an intermediate layer is formed thereon. A pattern is defined in the intermediate layer and transferred into the amorphous carbon layer. Thereafter, the pattern is transferred into the substrate using the amorphous carbon layer as a hardmask. Additionally, the pattern defined in the amorphous carbon hardmask can be incorporated into the structure of the integrated circuit, such as for example in a damascene structure.




In another integrated circuit fabrication process, the amorphous carbon layer is used as a single layer anti-reflective coating for DUV lithography. For such an embodiment, a preferred process sequence includes forming the amorphous carbon layer on a substrate. The amorphous carbon layer has a refractive index (n) in the range of about 1.5 to 1.9 and an absorption coefficient (k) in the range of about 0.1 to about 1.0 at wavelengths less than about 250 nm. The refractive index (n) and absorption coefficient (k) for the amorphous carbon ARC are tunable, in that they can be varied in the desired range as a function of the temperature and composition of the gas mixture during layer formation. After the amorphous carbon layer is formed on the substrate, a layer of energy sensitive resist material is formed thereon. A pattern is defined in the energy sensitive resist at a wavelength less than about 250 nm. Thereafter, the pattern defined in the energy sensitive resist is transferred into the amorphous carbon layer. After the amorphous carbon layer is patterned, such pattern is optionally transferred into the substrate.




In still another integrated circuit fabrication process, a multi-layer amorphous carbon anti-reflective coating is used for DUV lithography. For such an embodiment a preferred process sequence includes forming a first amorphous carbon layer on a substrate. The first amorphous carbon layer has an index of refraction in the range of about 1.5 to about 1.9 and an absorption coefficient (k) in the range of about 0.5 to about 1.0 at wavelengths less than about 250 nm. After the first amorphous carbon layer is formed on the substrate, a second amorphous carbon layer is formed thereon. The second amorphous carbon layer has an index of refraction of about 1.5 to about 1.9 and an absorption coefficient in the range of about 0.1 to about 0.5. The refractive index (n) and absorption coefficient (k) for the first and second amorphous carbon layers are tunable, in that they can be varied in the desired range as a function of the temperature and composition of the gas mixture during layer formation. A layer of energy sensitive resist material is formed on the second amorphous carbon layer. A pattern is defined in the energy sensitive resist layer at a wavelength less than about 250 nm. The pattern defined in the energy sensitive resist material is thereafter transferred into the second amorphous carbon layer followed by the first amorphous carbon layer. After the first amorphous carbon layer is patterned, such pattern is optionally transferred into the substrate.











BRIEF DESCRIPTION OF THE DRAWINGS




The teachings of the present invention can be readily understood by considering the following detailed description in conjunction with the accompanying drawings, in which:





FIG. 1

depicts a schematic illustration of an apparatus that can be used for the practice of this invention;





FIGS. 2



a


-


2




e


depict schematic cross-sectional views of a substrate structure at different stages of integrated circuit fabrication incorporating an amorphous carbon layer as a hardmask;





FIGS. 3



a


-


3




e


depict schematic cross-sectional views of damascene structure at different stages of integrated circuit fabrication incorporating an amorphous carbon layer as a hardmask;





FIGS. 4



a


-


4




c


depict schematic cross-sectional views of substrate structure at different stages of integrated circuit fabrication incorporating an amorphous carbon layer as an anti-reflective coating (ARC); and





FIGS. 5



a


-


5




d


depict schematic cross-sectional views of a substrate structure at different stages of integrated circuit fabrication incorporating a multi-layer amorphous carbon ARC structure.











DETAILED DESCRIPTION




The present invention provides a method of forming an integrated circuit using an amorphous carbon layer. The amorphous carbon layer is formed by thermally decomposing a gas mixture comprising a hydrocarbon compound and an inert gas. The gas mixture, which may optionally include an additive gas, is introduced into a process chamber where plasma enhanced thermal decomposition of the hydrocarbon compound in close proximity to a substrate surface, results in deposition of an amorphous carbon layer on the substrate surface. The amorphous carbon layer is compatible with integrated circuit fabrication processes, discussed below.





FIG. 1

is a schematic representation of a wafer processing system


10


that can be used to perform amorphous carbon layer deposition in accordance with the present invention. This apparatus typically comprises a process chamber


100


, a gas panel


130


, a control unit


110


, along with other hardware components such as power supplies and vacuum pumps. Details of the system


10


used in the present invention are described in a commonly assigned U.S. patent application, entitled “High Temperature Chemical Vapor Deposition Chamber”, Ser. No. 09/211,998, filed on Dec. 14, 1998, and is herein incorporated by reference.




The salient features of this system


10


are briefly described below. Examples of system


10


include CENTURAO systems, PRECISION 5000® systems and PRODUCER™ systems commercially available from Applied Materials Inc., Santa Clara, Calif.




The process chamber


100


generally comprises a support pedestal


150


, which is used to support a substrate such as a semiconductor wafer


190


. This pedestal


150


can typically be moved in a vertical direction inside the chamber


100


using a displacement mechanism (not shown). Depending on the specific process, the wafer


190


can be heated to some desired temperature prior to processing. In the present invention, the wafer support pedestal


150


is heated by an embedded heater element


170


. For example, the pedestal


150


may be resistively heated by applying an electric current from an AC supply


106


to the heater element


170


. The wafer


190


is, in turn, heated by the pedestal


150


. A temperature sensor


172


, such as a thermocouple, is also embedded in the wafer support pedestal


150


to monitor the temperature of the pedestal


150


in a conventional manner. The measured temperature is used in a feedback loop to control the power supply


16


for the heating element


170


such that the wafer temperature can be maintained or controlled at a desired temperature which is suitable for the particular process application. The pedestal


150


is optionally heated using a plasma or by radiant heat (not shown).




A vacuum pump


102


, is used to evacuate the process chamber


100


and to maintain the proper gas flows and pressure inside the chamber


100


. A showerhead


120


, through which process gases are introduced into the chamber


100


, is located above the wafer support pedestal


150


. The showerhead


120


is connected to a gas panel


130


, which controls and supplies various gases used in different steps of the process sequence.




The showerhead


120


and wafer support pedestal


150


also form a pair of spaced apart electrodes. When an electric field is generated between these electrodes, the process gases introduced into the chamber


100


are ignited into a plasma. Typically, the electric field is generated by connecting the wafer support pedestal


150


to a source of radio frequency (RF) power (not shown) through a matching network (not shown). Alternatively, the RF power source and matching network may be coupled to the showerhead


120


, or coupled to both the showerhead


120


and the wafer support pedestal


150


.




Plasma enhanced chemical vapor deposition (PECVD) techniques promote excitation and/or disassociation of the reactant gases by the application of the electric field to the reaction zone near the substrate surface, creating a plasma of reactive species. The reactivity of the species in the plasma reduces the energy required for a chemical reaction to take place, in effect lowering the required temperature for such PECVD processes.




In the present embodiment, amorphous carbon layer deposition is accomplished by plasma enhanced thermal decomposition of a hydrocarbon compound such as propylene (C


3


H


6


). Propylene is introduced into the process chamber


100


under the control of gas panel


130


. The hydrocarbon compound is introduced into the process chamber as a gas with a regulated flow.




Proper control and regulation of the gas flows through the gas panel


130


is performed by mass flow controllers (not shown) and a controller unit


110


such as a computer. The showerhead


120


allows process gases from the gas panel


30


to be uniformly distributed and introduced into the process chamber


100


. Illustratively, the control unit


110


comprises a central processing unit (CPU)


112


, support circuitry


114


, and memories containing associated control software


116


. This control unit


110


is responsible for automated control of the numerous steps required for wafer processing—such as wafer transport, gas flow control, temperature control, chamber evacuation, and so on. Bi-directional communications between the control unit


110


and the various components of the apparatus


10


are handled through numerous signal cables collectively referred to as signal buses


118


, some of which are illustrated in FIG.


1


.




The heated pedestal


150


used in the present invention is made of aluminum, and comprises a heating element


170


embedded at a distance below the wafer support surface


151


of the pedestal


150


. The heating element


170


can be made of a nickel-chromium wire encapsulated in an Incoloy sheath tube. By properly adjusting the current supplied to the heating element


170


, the wafer


190


and the pedestal


150


can be maintained at a relatively constant temperature during film deposition. This is accomplished by a feedback control loop, in which the temperature of the pedestal


150


is continuously monitored by a thermocouple


172


embedded in the pedestal


150


. This information is transmitted to the control unit


110


via a signal bus


118


, which responds by sending the necessary signals to the heater power supply. Adjustment is subsequently made in the current supply


106


so as to maintain and control the pedestal


150


at a desirable temperature—i.e., a temperature that is appropriate for the specific process application. When the process gas mixture exits the showerhead


120


, plasma enhanced thermal decomposition of the hydrocarbon compound occurs at the surface


191


of the heated wafer


190


, resulting in a deposition of an amorphous carbon layer on the wafer


190


.




Amorphous Carbon Layer Formation




In one embodiment of the invention the amorphous carbon layer is formed from a gas mixture of a hydrocarbon compound and an inert gas such as argon (Ar) or helium (He). The hydrocarbon compound has a general formula C


x


H


y


, where x has a range of between 2 and 4 and y has a range of between 2 and 10. For example, propylene (C


3


H


6


), propyne (C


3


H


4


), propane (C


3


H


8


), butane (C


4


H


10


), butylene (C


4


H


8


), butadiene (C


4


H


6


), or acetelyne (C


2


H


2


) as well as combinations thereof, may be used as the hydrocarbon compound. Similarly, a variety of gases such as hydrogen (H


2


), nitrogen (N


2


), ammonia (NH


3


), or combinations thereof, among others, may be added to the gas mixture, if desired. Ar, He, and N


2


are used to control the density and deposition rate of the amorphous carbon layer. The addition of H


2


and/or NH


3


can be used to control the hydrogen ratio of the amorphous carbon layer, as discussed below.




In general, the following deposition process parameters can be used to form the amorphous carbon layer. The process parameters range from a wafer temperature of about 100° C. to about 500° C., a chamber pressure of about 1 torr to about 20 torr, a hydrocarbon gas (C


x


H


y


) flow rate of about 50 sccm to about 500 sccm (per 8 inch wafer), a RF power of between about 3 W/in


2


to about 20 W/in


2


, and a plate spacing of between about 300 mils to about 600 mils. The above process parameters provide a typical deposition rate for the amorphous carbon layer in the range of about 100 Å/min to about 1000 Å/min and can be implemented on a 200 mm substrate in a deposition chamber available from Applied Materials, Inc.




Other deposition chambers are within the scope of the invention and the parameters listed above may vary according to the particular deposition chamber used to form the amorphous carbon layer. For example, other deposition chambers may have a larger or smaller volume, requiring gas flow rates that are larger or smaller than those recited for deposition chambers available from Applied Materials, Inc.




The as-deposited amorphous carbon layer has an adjustable carbon:hydrogen ratio that ranges from about 10% hydrogen to about 60% hydrogen. Controlling the hydrogen ratio of the amorphous carbon layer is desirable for tuning its optical properties as well as its etch selectivity. Specifically, as the hydrogen ratio decreases the optical properties of the as-deposited layer such as for example, the index of refraction (n) and the absorption coefficient (k) increase. Similarly, as the hydrogen ratio decreases the etch resistance of the amorphous carbon layer increases.




The light absorption coefficient, k, of the amorphous carbon layer can be varied between about 0.1 to about 1.0 at wavelengths below about 250 nm, making it suitable for use as an anti-reflective coating (ARC) at DUV wavelengths. The absorption coefficient of the amorphous carbon layer can be varied as a function of the deposition temperature. In particular, as the temperature increases the absorption coefficient of the as-deposited layer likewise increases. For example, when propylene is the hydrocarbon compound the k value for the as-deposited amorphous carbon layers can be increased from about 0.2 to about 0.7 by increasing the deposition temperature from about 150° C. to about 480° C.




The absorption coefficient of the amorphous carbon layer can also be varied as a function of the additive used in the gas mixture. In particular, the presence of H


2


, NH


3


, N


2


or combinations thereof, in the gas mixture can increase the k value by about 10% to about 100%.




Integrated Circuit Fabrication Processes




A. Amorphous Carbon Hardmask





FIGS. 2



a-e


illustrate schematic cross-sectional views of a substrate


200


at different stages of an integrated circuit fabrication sequence incorporating an amorphous carbon layer as a hardmask. In general, the substrate


200


refers to any workpiece on which processing is performed, and a substrate structure


250


is used to generally denote the substrate


200


together with other material layers formed on the substrate


200


. Depending on the specific stage of processing, the substrate


200


may correspond to a silicon substrate, or other material layer that has been formed on the substrate.

FIG. 2



a


, for example, illustrates a cross-sectional view of a substrate structure


250


, having a material layer


202


that has been conventionally formed thereon. The material layer


202


may be an oxide (e.g., SiO


2


). In general, the substrate


200


may include a layer of silicon, silicides, metals or other materials.

FIG. 2



a


illustrates one embodiment in which the substrate


200


is silicon having a silicon dioxide layer formed thereon.





FIG. 2



b


depicts an amorphous carbon layer


204


deposited on the substrate structure


250


of

FIG. 2



a


. The amorphous carbon layer


204


is formed on the substrate structure


250


according to the process parameters described above. The thickness of the amorphous carbon layer is variable depending on the specific stage of processing. Typically, the amorphous carbon layer has a thickness in the range of about 50 Å to about 1000 Å.




Dependant on the etch chemistry of the energy sensitive resist material used in the fabrication sequence, an intermediate layer


206


is formed on the amorphous carbon layer


204


. The intermediate layer


206


functions as a mask for the amorphous carbon layer


204


when the pattern is transferred therein. The intermediate layer


206


is conventionally formed on the amorphous carbon layer


204


. The intermediate layer


206


may be an oxide, nitride, silicon oxynitride, silicon carbide, amorphous silicon or other materials.




A layer of energy sensitive resist material


208


is formed on the intermediate layer


206


. The layer of energy sensitive resist material


208


can be spin coated on the substrate to a thickness within the range of about 2000 Å to about 6000 Å. Most energy sensitive resist materials are sensitive to ultraviolet (UV) radiation having a wavelength less than about 450 nm. DUV resist materials are sensitive to UV radiation having wavelengths of 245 nm or 193 nm.




An image of a pattern is introduced into the layer of energy sensitive resist material


208


by exposing such energy sensitive resist material


208


to UV radiation via mask


210


. The image of the pattern introduced in the layer of energy sensitive resist material


208


, is developed in an appropriate developer to define the pattern through such layer as shown in

FIG. 2



c


. Thereafter, referring to

FIG. 2



d


, the pattern defined in the energy sensitive resist material


208


is transferred through both the intermediate layer


206


and the amorphous carbon layer


204


. The pattern is transferred through the intermediate layer


206


using the energy sensitive resist material


208


as a mask. The pattern is transferred through the intermediate layer


206


by etching the intermediate layer


206


using an appropriate chemical etchant. The pattern is then transferred through the amorphous carbon layer


204


using the intermediate layer


206


as a mask. The pattern is transferred through the amorphous carbon layer


204


by etching the amorphous carbon layer


204


using an appropriate chemical etchant (e.g., ozone, oxygen or ammonia plasmas).





FIG. 2



e


illustrates the completion of the integrated circuit fabrication sequence by the transfer of the pattern defined in the amorphous carbon layer


204


through the silicon dioxide layer


202


using the amorphous carbon layer


204


as a hardmask.




After the silicon dioxide layer


202


is patterned, the amorphous carbon layer


204


can optionally be stripped from the substrate


200


by etching it in an ozone, oxygen or ammonia plasma.




In a specific example of a fabrication sequence, the pattern defined in the amorphous carbon hardmask can be incorporated into the structure of the integrated circuit, such as a damascene structure. Damascene structures are typically used to form metal interconnects on integrated circuits.





FIGS. 3



a


-


3




e


illustrate schematic cross-sectional views of a substrate


260


at different stages of a damascene structure fabrication sequence incorporating an amorphous carbon layer therein. Depending on the specific stage of processing, substrate


260


may correspond to a silicon substrate, or other material layer that has been formed on the substrate.

FIG. 3



a


, for example, illustrates a cross-sectional view of a substrate


260


having a dielectric layer


262


formed thereon. The dielectric layer


262


may be an oxide (e.g., silicon dioxide, fluorosilicate glass). In general, the substrate


260


may include a layer of silicon, silicides, metals or other materials.





FIG. 3



a


illustrates one embodiment in which the substrate


260


is silicon having a fluorosilicate glass layer formed thereon. The dielectric layer


262


has a thickness of about 5,000 Å to about 10,000 Å, depending on the size of the structure to be fabricated. An amorphous carbon layer


264


is formed on the dielectric layer


262


. The amorphous carbon layer is formed on the dielectric layer


262


according to the process parameters described above. The amorphous carbon layer


264


has a thickness of about 200 Å to about 1000 Å.




Referring to

FIG. 3



b


, the amorphous carbon layer


264


is patterned and etched to define contact/via openings


266


and to expose the dielectric layer


262


, in areas where the contacts/vias are to be formed. The amorphous carbon layer


264


is patterned using conventional lithography and etched using oxygen or ammonia plasmas.




The contact/via openings


266


formed in the amorphous carbon layer


264


are than transferred into the dielectric layer


262


using the amorphous carbon layer


264


as a hard mask as shown in

FIG. 3



c


. The contacts/vias


266


are etched using reactive ion etching or other anisotropic etching techniques. After the contacts/vias


266


are transferred into the dielectric layer


262


, the amorphous carbon layer is stripped from dielectric layer


262


by etching it in an ozone, oxygen or ammonia plasma as depicted in

FIG. 3



d.






Referring to

FIG. 3



e


, a metallization structure is formed in the contacts/vias


266


using a conductive material


274


such as aluminum, copper, tungsten, or combinations thereof. Typically, copper is used to form the metallization structure due to its low resistivity (about 1.7 μΩ-cm). The conductive material


274


is deposited using chemical vapor deposition, physical vapor deposition, electroplating, or combinations thereof, to form the damascene structure. Preferably, a barrier layer


272


such as tantalum, tantalum nitride, or other suitable barrier is first deposited conformally in the metallization structure to prevent metal migration into the surrounding dielectric material layer


262


. Additionally, the dielectric layer


262


preferably has a low dielectric constant (dielectric constants less than about 4.5) so as to prevent capacitive coupling between adjacent contacts/vias


266


of the metallization structure.




B. Amorphous Carbon Anti-Reflective Coating (ARC)

FIGS. 4



a


-


4




c


illustrate schematic cross-sectional views of a substrate


300


at different stages of an integrated circuit fabrication sequence incorporating an amorphous carbon layer as an anti-reflective coating (ARC). In general, the substrate


300


refers to any workpiece on which film processing is performed, and a substrate structure


350


is used to generally denote the substrate


300


together with other material layers formed on the substrate


300


. Depending on the specific stage of processing, substrate


300


may correspond to a silicon substrate, or other material layer, which has been formed on the substrate.

FIG. 4



a


, for example, illustrates a cross-sectional view of a substrate structure


350


in which the substrate


300


is an oxide layer formed on a silicon wafer.




An amorphous carbon layer


302


is formed on the substrate


300


. The amorphous carbon layer


302


is formed on the substrate


300


according to the process parameters described above. The amorphous carbon layer has a refractive index (n) in the range of about 1.5 to 1.9 and an absorption coefficient (k) in the range of about 0.1 to about 1.0 at wavelengths less than about 250 nm making it suitable for use as an ARC at DUV wavelengths. The refractive index (n) and absorption coefficient (k) for the amorphous carbon ARC are tunable, in that they can be varied in the desired range as a function of the temperature as well as the composition of the gas mixture during layer formation. The thickness of the amorphous carbon layer is variable depending on the specific stage of processing. Typically, the amorphous carbon layer has a thickness of about 200 Å to about 1100 Å.





FIG. 4



b


depicts a layer of energy sensitive resist material


304


formed on the substrate structure


350


of

FIG. 4



a


. The layer of energy sensitive resist material can be spin coated on the substrate to a thickness within the range of about 2000 Å to about 6000 Å. The energy sensitive resist material is sensitive to DUV radiation having a wavelength less than 250 nm.




An image of a pattern is introduced into the layer of energy sensitive resist material


304


by exposing such energy sensitive resist material


304


to DUV radiation via mask


306


. The image of the pattern introduced into the layer of energy sensitive resist material


304


is developed in an appropriate developer to define the pattern through such layer. Thereafter, referring to

FIG. 4



c


, the pattern defined in the energy sensitive resist material


304


is transferred through the amorphous carbon layer


302


. The pattern is transferred through the amorphous carbon layer


302


using the energy sensitive resist material


304


as a mask. The pattern is transferred through the amorphous carbon layer


302


by etching it using an appropriate chemical etchant (e.g., ozone, oxygen or ammonia plasmas).




After the amorphous carbon


302


is patterned, such pattern is optionally transferred into the substrate


300


. Typically, when substrate


300


comprises an oxide layer on a silicon substrate, the etch selectivity of the oxide to a resist mask is about 3:1 to about 5:1. Specifically, the oxide will etch about 3 to 5 times faster than the resist.




In contrast, the amorphous carbon ARC layer of the present invention has an etch selectivity to the oxide of greater than about 10:1. That is, the oxide will etch more than 10 times faster than the amorphous carbon ARC. Thus, the amorphous carbon ARC layer also provides greater etch selectivity as a hardmask for patterning the oxide, without the added complexity of requiring an additional intermediate hardmask layer.




In an alternate embodiment, the amorphous carbon layer can have an absorption coefficient (k) that varies across the thickness of the layer. That is, the amorphous carbon layer can have an absorption coefficient gradient formed therein. Such a gradient is formed as a function of the temperature and the composition of the gas mixture during layer formation.




At any interface between two material layers, reflections can occur because of differences in their refractive indices (n) and absorption coefficients (k). When the amorphous carbon ARC has a gradient, it is possible to match the refractive indices (n) and the absorption coefficients (k) of the two material layers so there is minimal reflection and maximum transmission into the amorphous carbon ARC. Then the refractive index (n) and absorption coefficient (k) of the amorphous carbon ARC can be gradually adjusted to absorb all of the light transmitted therein.




C. Multi-Layer Amorphous Carbon Anti-Reflective Coating (ARC)





FIGS. 5



a


-


5




d


illustrate schematic cross-sectional views of a substrate


400


at different stages of an integrated circuit fabrication sequence incorporating a multi-layer amorphous carbon anti-reflective coating (ARC) structure. In general, the substrate


400


refers to any workpiece on which film processing is performed, and a substrate structure


450


is used to generally denote the substrate


400


together with other material layers formed on the substrate


400


. Depending on the specific stage of processing, substrate


400


may correspond to a silicon substrate, or other material layer, which has been formed on the substrate.

FIG. 5



a


, for example, illustrates a cross-sectional view of a substrate structure


450


in which the substrate


400


is a silicon wafer.




A first amorphous carbon layer


402


is formed on the substrate


400


. The first amorphous carbon layer


402


is formed on the substrate


400


according to the process parameters described above. The first amorphous carbon layer


402


is designed primarily for light absorption. As such, the first amorphous carbon layer


402


has an index of refraction in the range of about 1.5 to about 1.9 and an absorption coefficient (k) in the range of about 0.5 to about 1.0 at wavelengths less than about 250 nm. The thickness of the first amorphous carbon layer


402


is variable depending on the specific stage of processing. Typically, the first amorphous carbon layer


402


has a thickness in the range of about 300 Å to about 1500 Å.




A second amorphous carbon layer


404


is formed on the first amorphous carbon layer


402


. The second amorphous carbon layer


404


is also formed according to the process parameters described above. The second amorphous carbon layer


404


is designed primarily for phase shift cancellation. Specifically, the second amorphous carbon layer is designed to create reflections that cancel those generated at the interface with an overlying material layer (e.g., an energy sensitive resist material). As such, the second amorphous carbon layer


404


has an index of refraction of about 1.5 to about 1.9 and an absorption coefficient in the range of about 0.1 to about 0.5.




The thickness of the second amorphous carbon layer


404


is also variable depending on the specific stage of processing. Typically, the second amorphous carbon layer


404


has a thickness in the range of about 300 Å to about 700 Å. The refractive index (n) and the absorption coefficient (k) of the first and second amorphous carbon layers are tunable, in that they can be varied as a function of the temperature as well as the composition of the gas mixture during layer formation.




Additional amorphous carbon layers may be included in the multi-layered amorphous carbon ARC structure. For example, more than one top layer can be used to cancel reflections generated at the interface with for example, the energy sensitive resist material, while more than one bottom layer can be used to absorb light transmitted therein minimizing reflections at the interface of the multi-layered amorphous carbon ARC structure with underlying materials such as for example low dielectric constant oxides.





FIG. 5



b


depicts a layer of energy sensitive resist material


406


formed on the substrate structure


450


of

FIG. 5



a


. The layer of energy sensitive resist material can be spin coated on the substrate to a thickness within the range of about 2000 Å to about 6000 Å. The energy sensitive resist material is sensitive to DUV radiation having a wavelength less than 250 nm.




An image of a pattern is introduced into the layer of energy sensitive resist material


406


by exposing such energy sensitive resist material


406


to DUV radiation via mask


408


.




The image of the pattern introduced into the layer of energy sensitive resist material


406


is developed in an appropriate developer to define the pattern through such layer as shown in

FIG. 5



c


. Thereafter, referring to

FIG. 5



d


, the pattern defined in the energy sensitive resist


20


material


406


is transferred through both amorphous carbon layers


404


,


402


using the energy sensitive resist material


406


as a mask. The pattern is transferred through the amorphous carbon layers


404


,


402


by etching them using an appropriate chemical etchant (e.g., ozone, oxygen or ammonia plasmas). After the multi-layer ARC is patterned, such pattern is optionally transferred into the substrate.




The multi-layered amorphous carbon ARC structure described with reference to

FIGS. 5



a


-


5




d


, also provides etch selectivity as a hardmask for patterning such underlying material layers as low dielectric constant oxides, without the added complexity of requiring an additional intermediate hardmask layer, as discussed previously for the single-layer amorphous carbon ARC.




Although several preferred embodiments which incorporate the teachings of the present invention have been shown and described in detail, those skilled in the art can readily devise many other varied embodiments that still incorporate these teachings.



Claims
  • 1. A method of forming an amorphous carbon layer on a substrate comprising:positioning a substrate in a deposition chamber; providing a gas mixture to the deposition chamber, wherein the gas mixture comprises one or more hydrocarbon compounds and an inert gas; maintaining the deposition chamber at a pressure between about 1 Torr to about 20 Torr; and heating the gas mixture to thermally decompose the one or more hydrocarbon compounds in the gas mixture to form an amorphous carbon layer on the substrate.
  • 2. The method of claim 1, wherein the one or more hydrocarbon compounds in the gas mixture have the general formula CxHy, wherein x has a range of 2 to 4 and y has a range of 2 to 10.
  • 3. The method of claim 2, wherein the one or more hydrocarbon compounds is selected from the group consisting of propylene (C3H6), propyne (C3H4), propane (C3H8), butane (C4H10), butylene (C4H8), butadiene (C4H6), acetylene (C2H2) and combinations thereof.
  • 4. The method of claim 1, wherein the amorphous carbon layer has a carbon:hydrogen ratio in the range of about 10% hydrogen to about 60% hydrogen.
  • 5. The method of claim 1, wherein the inert gas is selected from the group consisting of helium, argon and combinations thereof.
  • 6. The method of claim 1, wherein the gas mixture further comprises an additive gas.
  • 7. The method of claim 6, wherein the additive gas is selected from the group consisting of ammonia, nitrogen, hydrogen, and combinations thereof.
  • 8. The method of claim 1, wherein the substrate is heated to a temperature between about 100° C. and about 500° C.
  • 9. The method of claim 1, wherein the gas mixture is provided to the deposition chamber at a flow rate in a range of about 50 sccm to about 500 sccm.
  • 10. The method of claim 1, wherein the gas mixture is heated by applying an electric field thereto.
  • 11. The method of claim 10, wherein the electric field applied the gas mixture is a radio frequency (RF) power.
  • 12. The method of claim 11, wherein the RF power is in a range of about 3 W/in2 to about 20 W/in2.
  • 13. The method of claim 1, wherein the amorphous carbon layer has an index of refraction in the range of about 1.5 to about 1.9.
  • 14. The method of claim 13, wherein the amorphous carbon layer has an absorption coefficient in the range of about 0.1 to about 1.0, at wavelengths less than about 250 nm.
  • 15. A method of forming a device, comprising:forming one or more amorphous carbon layers on a substrate by providing a gas mixture to the deposition chamber, wherein the gas mixture comprises one or more hydrocarbon compounds and an inert gas, maintaining the deposition chamber at a pressure between about 1 Torr to about 20 Torr and heating the gas mixture to thermally decompose the one or more hydrocarbon compounds in the gas mixture to form the one or more amorphous carbon layers on the substrate; defining a pattern in at least one region of the one or more amorphous carbon layers; and transferring the pattern defined in the at least one region of the one or more amorphous carbon layers into the substrate using the one or more amorphous carbon layers as a mask.
  • 16. The method of claim 15, further comprising the step of removing the one or more amorphous carbon layers from the substrate.
  • 17. The method of claim 16, wherein the one or more amorphous carbon layers are removed from the substrate using an ozone, oxygen, or NH3plasma.
  • 18. The method of claim 15, wherein the substrate has one or more material layers formed thereon.
  • 19. The method of claim 15, wherein definition of the pattern in the at least one region of the one or more amorphous carbon layers, comprises:forming a layer of energy sensitive resist material adjacent the one or more amorphous carbon layers; introducing an image of the pattern into the layer of energy sensitive resist material by exposing the energy sensitive resist material to patterned radiation; developing the image of the pattern introduced into the layer of energy sensitive resist material; and transferring the pattern through the one or more amorphous carbon layers using the layer of energy sensitive resist material as a mask.
  • 20. The method of claim 19, further comprising:forming an intermediate layer on the one or more amorphous carbon layers prior to forming the layer of energy sensitive resist thereon, introducing the image of a pattern therein, and developing the image of the pattern; transferring the image of the pattern developed in the layer of energy sensitive resist material through the intermediate layer using the energy sensitive resist material as a mask; and transferring the pattern through the one or more amorphous carbon layers using the intermediate layer as a mask.
  • 21. The method of claim 19, wherein the patterned radiation has a wavelength less than about 250 nanometers (nm).
  • 22. The method of claim 15, wherein the one or more amorphous carbon layers are anti-reflective coatings at wavelengths less than about 250 nm.
  • 23. The method of claim 22, wherein the one or more amorphous carbon layers each have an absorption coefficient in the range of about 0. 1 to about 1.0 at wavelengths less than about 250 nm.
  • 24. The method of claim 23, wherein the absorption coefficient varies across the thickness of the one or more amorphous carbon layers from about 0.1 to about 1.0.
  • 25. The method of claim 22, wherein the one or more amorphous carbon layers each have an index of refraction in the range of about 1.5 to about 1.9.
  • 26. The method of claim 15, wherein the one or more amorphous carbon layers are formed on the substrate bypositioning the substrate in a deposition chamber; providing a gas mixture to the deposition chamber, wherein the gas mixture comprises one or more hydrocarbon compounds and an inert gas; and heating the gas mixture to thermally decompose the one or more hydrocarbon compounds in the gas mixture to form the one or more amorphous carbon layers on the substrate.
  • 27. The method of claim 26, wherein the one or more hydrocarbon compounds in the gas mixture have the general formula CxHy, wherein x has a range of 2 to 4 and y has a range of 2 to 10.
  • 28. The method of claim 27, wherein the one or more hydrocarbon compounds is selected from the group consisting of propylene (C3H6), propyne (C3H4), propane (C3H8), butane (C4H10), butylene (C4H8), butadiene (C4H6), acetylene (C2H2) and combinations thereof.
  • 29. The method of claim 26, wherein the one or more amorphous carbon layers each have a carbon:hydrogen ratio in the range of about 10% hydrogen to about 60% hydrogen.
  • 30. The method of claim 26, wherein the inert gas is selected from the group consisting of helium, argon and combinations thereof.
  • 31. The method of claim 26, wherein the gas mixture further comprises an additive gas.
  • 32. The method of claim 31, wherein the additive gas is selected from the group consisting of ammonia, nitrogen, hydrogen, and combinations thereof.
  • 33. The method of claim 26, wherein the substrate is heated to a temperature between about 100° C. and about 500° C.
  • 34. The method of claim 26, wherein the gas mixture is provided to the deposition chamber at a flow rate in a range of about 50 sccm to about 500 sccm.
  • 35. The method of claim 26, wherein the gas mixture is heated by applying an electric field thereto.
  • 36. The method of claim 35, wherein the electric field applied to the gas mixture is a radio frequency (RF) power.
  • 37. The method of claim 36, wherein the RF power is in a range of about 3 W/in2 to about 20 W/in2.
  • 38. The method of claim 15, wherein the one or more amorphous carbon layers each have a thickness in the range of about 50 Å to about 1500 Å.
  • 39. A method of forming a device, comprising:forming one or more amorphous carbon layers on a substrate by providing a gas mixture to the deposition chamber, wherein the gas mixture comprises one or more hydrocarbon compounds and an inert gas, maintaining the deposition chamber at a pressure between about 1 Torr to about 20 Torr and heating the gas mixture to thermally decompose the one or more hydrocarbon compounds in the gas mixture to form the one or more amorphous carbon layers on the substrate; forming an intermediate layer on the one or more amorphous carbon layers, wherein the intermediate layer is an oxide; forming a first layer of energy sensitive resist material on the intermediate layer; introducing an image of a pattern into the layer of energy sensitive resist material by exposing the energy sensitive resist material to patterned radiation; developing the image of the pattern introduced into the layer of energy sensitive resist material; transferring the pattern to the intermediate layer using the layer of energy sensitive resist material as a mask; transferring the pattern through the one or more amorphous carbon layers using the intermediate layer as a mask; and transferring the pattern defined in the at least one region of the one or more amorphous carbon layers into the substrate using the one or more amorphous carbon layers as a mask.
  • 40. The method of claim 39, further comprising the step of removing the one or more amorphous carbon layers from the substrate.
  • 41. The method of claim 40, wherein the one or more amorphous carbon layers are removed from the substrate using an ozone, oxygen, or NH3 plasma.
  • 42. The method of claim 39, wherein the substrate has one or more material layers formed thereon.
  • 43. The method of claim 39, wherein the oxide is selected from the group consisting of silicon dioxide, silicon nitride, silicon oxynitride, silicon carbide, and amorphous silicon.
  • 44. The method of claim 39, wherein the one or more amorphous carbon layers are anti-reflective coatings at wavelengths less than about 250 nm.
  • 45. The method of claim 44, wherein the one or more amorphous carbon layers each have an index of refraction in the range of about 1.5 to about 1.9.
  • 46. The method of claim 44, wherein the one or more amorphous carbon layers each have an absorption coefficient in the range of about 0.1 to about 1.0 at wavelengths less than about 250 nm.
  • 47. The method of claim 46, wherein the absorption coefficient varies across the thickness of the one or more amorphous carbon layers from about 0.1 to about 1.0.
  • 48. A method of forming a device, comprising:forming one or more amorphous carbon layers on a substrate by providing a gas mixture to the deposition chamber, wherein the gas mixture comprises one or more hydrocarbon compounds and an inert gas, maintaining the deposition chamber at a pressure between about 1 Torr to about 20 Torr and heating the gas mixture to thermally decompose the one or more hydrocarbon compounds in the gas mixture to form the one or more amorphous carbon layers on the substrate; and defining a pattern in at least one region of the one or more amorphous carbon layers.
  • 49. The method of claim 48, further comprising transferring the pattern defined in the at least one region of the one or more amorphous carbon layers into the substrate using the one or more amorphous carbon layers as a mask.
  • 50. The method of claim 49, further comprising the step of removing the one or more amorphous carbon layers from the substrate.
  • 51. The method of claim 50, wherein the one or more amorphous carbon layers are removed from the substrate using an ozone, oxygen, or NH3 plasma.
  • 52. The method of claim 48, wherein the substrate has one or more material layers formed thereon.
  • 53. The method of claim 48, wherein definition of the pattern in the at least one region of the one or more amorphous carbon layers, comprises:forming a layer of energy sensitive resist material adjacent the one or more amorphous carbon layers; introducing an image of the pattern into the layer of energy sensitive resist material by exposing the energy sensitive resist material to patterned radiation; developing the image of the pattern introduced into the layer of energy sensitive resist material; and transferring the pattern through the one or more amorphous carbon layers using the layer of energy sensitive resist material as a mask.
  • 54. The method of claim 53, further comprising:forming an intermediate layer on the one or more amorphous carbon layers prior to forming the layer of energy sensitive resist thereon, introducing the image of a pattern therein, and developing the image of the pattern; transferring the image of the pattern developed in the layer of energy sensitive resist material through the intermediate layer using the energy sensitive resist material as a mask; and transferring the pattern through the one or more amorphous carbon layers using the intermediate layer as a mask.
  • 55. The method of claim 54, wherein the intermediate layer is an oxide.
  • 56. The method of claim 55, wherein the oxide is selected from the group consisting of silicon dioxide, silicon nitride, silicon oxynitride, silicon carbide, and amorphous silicon.
  • 57. The method of claim 53, wherein the patterned radiation has a wavelength less than about 250 nanometers (nm).
  • 58. The method of claim 48, wherein the one or more amorphous carbon layers are anti-reflective coatings at wavelengths less than about 250 nm.
  • 59. The method of claim 58, wherein the one or more amorphous carbon layers each have an absorption coefficient in the range of about 0.1 to about 1.0 at wavelengths less than about 250 nm.
  • 60. The method of claim 59, wherein the absorption coefficient varies across the thickness of the one or more amorphous carbon layers from about 0.1 to about 1.0.
  • 61. The method of claim 58, wherein the one or more amorphous carbon layers each have an index of refraction in the range of about 1.5 to about 1.9.
  • 62. The method of claim 48, wherein the one or more hydrocarbon compounds in the gas mixture have the general formula CxHy, wherein x has a range of 2 to 4 and y has a range of 2 to 10.
  • 63. The method of claim 62, wherein the one or more hydrocarbon compounds is selected from the group consisting of propylene (C3H6), propyne (C3H4), propane (C3H8), butane (C4H10), butylene (C4H8), butadiene (C4H6), acetylene (C2H2) and combinations thereof.
  • 64. The method of claim 48, wherein the one or more amorphous carbon layers each have a carbon:hydrogen ratio in the range of about 10% hydrogen to about 60% hydrogen.
  • 65. The method of claim 48, wherein the inert gas is selected from the group consisting of helium, argon and combinations thereof.
  • 66. The method of claim 48, wherein the gas mixture further comprises an additive gas.
  • 67. The method of claim 66, wherein the additive gas is selected from the group consisting of ammonia, nitrogen, hydrogen, and combinations thereof.
  • 68. The method of claim 67, wherein the electric field applied to the gas mixture is a radio frequency (RF) power.
  • 69. The method of claim 68, wherein the RF power is in a range of about 3 W/in2 to about 20 W/in2.
  • 70. The method of claim 48, wherein the substrate is heated to a temperature between about 100° C. and about 500° C.
  • 71. The method of claim 48, wherein the gas mixture is provided to the deposition chamber at a flow rate in a range of about 50 sccm to about 500 sccm.
  • 72. The method of claim 48, wherein the gas mixture is heated by applying an electric field thereto.
  • 73. The method of claim 48, wherein the one or more amorphous carbon layers each have a thickness in the range of about 50 Å to about 1500 Å.
  • 74. A method of fabricating a damascene structure, comprising:forming a dielectric layer on a substrate, wherein the dielectric layer has a dielectric constant less than about 4.5; forming an amorphous carbon layer on the dielectric layer by positioning the substrate in a deposition chamber, wherein the substrate has a dielectric layer thereon, maintaining the deposition chamber at a pressure between about 1 Torr to about 20 Torr, providing a gas mixture to the deposition chamber, wherein the gas mixture comprises one or more hydrocarbon compounds and an inert gas, and heating the gas mixture to thermally decompose the one or more hydrocarbon compounds in the gas mixture to form the amorphous carbon layer on the dielectric layer; patterning the amorphous carbon layer to define contacts/vias therethrough; transferring the pattern formed in the amorphous carbon layer through the dielectric layer to form contacts/vias therein; removing the amorphous carbon layer from the patterned dielectric layer; and filling the contacts/vias formed in the dielectric layer with a conductive material.
  • 75. The method of claim 74, wherein the conductive material filling the contacts/vias has a resistivity less than about 5 μΩ-cm.
  • 76. The method of claim 74, wherein the dielectric layer is selected from the group consisting of silicon dioxide and fluorosilicate glass.
  • 77. The method of claim 74, wherein the conductive material filling the contacts/vias is selected from the group consisting of copper, aluminum, tungsten, and combinations thereof.
  • 78. The method of claim 74, wherein the one or more hydrocarbon compounds in the gas mixture have the general formula CxHy, wherein x has a range of 2 to 4 and y has a range of 2 to 10.
  • 79. The method of claim 78, wherein the one or more hydrocarbon compounds is selected from the group consisting of propylene (C3H6), propyne (C3H4), propane (C3H8), butane (C4H10), butylene (C4H8), butadiene (C4H6), or acetelyne (C2H2) and combinations thereof.
  • 80. The method of claim 74, wherein the amorphous carbon layer has a carbon:hydrogen ratio in the range of about 10% hydrogen to about 60% hydrogen.
  • 81. The method of claim 74, wherein the inert gas is selected from the group consisting of helium, argon and combinations thereof.
  • 82. The method of claim 74, wherein the gas mixture further comprises an additive gas.
  • 83. The method of claim 82, wherein the additive gas is selected from the group consisting of ammonia, nitrogen, hydrogen, and combinations thereof.
  • 84. The method of claim 74, wherein the substrate is heated to a temperature between about 100° C. and about 500° C.
  • 85. The method of claim 74, wherein the gas mixture is provided to the deposition chamber at a flow rate in a range of about 50 sccm to about 500 sccm.
  • 86. The method of claim 74, wherein the gas mixture is heated by applying an electric field thereto.
  • 87. The method of claim 86, wherein the electric field applied to the gas mixture is a radio frequency (RF) power.
  • 88. The method of claim 87, wherein the RF power is in a range of about 3 W/in2 to about 20 W/in2.
  • 89. The method of claim 74, wherein the amorphous carbon layer has a thickness in the range of about 200 Å to about 1000 Å.
  • 90. A method of forming an amorphous carbon layer on a substrate comprising:positioning a substrate in a deposition chamber; providing a gas mixture to the deposition chamber, wherein the gas mixture comprises one or more hydrocarbon compounds and an inert gas; maintaining the deposition chamber at a pressure between about 1 Torr to about 20 Torr; and generating a plasma of the gas mixture to decompose the one or more hydrocarbon compounds in the gas mixture to form an amorphous carbon layer on the substrate.
  • 91. The method of claim 90, wherein the one or more hydrocarbon compounds in the gas mixture have the general formula CxHy, wherein x has a range of 2 to 4 and y has a range of 2 to 10.
  • 92. The method of claim 91, wherein the one or more hydrocarbon compounds is selected from the group consisting of propylene (C3H6), propyne (C3H4), propane (C3H8), butane (C4H10), butylene (C4H8), butadiene (C4H6), acetylene (C2H2) and combinations thereof.
  • 93. The method of claim 90, wherein the amorphous carbon layer has a carbon:hydrogen ratio in the range of about 10% hydrogen to about 60% hydrogen.
  • 94. The method of claim 90, wherein the inert gas is selected from the group consisting of helium, argon and combinations thereof.
  • 95. The method of claim 90, wherein the gas mixture further comprises an additive gas.
  • 96. The method of claim 95, wherein the additive gas is selected from the group consisting of ammonia, nitrogen, hydrogen, and combinations thereof.
  • 97. The method of claim 90, wherein the substrate is heated to a temperature between about 100° C. and about 500° C.
  • 98. The method of claim 90, wherein the gas mixture is provided to the deposition chamber at a flow rate in a range of about 50 sccm to about 500 sccm.
  • 99. The method of claim 90, wherein generating a plasma comprises applying a radio frequency (RF) power in a range of about 3 W/in2 to about 20 W/in2 to the processing chamber.
  • 100. The method of claim 90, wherein the amorphous carbon layer has an index of refraction in the range of about 1.5 to about 1.9.
  • 101. The method of claim 100, wherein the amorphous carbon layer has an absorption coefficient in the range of about 0.1 to about 1.0, at wavelengths less than about 250 nm.
  • 102. The method of claim 101, wherein the absorption coefficient varies across the thickness of the amorphous carbon layer from about 0.1 to about 1.0.
  • 103. The method of claim 90, further comprising defining a pattern in at least one region of the amorphous carbon layer.
  • 104. The method of claim 103, further comprising transferring the pattern defined in the at least one region of the amorphous carbon layer into the substrate using the amorphous carbon layer as a mask.
  • 105. The method of claim 104, further comprising the step of removing the amorphous carbon layer from the substrate.
  • 106. The method of claim 103, wherein the substrate has one or more material layers formed thereon.
  • 107. The method of claim 103, wherein defining the pattern in the at least one region of the amorphous carbon layer comprises:forming a layer of energy sensitive resist material adjacent the amorphous carbon layer; introducing an image of the pattern into the layer of energy sensitive resist material by exposing the energy sensitive resist material to patterned radiation; developing the image of the pattern introduced into the layer of energy sensitive resist material; and transferring the pattern through the amorphous carbon layer using the layer of energy sensitive resist material as a mask.
  • 108. The method of claim 107, further comprising:forming an intermediate layer on the amorphous carbon layer prior to forming the layer of energy sensitive resist thereon, introducing the image of a pattern therein, and developing the image of the pattern; transferring the image of the pattern developed in the layer of energy sensitive resist material through the intermediate layer using the energy sensitive resist material as a mask; and transferring the pattern through the amorphous carbon layer using the intermediate layer as a mask.
  • 109. The method of claim 108, wherein the intermediate layer is an oxide.
  • 110. The method of claim 109, wherein the oxide is selected from the group consisting of silicon dioxide, silicon nitride, silicon oxynitride, silicon carbide, and amorphous silicon.
  • 111. The method of claim 107, wherein the patterned radiation has a wavelength less than about 250 nanometers (nm).
  • 112. The method of claim 103, wherein the amorphous carbon layer is removed from the substrate using an ozone, oxygen, or NH3 plasma.
  • 113. The method of claim 103, wherein the amorphous carbon layer is anti-reflective coatings at wavelengths less than about 250 nm.
  • 114. The method of claim 90, wherein the amorphous carbon layer has a thickness in the range of about 50 Å to about 1500 Å.
  • 115. A method of fabricating a damascene structure, comprising:forming a dielectric layer on a substrate; forming an amorphous carbon layer on the dielectric layer by positioning the substrate in a deposition chamber, wherein the substrate has a dielectric layer thereon, providing a gas mixture to the deposition chamber, wherein the gas mixture comprises one or more hydrocarbon compounds and an inert gas, maintaining the deposition chamber at a pressure between about 1 Torr to about 20 Torr, and generating a plasma of the gas mixture to decompose the one or more hydrocarbon compounds in the gas mixture to form an amorphous carbon layer on the substrate; patterning the amorphous carbon layer to define contacts/vias therethrough; transferring the pattern formed in the amorphous carbon layer through the dielectric layer to form contacts/vias therein; removing the amorphous carbon layer from the patterned dielectric layer; and filling the contacts/vias formed in the dielectric layer with a conductive material.
  • 116. The method of claim 115, wherein the dielectric layer has a dielectric constant less than about 4.5.
  • 117. The method of claim 115, wherein the conductive material filling the contacts/vias has a resistivity less than about 5 μΩ-cm.
  • 118. The method of claim 115, wherein the dielectric layer is selected from the group consisting of silicon dioxide and fluorosilicate glass.
  • 119. The method of claim 115, wherein the conductive material filling the contacts/vias is selected from the group consisting of copper, aluminum, tungsten, and combinations thereof.
  • 120. The method of claim 115, wherein the one or more hydrocarbon compounds in the gas mixture have the general formula CxHy, wherein x has a range of 2 to 4 and y has a range of 2 to 10.
  • 121. The method of claim 115, wherein the one or more hydrocarbon compounds is selected from the group consisting of propylene (C3H6), propyne (C3H4), propane (C3H8), butane (C4H10), butylene (C4H8), butadiene (C4H6), acetylene (C2H2) and combinations thereof.
  • 122. The method of claim 115, wherein the amorphous carbon layer has a carbon:hydrogen ratio in the range of about 10% hydrogen to about 60% hydrogen.
  • 123. The method of claim 115, wherein the inert gas is selected from the group consisting of helium, argon and combinations thereof.
  • 124. The method of claim 115, wherein the gas mixture further comprises an additive gas.
  • 125. The method of claim 124, wherein the additive gas is selected from the group consisting of ammonia, nitrogen, hydrogen, and combinations thereof.
  • 126. The method of claim 115, wherein the substrate is heated to a temperature between about 100° C. and about 500° C.
  • 127. The method of claim 115, wherein the gas mixture is provided to the deposition chamber at a flow rate in a range of about 50 sccm to about 500 sccm.
  • 128. The method of claim 115, wherein generating a plasma comprises applying a radio frequency (RF) power in a range of about 3 W/in2 to about 20 W/in 2 to the processing chamber.
  • 129. The method of claim 115, wherein the amorphous carbon layer has a thickness in the range of about 200 Å to about 1000 Å.
Parent Case Info

This application claims the benefit of U.S. Provisional Application No. 60/183,507 filed on Feb. 17, 2000, which is herein incorporated by reference.

US Referenced Citations (61)
Number Name Date Kind
4486286 Lewin et al. Dec 1984 A
4717622 Kurokawa et al. Jan 1988 A
4782380 Shankar et al. Nov 1988 A
4789648 Chow et al. Dec 1988 A
4957591 Sato et al. Sep 1990 A
5087959 Omori et al. Feb 1992 A
5121706 Nichols et al. Jun 1992 A
5221414 Langley et al. Jun 1993 A
5232871 Ho Aug 1993 A
5246884 Jaso et al. Sep 1993 A
5360491 Carey et al. Nov 1994 A
5397558 Miyanaga et al. Mar 1995 A
5470661 Bailey et al. Nov 1995 A
5549935 Nguyen et al. Aug 1996 A
5559367 Cohen et al. Sep 1996 A
5589233 Law et al. Dec 1996 A
5635423 Huang et al. Jun 1997 A
5679267 Belcher et al. Oct 1997 A
5691010 Kuramoto et al. Nov 1997 A
5710067 Foote et al. Jan 1998 A
5720808 Hirabayashi et al. Feb 1998 A
5744865 Jeng et al. Apr 1998 A
5750316 Kawamura et al. May 1998 A
5773199 Linliu et al. Jun 1998 A
5780874 Kudo Jul 1998 A
5789320 Andricacos et al. Aug 1998 A
5795648 Goel et al. Aug 1998 A
5804259 Robles Sep 1998 A
5824365 Sandhu et al. Oct 1998 A
5830332 Babich et al. Nov 1998 A
5837331 Menu et al. Nov 1998 A
5900288 Kuhman et al. May 1999 A
5930655 Cooney, III et al. Jul 1999 A
5930669 Uzoh Jul 1999 A
5942328 Grill et al. Aug 1999 A
5989623 Chen et al. Nov 1999 A
5989998 Sugahara et al. Nov 1999 A
6007732 Hashimoto et al. Dec 1999 A
6020458 Lee et al. Feb 2000 A
6030904 Grill et al. Feb 2000 A
6033979 Endo Mar 2000 A
6043167 Lee et al. Mar 2000 A
6048786 Kudo Apr 2000 A
6057227 Harvey May 2000 A
6066577 Cooney, III et al. May 2000 A
6078133 Menu et al. Jun 2000 A
6127263 Parikh Oct 2000 A
6140224 Lin Oct 2000 A
6140226 Grill et al. Oct 2000 A
6147407 Jin et al. Nov 2000 A
6153935 Edelstein et al. Nov 2000 A
6183930 Ueda et al. Feb 2001 B1
6184572 Mountsier et al. Feb 2001 B1
6203898 Kohler et al. Mar 2001 B1
6211065 Xi et al. Apr 2001 B1
6214637 Kim et al. Apr 2001 B1
6214730 Cooney, III et al. Apr 2001 B1
6228439 Watanabe et al. May 2001 B1
6235629 Takenaka May 2001 B1
6291334 Somekh Sep 2001 B1
6323119 Xi et al. Nov 2001 B1
Foreign Referenced Citations (10)
Number Date Country
0 224 013 Jun 1987 EP
0 387 656 Sep 1990 EP
0 701 283 Mar 1993 EP
0 540 444 May 1993 EP
0 560 617 Sep 1993 EP
0 696 819 Feb 1996 EP
0 768 388 Apr 1997 EP
2299345 Oct 1996 GB
02-135736 (ABS) May 1990 JP
9933102 Jul 1999 WO
Non-Patent Literature Citations (16)
Entry
Tue Nguyen, Bruce D. Ulrich, Lynn R. Allen and David R. Evans, “A Novel Damascene Process for One Mask Via/Interconnect Formation,” 1996 Symposium on VLSI Technology Digest of Technical Papers, pp. 118-19.
European PCT International Search Report Dated Mar. 3, 1999.
IBM Technical Disclosure Bulletin, “Damascene: Optimized Etch Stop Structure and Method,” vol. 36 No. 11 Nov. 1993, p. 649.
S. Lakshminarayanan, J. Steigerwald, D. T. Price, M. Bourgeois, T. P. Chow, “Contact and Via Structures with Copper Interconnects Fabricated Using Dual Damascene Technology,” Electron Device Letters, vol. 15, No. 8 Aug. 1994, pp. 307-309.
Rajiv V. Joshi, “A New Damascene Structure for Submicrometer Interconnect Wiring,” Electron Device Letters, vol. 14, No. 3, Mar. 1993, pp. 129-132.
Howard Landis, Peter Burke, William Cote, William Hill, Cheryl Hoffman, Carter Kaanta, Charles Koburger, Walter Lange, Michael Leach and Stephen Luce, “Integration of chemical -mechanical polishing into CMOS integrated circuit manufacturing,” Thin Solid Films, 220 (1992), pp. 1-7.
Carter W. Kaanta, Susuan G. Bombardier, William J. Cote, William R. Hill, Gloria Kerszykowski, Howard S. Landis, Dan J. Poindexter, Curtis W. Pollard, Gilbert H. Ross, James G. Ryan, Stuart Wolff, John E. Cronin, “Dual Damascene: A Ulsi Wiring Technology,” Jun. 11-12, 1991 VMIC Conference, pp. 144-152.
T. Licata, M. Okazaki, M. Ronay, W. Landers, T. Ohiwa, H. Poetzlberger, H. Aochi, D. Dobuzinsky, R. Filippi, D. Restaino, D. Knorr, J. Ryan, “Dual Damascene Al Wiring for 256M DRAM,” Jun. 27-29, 1995 VMIC Conference, pp. 596-602.
CRC Handbook of Chemistry and Physics, 79th Edition (1998-1999), pp. 12-49 and 12-55.
Grill et al., “Diamondlike Carbon Films by RF Plasma-Assisted Chemical Vapor Deposition From Acetylene”, IBM Journal of Research and Development, 34(6), 1990, pp. 849-857.
PCT International Preliminary Examination Report dated Feb. 15, 2000.
Matsubara, et al., “Low-k Fluorinated Amorphous Carbon Interlayer Technology for Quarter Micron Devices”, IEDM (1996), pp. 369-372.
Robles, et al., “Characterization of High Density Plasma Chemial Vapor Deposited α-Carbon and αFluorinated Carbon Films For Ultra Low Dielectric Applications”, Int'l. Dielectrics for ULSI Multilevel Interconnection Conf. (1997), 8 pages.
Grill, et al., “Diamondlike Carbon Materials as Low-k Dielectrics for Multilevel Interconnects in ULSI”, J. Electrochem. Soc. 145 (5) (1998).
Endo, et al., “Preparation and Properties of Fluorinated Amorphous Carbon Thin Films by Plasma Enhanced Chemical Vapor Deposition”, Mat. Res. Symp. Proc. vol. 381, Materials Research Society (1995), pp. 249-254.
Takeishi, et al., “Fluorocarbon Films deposited by PECVD with High thermal resistance and Low Dielectric Constants”, Semiconductor World 16 (2) (1997), pp. 71-77.
Provisional Applications (1)
Number Date Country
60/183507 Feb 2000 US