Various embodiments of a method of forming a solder joint are described herein. In particular, the embodiments described herein relate to a method of forming a solder joint with improved process control and superior solder joint reliability.
Solder is frequently used in the production of electronic components to join integrated circuit modules or chip carriers to circuit cards or circuit boards. For example, solder may be used to connect conductive metal pins from a module to the conductive circuit lines of a circuit card. It is known to apply solder to the components in the form of a solder preform or a solder paste. A solder preform is a solid composition of solder or braze material fabricated to the shape and dimensions required to contact the desired locations of each of the components to be joined. The preform is placed in proper position and subsequently heated to cause the solder to flow, or “reflow,” and physically join the components.
Solder paste is a composition of a solder powder in one or more liquid solvents or binders. The paste is screened on to the components, dried, and heated to reflow the solder and join the two components. For both preforms and pastes, a liquid flux is typically used to deoxidize the metal surfaces of the components to cause them to accept the solder.
The use of a conventional liquid flux results in flux residues left behind on the surface of the components after soldering. For example, a common flux such as waterwhite rosin leaves a metal salt residue abietate formed when the abietic acid in the rosin reacts with oxides on the metal surfaces of the components. Where the residue contacts the metal surfaces of the components, it will cause detrimental galvanic corrosion upon the passage of electrical current in normal use. Thus, the residue must be removed from the components after soldering and before electrical use.
Another problem associated with that of soldering electronic components is that of precision. To assure that proper electrical connections, electrical components must often be joined according to tight dimensional tolerances. Solder preforms are inherently difficult to use in such applications because precision is limited by the accuracy by which the preform is placed upon the components, and fixtures must be used to hold the electrical components, circuit modules, or chip carriers to circuit cards or circuit boards during the solder reflow process.
Micro electro mechanical systems (MEMS) are a class of systems that are physically small, having some features or clearances with sizes in the micrometer range or smaller (i.e., smaller than about 10 microns). These systems have both electrical and mechanical components. The term “micro machining” is commonly understood to mean the production of three-dimensional structures and moving parts of MEMS devices. MEMS originally used modified integrated circuit (e.g., computer chip) fabrication techniques (such as chemical etching) and materials (such as silicon semiconductor material) to micro machine these very small mechanical devices. Today there are many more micro machining techniques and materials available. The term “MEMS device” as may be used in this application is defined as a device that includes a micro machined component having some features or clearances with sizes in the micrometer range, or smaller (i.e., smaller than about 10 microns). It should be noted that if components other than the micro machined component are included in the MEMS device, these other components may be micro machined components or standard sized (i.e., larger) components. Similarly, the term “microvalve” as may be used in this application means a valve having features or clearances with sizes in the micrometer range, or smaller (i.e., smaller than about 10 microns) and thus by definition is at least partially formed by micro machining. The term “microvalve device” as may be used herein means a device that includes a microvalve, and that may include other components. It should be noted that if components other than a microvalve are included in the microvalve device, these other components may be micro machined components or standard sized (i.e., larger) components. The term “MEMS package” as used herein should be understood to mean a device, which includes a micromachined component and may include other components that may be micromachined components or standard sized components. A “MEMS fluidic package” should be understood to be a MEMS package including a fluid passageway. A “MEMS electrofluidic package” as used herein should be understood to be a MEMS package including a fluid passageway and an electrically active component that may be a micromachined component. A “MEMS package platform” as used herein should be understood to be an interface component or assembly of components upon which a MEMS device may be mounted and by means of which the MEMS device can be interfaced with an external system.
Many MEMS devices may be made of multiple layers (or substrates) of material, which may be micromachined to form components of the MEMS device prior to assembly of the multiple layers into a completed MEMS device. For example, such a MEMS device may be manufactured using suitable MEMS fabrication techniques, such as the fabrication techniques disclosed in U.S. Pat. No. 6,761,420, the disclosures of which are incorporated herein by reference; U.S. Pat. No. 7,367,359, the disclosures of which are incorporated herein by reference; Klassen, E. H. et al. (1995). “Silicon Fusion Bonding and Deep Reactive Ion Etching: A New Technology for Microstructures,” Proc. Transducers 95 Stockholm Sweden, pp. 556-559, the disclosures of which are incorporated herein by reference; and Petersen, K. E. et al. (Jun. 1991). “Surface Micromachined Structures Fabricated with Silicon Fusion Bonding”, “Proceedings, Transducers” 91, pp. 397-399, the disclosures of which are incorporated herein by reference.
Flux and/or flux residue may undesirably coat the internal moving components of the MEMS device when a MEMS device is attached to a substrate using known soldering processes.
The above notwithstanding, there remains a need in the art for an improved method of forming a solder joint.
The present application describes various embodiments of a method of forming a solder joint. In one embodiment, a method of soldering an electrical component to a substrate includes dispensing solder paste onto a substrate. Solder preform is then urged into contact with the solder paste. An aperture is formed through the solder preform, such that solder paste is urged through the aperture. An electrical component is then urged into contact with the solder preform and into contact with the solder paste that has been urged through the aperture, thereby bonding the electrical component, the solder preform, and the substrate together.
Other advantages of the method of forming a solder joint will become apparent to those skilled in the art from the following detailed description, when read in light of the accompanying drawings.
The present invention will now be described with occasional reference to the specific embodiments of the invention. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth as used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless otherwise indicated, the numerical properties set forth in the specification and claims are approximations that may vary depending on the desired properties sought to be obtained in embodiments of the present invention. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical values, however, inherently contain certain errors necessarily resulting from error found in their respective measurements.
Referring now to the Figures, there is shown in
In the illustrated embodiment, the substrate 14 is formed from metal, such as brass. Alternatively, the substrate 14 may be formed from any other desired metal or non-metal.
In a first step of the method 10, solder paste 16 is applied to a first or upper surface 14U of the substrate 14. In the illustrated embodiment, the solder paste 16 is applied using a screen printing process. The screen printing process is used to apply uniformly thick deposits of solder paste 16 at one or more discrete locations on the substrate 14. Such screen printing of the solder paste 16 provides precise control of the volume and pattern of the solder paste 16 at the desired discrete locations.
The solder paste 16 may be any desired solder paste. As used herein, “solder paste” is defined as a homogenous mixture of solder alloy powder and a flux system. The solder paste 16 should have characteristics that provide good printing and dispensing, and exhibit good reflow characteristics. Examples of solder pastes that have been found to be suitable in some applications to practice the method described herein include tin-lead and indium-lead solder pastes, such as manufactured by Indium Corporation, which has an office in Clinton, New York.
In a second step of the method 10, an engineered solder preform 18 is deposited on the screen printed layer of solder paste 16. As used herein,_a “solder preform” is defined as a solid composition of solder or braze material fabricated to the shape and dimensions required to contact the desired locations of each of the components to be joined. Solder preforms contain precise and predetermined quantities of an alloy or pure metal, such as lead-tin or lead-indium.
As best shown in
Referring now to
The solder preform 18, 24 is then urged into contact with the solder paste 16 such that a limited amount of solder paste 16 is urged through the apertures 20 and notches 22. As used herein, the phrase “limited amount of solder paste” is defined as a quantity of solder paste approximating the minimum amount of solder paste needed to develop the mechanical properties required to hold components, such as the electrical component 12 and the substrate 14 in the spatial relationship into which they are assembled when subjected to ordinary handling during a manufacturing process that includes a subsequent soldering operation and/or a subsequent reflow operation. As described herein, the limited amount of solder paste 16 that is urged through the apertures 20 and notches 22 is sufficient to fill and at least partially spill over the edges of the apertures 20 and notches 22.
In a third step of the method 10, the electrical component 12 is urged into contact with the solder preform 18 and into contact with the solder paste 16 that has been urged through the apertures 20 and notches 22. The tacky solder paste 16 preliminarily bonds the electrical component 12, the solder preform 18, and the substrate 14 together to define a reflow subassembly 28, as shown in
In a fourth step (not shown) of the method 10, the reflow subassembly 28 is moved to a source of heat where the electrical component 12, the solder preform 18, and the substrate 14 of the reflow subassembly 28 are bonded together in a reflow operation.
Advantageously, because the tacky solder paste 16 bonds the electrical component 12, the solder preform 18, and the substrate 14 together prior to a reflow operation, no fixtures are required to hold the reflow subassembly 28 together.
Further, flux within the limited amount of solder paste 16 that has been urged through the apertures 20 and notches 22 provides sufficient, but not excessive, flux to a first or upper surface 18U of the solder preform 18. Such improved delivery of flux (within the solder paste 16) to the interface of the solder preform 18 and the electrical component 12, provides increased strength of the solder joint relative to other known methods of solder fortification.
Additionally, unlike known methods of solder fortification, additional adhesive material may not be required between the solder preform 18 and the electrical component 12.
It will be understood that the embodiments of the inventive method described herein is useful for components with internal moving components that may be exposed to the solder paste during assembly. The inventive method limits contamination of such internal moving components with flux from the solder paste, which may cause sticking of the moving components. The embodiments of the inventive method are also useful for components without internal moving components, such as microprocessor chips and memory chips since this method can be easily automated for manufacturing highly reliable solder joints.
The principle and mode of operation of the method of forming a solder joint have been described in its preferred embodiment. However, it should be noted that the method of forming a solder joint described herein may be practiced otherwise than as specifically illustrated and described without departing from its scope.
Number | Name | Date | Kind |
---|---|---|---|
668202 | Nethery | Feb 1901 | A |
886045 | Ehrlich et al. | Apr 1908 | A |
1886205 | Lyford | Nov 1932 | A |
1926031 | Boynton | Sep 1933 | A |
2412205 | Cook | Dec 1946 | A |
2504055 | Thomas | Apr 1950 | A |
2651325 | Lusignan | Sep 1953 | A |
2840107 | Campbell | Jun 1958 | A |
2875779 | Campbell | Mar 1959 | A |
3031747 | Green | May 1962 | A |
3540218 | Finn | Nov 1970 | A |
3729807 | Fujiwara | May 1973 | A |
3747628 | Holster et al. | Jul 1973 | A |
3860949 | Stoeckert et al. | Jan 1975 | A |
4005454 | Froloff et al. | Jan 1977 | A |
4019388 | Hall, II et al. | Apr 1977 | A |
4023725 | Ivett et al. | May 1977 | A |
4100236 | Gordon et al. | Jul 1978 | A |
4152540 | Duncan et al. | May 1979 | A |
4181249 | Peterson et al. | Jan 1980 | A |
4298023 | McGinnis | Nov 1981 | A |
4341816 | Lauterbach et al. | Jul 1982 | A |
4354527 | McMillan | Oct 1982 | A |
4434813 | Mon | Mar 1984 | A |
4476893 | Schwelm | Oct 1984 | A |
4543875 | Imhof | Oct 1985 | A |
4581624 | O'Connor | Apr 1986 | A |
4593719 | Leonard et al. | Jun 1986 | A |
4628576 | Giachino et al. | Dec 1986 | A |
4647013 | Giachino et al. | Mar 1987 | A |
4661835 | Gademann et al. | Apr 1987 | A |
4687419 | Suzuki et al. | Aug 1987 | A |
4752027 | Gschwend | Jun 1988 | A |
4772935 | Lawler et al. | Sep 1988 | A |
4774760 | Seaman et al. | Oct 1988 | A |
4821997 | Zdeblick | Apr 1989 | A |
4824073 | Zdeblick | Apr 1989 | A |
4826131 | Mikkor | May 1989 | A |
4828184 | Gardner et al. | May 1989 | A |
4842184 | Miller, Jr. | Jun 1989 | A |
4869282 | Sittler et al. | Sep 1989 | A |
4938742 | Smits | Jul 1990 | A |
4943032 | Zdeblick | Jul 1990 | A |
4946350 | Suzuki et al. | Aug 1990 | A |
4959581 | Dantlgraber | Sep 1990 | A |
4966646 | Zdeblick | Oct 1990 | A |
5000009 | Clanin | Mar 1991 | A |
5029805 | Albarda et al. | Jul 1991 | A |
5037778 | Stark et al. | Aug 1991 | A |
5050838 | Beatty et al. | Sep 1991 | A |
5054522 | Kowanz et al. | Oct 1991 | A |
5058856 | Gordon et al. | Oct 1991 | A |
5061914 | Busch et al. | Oct 1991 | A |
5064165 | Jerman | Nov 1991 | A |
5065978 | Albarda et al. | Nov 1991 | A |
5066533 | America et al. | Nov 1991 | A |
5069419 | Jerman | Dec 1991 | A |
5074629 | Zdeblick | Dec 1991 | A |
5082242 | Bonne et al. | Jan 1992 | A |
5096643 | Kowanz et al. | Mar 1992 | A |
5116457 | Jerman | May 1992 | A |
5131729 | Wetzel | Jul 1992 | A |
5133379 | Jacobsen et al. | Jul 1992 | A |
5142781 | Mettner et al. | Sep 1992 | A |
5161774 | Engelsdorf et al. | Nov 1992 | A |
5169472 | Goebel | Dec 1992 | A |
5176358 | Bonne et al. | Jan 1993 | A |
5177579 | Jerman | Jan 1993 | A |
5178190 | Mettner | Jan 1993 | A |
5179499 | MacDonald et al. | Jan 1993 | A |
5180623 | Ohnstein | Jan 1993 | A |
5197517 | Perera | Mar 1993 | A |
5209118 | Jerman | May 1993 | A |
5215244 | Buchholz et al. | Jun 1993 | A |
5216273 | Doering et al. | Jun 1993 | A |
5217283 | Watanabe | Jun 1993 | A |
5222521 | Kihlberg | Jun 1993 | A |
5238223 | Mettner et al. | Aug 1993 | A |
5242097 | Socha | Sep 1993 | A |
5244537 | Ohnstein | Sep 1993 | A |
5267589 | Watanabe | Dec 1993 | A |
5271431 | Mettner et al. | Dec 1993 | A |
5271597 | Jerman | Dec 1993 | A |
5309943 | Stevenson et al. | May 1994 | A |
5323999 | Bonne et al. | Jun 1994 | A |
5325880 | Johnson et al. | Jul 1994 | A |
5333831 | Barth et al. | Aug 1994 | A |
5336062 | Richter | Aug 1994 | A |
5355712 | Petersen et al. | Oct 1994 | A |
5368704 | Madou et al. | Nov 1994 | A |
5373984 | Wentworth | Dec 1994 | A |
5375919 | Furuhashi | Dec 1994 | A |
5400824 | Gschwendtner et al. | Mar 1995 | A |
5417235 | Wise et al. | May 1995 | A |
5445185 | Watanabe et al. | Aug 1995 | A |
5458405 | Watanabe | Oct 1995 | A |
5543349 | Kurtz et al. | Aug 1996 | A |
5553790 | Findler et al. | Sep 1996 | A |
5566703 | Watanabe et al. | Oct 1996 | A |
5577533 | Cook, Jr. | Nov 1996 | A |
5589422 | Bhat | Dec 1996 | A |
5611214 | Wegeng et al. | Mar 1997 | A |
5785295 | Tsai | Jul 1998 | A |
5796169 | Dockerty et al. | Aug 1998 | A |
5810325 | Carr | Sep 1998 | A |
5820014 | Dozier et al. | Oct 1998 | A |
5838351 | Weber | Nov 1998 | A |
5848605 | Bailey et al. | Dec 1998 | A |
5856705 | Ting | Jan 1999 | A |
5873385 | Bloom et al. | Feb 1999 | A |
5908098 | Gorman et al. | Jun 1999 | A |
5909078 | Wood et al. | Jun 1999 | A |
5924622 | Davis et al. | Jul 1999 | A |
5926955 | Kober | Jul 1999 | A |
5941608 | Campau et al. | Aug 1999 | A |
5954079 | Barth et al. | Sep 1999 | A |
5955817 | Dhuler et al. | Sep 1999 | A |
5970998 | Talbot et al. | Oct 1999 | A |
5994816 | Dhuler et al. | Nov 1999 | A |
6019437 | Barron et al. | Feb 2000 | A |
6023121 | Dhuler et al. | Feb 2000 | A |
6038928 | Maluf et al. | Mar 2000 | A |
6041650 | Swindler et al. | Mar 2000 | A |
6095400 | Liu | Aug 2000 | A |
6096149 | Hetrick et al. | Aug 2000 | A |
6105737 | Weigert et al. | Aug 2000 | A |
6114794 | Dhuler et al. | Sep 2000 | A |
6116863 | Ahn et al. | Sep 2000 | A |
6123316 | Biegelsen et al. | Sep 2000 | A |
6124663 | Haake et al. | Sep 2000 | A |
6171972 | Mehregany et al. | Jan 2001 | B1 |
6182742 | Takahashi et al. | Feb 2001 | B1 |
6224445 | Neukermans et al. | May 2001 | B1 |
6255757 | Dhuler et al. | Jul 2001 | B1 |
6279606 | Hunnicutt et al. | Aug 2001 | B1 |
6283441 | Tian | Sep 2001 | B1 |
6318101 | Pham et al. | Nov 2001 | B1 |
6321549 | Reason et al. | Nov 2001 | B1 |
6386507 | Dhuler et al. | May 2002 | B2 |
6390782 | Booth et al. | May 2002 | B1 |
6408876 | Nishimura et al. | Jun 2002 | B1 |
6494804 | Hunnicutt et al. | Dec 2002 | B1 |
6505811 | Barron et al. | Jan 2003 | B1 |
6520197 | Deshmukh et al. | Feb 2003 | B2 |
6523560 | Williams et al. | Feb 2003 | B1 |
6533366 | Barron et al. | Mar 2003 | B1 |
6540203 | Hunnicutt | Apr 2003 | B1 |
6581640 | Barron | Jun 2003 | B1 |
6637722 | Hunnicutt | Oct 2003 | B2 |
6653124 | Freeman | Nov 2003 | B1 |
6662581 | Hirota et al. | Dec 2003 | B2 |
6694998 | Hunnicutt | Feb 2004 | B1 |
6724718 | Shinohara et al. | Apr 2004 | B1 |
6755761 | Hunnicutt et al. | Jun 2004 | B2 |
6761420 | Fuller et al. | Jul 2004 | B2 |
6786391 | Stipp et al. | Sep 2004 | B2 |
6845962 | Barron et al. | Jan 2005 | B1 |
6848610 | Liu | Feb 2005 | B2 |
6872902 | Cohn et al. | Mar 2005 | B2 |
6902988 | Barge et al. | Jun 2005 | B2 |
6958255 | Khuri-Yakub et al. | Oct 2005 | B2 |
6966329 | Liberfarb | Nov 2005 | B2 |
7011378 | Maluf et al. | Mar 2006 | B2 |
7063100 | Liberfarb | Jun 2006 | B2 |
7210502 | Fuller et al. | May 2007 | B2 |
7367359 | Maluf et al. | May 2008 | B2 |
7372074 | Milne et al. | May 2008 | B2 |
7449413 | Achuthan et al. | Nov 2008 | B1 |
7452800 | Sosnowchik et al. | Nov 2008 | B2 |
8061578 | Hartnett et al. | Nov 2011 | B2 |
8113448 | Keating | Feb 2012 | B2 |
8113482 | Hunnicutt | Feb 2012 | B2 |
8156962 | Luckevich | Apr 2012 | B2 |
20020014106 | Srinivasan et al. | Feb 2002 | A1 |
20020029814 | Unger et al. | Mar 2002 | A1 |
20020096421 | Cohn et al. | Jul 2002 | A1 |
20020100714 | Staats | Aug 2002 | A1 |
20020168780 | Liu et al. | Nov 2002 | A1 |
20020174891 | Maluf et al. | Nov 2002 | A1 |
20030061889 | Tadigadapa et al. | Apr 2003 | A1 |
20030096081 | Lavallee et al. | May 2003 | A1 |
20030098612 | Maluf et al. | May 2003 | A1 |
20030159811 | Nurmi | Aug 2003 | A1 |
20030206832 | Thiebaud et al. | Nov 2003 | A1 |
20040115905 | Barge et al. | Jun 2004 | A1 |
20040219072 | Yamakawa et al. | Nov 2004 | A1 |
20050121090 | Hunnicutt | Jun 2005 | A1 |
20050200001 | Joshi et al. | Sep 2005 | A1 |
20050205136 | Freeman | Sep 2005 | A1 |
20060017125 | Lee et al. | Jan 2006 | A1 |
20060067649 | Tung et al. | Mar 2006 | A1 |
20060218953 | Hirota | Oct 2006 | A1 |
20070251586 | Fuller et al. | Nov 2007 | A1 |
20070289941 | Davies | Dec 2007 | A1 |
20080028779 | Song | Feb 2008 | A1 |
20080042084 | Fuller | Feb 2008 | A1 |
20080072977 | George et al. | Mar 2008 | A1 |
20080229770 | Liu | Sep 2008 | A1 |
20080271788 | Matsuzaki et al. | Nov 2008 | A1 |
20090123300 | Uibel | May 2009 | A1 |
20090186466 | Brewer | Jul 2009 | A1 |
20100019177 | Luckevich | Jan 2010 | A1 |
20100038576 | Hunnicutt | Feb 2010 | A1 |
20100204840 | Sun et al. | Aug 2010 | A1 |
20100225708 | Peng et al. | Sep 2010 | A1 |
20110112606 | Gatherer et al. | May 2011 | A1 |
20120000550 | Hunnicutt et al. | Jan 2012 | A1 |
Number | Date | Country |
---|---|---|
2215526 | Oct 1973 | DE |
2930779 | Feb 1980 | DE |
3401404 | Jul 1985 | DE |
4101575 | Jul 1992 | DE |
4417251 | Nov 1995 | DE |
4422942 | Jan 1996 | DE |
250948 | Jan 1988 | EP |
261972 | Mar 1988 | EP |
1024285 | Aug 2000 | EP |
2238267 | May 1991 | GB |
SHO 39-990 | Feb 1964 | JP |
04-000003 | Jan 1992 | JP |
06-117414 | Apr 1994 | JP |
2001184125 | Jul 2001 | JP |
2003-049933 | Feb 2003 | JP |
SHO 63-148062 | Jul 2003 | JP |
2006-080194 | Mar 2006 | JP |
9916096 | Apr 1999 | WO |
9924783 | May 1999 | WO |
0014415 | Mar 2000 | WO |
0014415 | Jul 2000 | WO |
2005084211 | Sep 2005 | WO |
2005084211 | Jan 2006 | WO |
2006076386 | Jul 2006 | WO |
2008076388 | Jun 2008 | WO |
2008076388 | Aug 2008 | WO |
2008121365 | Oct 2008 | WO |
2008121369 | Oct 2008 | WO |
2010019329 | Feb 2010 | WO |
2010019329 | Feb 2010 | WO |
2010019665 | Feb 2010 | WO |
2010019665 | Feb 2010 | WO |
2010065804 | Jun 2010 | WO |
2010065804 | Jun 2010 | WO |
2011022267 | Feb 2011 | WO |
2011022267 | Feb 2011 | WO |
2011094300 | Aug 2011 | WO |
2011094300 | Aug 2011 | WO |
2011094302 | Aug 2011 | WO |
2011094302 | Aug 2011 | WO |
Entry |
---|
Alpha Exactalloy Solder Performs [online], [retrieved Jan. 5, 2011]. Retrieved from the Internet <URL: http://alpha.cooksonelectronics.com/products/preforms/>. |
Asuha, Hikaru Kobayashi et al, “Nitric acid oxidation of Si to form ultrathin silicon dioxide layers with a low leakage current density”, 2003, Journal of Applied Physics, 94, 7328. |
Ayon et al., “Etching Characteristics and Profile Control in a Time Multiplexed ICP Etcher,” Proc. Of Solid State Sensor and Actuator Workshop Technical Digest, Hilton Head SC, (Jun. 1998) 41-44. |
B.E. Deal and A.S. Grove, “General relationship for the thermal Oxidation of Silicon”, 1965, Journal of Applied Physics, 36, 3770. |
Bachmann, Stephan, “Electronic Expansion Valves: Fitters Notes (Part 8)”, Danfoss Fitters Notes, Jul. 2008. |
Bartha et al., “Low Temperature Etching of Si in High Density Plasma Using SF6/02,” Microelectronic Engineering, and Actuator Workshop Technical Digest, Hilton Head SC, (Jun. 1998) 41-44. |
Biography, Ohio State University Website [online], [retrieved Dec. 31, 2000]. Retrieved from the Internet <URL: http://www.chemistry.ohio-state.edu/resource/pubs/brochure/madou.htm>. |
Booth, Steve and Kaina, Rachid, Fluid Handling—Big Gains from Tiny Valve, Appliance Design (Apr. 2008), pp. 46-48. |
Changenet et al., “Study on predictive functional control of an expansion valve for controlling the evaporator superheat”, Proc.IMechE vol. 222 Part I, May 28, 2008, pp. 571-582. |
Clark, Scott, “Etching Silicon Dioxide with Aqueous Hf Solutions”, Copyright 1998-2000, Bold Technologies Inc., http://www.bold-tech.com/technical/silicon—dioxide.htm. |
Controls Overview for Microstaq Silicon Expansion Valve (SEV), Rev. 1, Dec. 2008 [online], [retrieved May 17, 2010]. Retrieved from the Internet <URL: http://www.microstaq.com/pdf/SEV—controls.pdf>. |
Copeland, Michael V., Electronic valves promise big energy savings, FORTUNE, Sep. 9, 2008 [online], [retrieved Sep. 9, 2008]. Retrieved from the internet <URL: http://techland.blogs.fortune.cnn.com/2008/09/09/electronic-valves-promise-big-energy-savings>. |
Fung et al., “Deep Etching of Silicon Using Plasma” Proc. Of the Workshop on Micromachining and Micropackaging of Transducers, (Nov. 7-8, 1984) pp. 159-164. |
Gui, C. et al, “Selective Wafer Bonding by Surface Roughness Control”, Journal of The Electrochemical Society, 148 (4) G225-G228 (2001). |
Gui, C. et al., “Fusion bonding of rough surfaces with polishing technique for silicon micromachining”, Microsystem Technologies (1997) 122-128. |
Günther, Götz, “Entwicklung eines pneumatischen 3/2-Wege-Mikroventils”, O+ P Olhydraulik Und Pneumatik, Vereinigte Fachverlage, Mainz, DE, vol. 42, No. 6, Jun. 1, 1998, pp. 396-398, XP000831050, ISSN: 0341-2660. |
Higginbotham, Stacey, Microstaq's Tiny Valves Mean Big Energy Savings [online], [retrieved Dec. 8, 2008]. Retrieved from the Internet <URL: http//earth2tech.com/2008/09/09/microstaqs-tiny-valves-mean-big-energy savings (posted Sep. 9, 2008)>. |
J. Mark Noworolski, et al.,“Process for in-plane and out-of-plane single-crystal-silicon thermal microactuators”, Sensors and Actuators A 55 (1996); pp. 65-69. |
Jonsmann et al., “Compliant Electra-thermal Microactuators”, IEEE Technical Digest , Twelfth IEEE International Conference on Micro Electro Mechanical Systems Jan. 17-21, 1999, Orlando, Florida, pp. 588-593, IEEE Catalog Number: 99CH36291C. |
K.R. Williams et al., “A Silicon Microvalve For The Proportional Control Of Fluids”, TRANSDUCERS '99, Proc. 10th International Conference on Solid State Sensors and Actuators, held Jun. 7-10, 1999, Sendai, Japan, pp. 18-21. |
Keefe, Bob, Texas firm says value-replacing chip can drastically cut energy use, Atlanta Metro News, Sep. 10, 2008 [online], [retrieved Sep. 10, 2008]. Retrieved from the Internet <URL: http://www.ajc.com/search/content/shared/money/stories/2008/09/microstaq10—cox-F9782.html>. |
Klaassen et al., “Silicon Fusion Bonding and Deep Reactive Ion Etching; A New Technology for Microstructures,” Proc., Transducers 95 Stockholm Sweden, (1995) 556-559. |
Linder et al., “Deep Dry Etching Techniques as a New IC Compatible Tool for Silicon Micromachining,” Proc, Transducers, vol. 91, (Jun. 1991) pp. 524-527. |
Luckevich, Mark, MEMS microvlaves: the new valve world, Valve World (May 2007), pp. 79-83. |
Madou, Marc, “Fundamentals of Microfabrication”, Boca Raton: CRC Press, 1997, 405-406. |
MEMS, Microfluidics and Microsystems Executive Review [online], Posted Apr. 16, 2009. [retrieved May 17, 2010]. Retrieved from the Internet <URL: http:www.memsinvestorjournal.com/2009/04/mems-applications-for-flow-control.html>. |
Microstaq Announces High Volume Production of MEMS-Based Silicon Expansion Valve [onlne], [retrieved Jan. 27, 2010]. Retrieved from the Internet <URL: http://www.earthtimes.org/articles/printpressstory.php?news+1138955 (posted Jan. 27, 2010)>. |
Microstaq Product Description, Proportional Piloted Silicon Control Valve (CPS-4) [online], Published 2008, [retrieved May 17, 2010]. Retrieved from the Internet <URL: http://www.microstaq.com/products/cps4.html>. |
Microstaq Product Description, Proportional Direct Acting Silicon Control Valve (PDA-3) [online], Published 2008, [retrieved May 17, 2010]. Retrieved from the Internet <URL: http://www.microstaq.com/products/pda3.html>. |
Microstaq Product Descriptions, SEV, CPS-4, and PDA-3 [online], Published 2009, [retrieved May 17, 2010]. Retrieved from the Internet <URL: http://www.microstaq.com/products/index.html>. |
Microstaq Technology Page [online], Published 2008, [retrieved May 17, 2010]. Retrieved from the Internet <URL: http://www.microstaq.com/technology/index.html>. |
Petersen et al. “Surfaced Micromachined Structures Fabricated with Silicon Fusion Bonding” Proc., Transducers 91, (Jun. 1992) pp. 397-399. |
Press Release, Freescale and Microstaq Join Forces on Smart Superheat Control System for HVAC and Refrigeration Efficiency (posted Jan. 22, 2008) [online], [retrieved May 17, 2010]. Retrieved from the Internet <URL: http://www.microstaq.com/pressReleases/prDetail—04.html>. |
Press Release, Microstaq Unveils Revolutionary Silicon Expansion Valve at Demo 2008 [online], [retrieved May 17, 2010]. Retrieved from the Internet <URL: http://www.microstaq.com/pressReleases/prDetail—05.html (posted Sep. 8, 2008)>. |
Press Release, Microstaq Mastering Electronic Controls for Fluid-Control Industry (posted May 5, 2005) [online[, [retrieved May 17, 2010]. Retrieved from the Internet <URL: http://www.microstaq.com/pressReleases/prDetail—02.html>. |
Press Release, Nanotechnology Partnerships, Connections Spur Innovation for Fluid Control Industries (posted Jun. 9, 2005) [online], [retrieved May 17, 2010]. Retrieved from the Internet <URL: http://www.microstaq.com/pressReleases/prDetail—03.html>. |
Product Review, greentechZONE Products for the week of May 18, 2009 [online], [retrieved May 17, 2010]. Retrieved from the Internet <URL: http://www.en-genius.net/site/zones/greentechZONE/product—reviews/grnp—051809>. |
SEV Installation Instructions [online], [retrieved May 17, 2010]. Retrieved from the Internet <URL: http://www.microstaq.com/pdf/SEV—Instruction—sheet.pdf>. |
Silicon Expansion Valve Information Sheet [online], [retrieved May 17, 2010]. Retrieved from the Internet <URL: http://www.microstaq.com/pdf/SEV—Infosheet—2—0.pdf>. |
Silicon Expansion Valve Data Sheet [online], [retrieved May 17, 2010]. Retrieved from the Internet <URL: http://www.microstaq.com/pdf/SEV—Datasheet—1—8.pdf>. |
Silicon Expansion Valve (SEV)—For Heating, Cooling, and Refrigeration Applications [online], [retrieved May 17, 2010]. Retrieved from the Internet <URL: http://www.microstaq.com/pdf/SEV—Quicksheet.pdf>. |
SMIC Announces Successful Qualification of a MEMS Chip for Microstaq (posted Oct. 26, 2009) [online], [retrieved May 17, 2010]. Retrieved from the Internet <URL: http://www.prnewswire.com/news-releases/smic-announces-successful-qualification-of-a-mems-chip-for-microstaq-65968252.html (posted Oct. 26, 2009)>. |
SMIC quals Microstaq MEMS chip for fluid control (posted Oct. 26, 2009) [online], [retrieved May 17, 2010]. Retrieved from the Internet <URL: http://www.electroiq.com/ElectroiQ/en-us/index/display/Nanotech—Article—Tools—Template.articles.small- times.nanotechmems.mems.microfluidics.2009.10.smic-quals—microstaq.html>. |
Tiny Silicon Chip Developed by Microstaq Will Revolutionize Car Technology (posted May 19, 2005) [online], [retrieved May 19, 2005]. Retrieved from the Internet <URL: http://www.nsti.org/press/PRshow.html?id=160>. |
Turpin, Joanna R., Soft Economy, Energy Prices Spur Interest in Technologies [online], Published Dec. 8, 2008. [retrieved May 18, 2010]. Retrieved from the Internet <URL: http://www.achrnews.com/copyright/BNP—GUID—9-5-2006—A—10000000000000483182>. |
Uibel, Jeff, The Miniaturization of Flow Control (Article prepared for the 9th International Symposium on Fluid Control Measurement and Visualization (FLUCOME 2007)), Journal of Visualization (vol. 11, No. 1, 2008), IOS Press. |
Yunkin et al., “Highly Anisotropic Selective Reactive Ion Etching of Deep Trenches in Silicon,” Microelectronic Engineering, Elsevier Science B.V., vol. 23, (1994) pp. 373-376. |
Zhang, Chunbo et al, “Fabrication of thick silicon dioxide layers for thermal isolation”, 2004, J.Micromech. Microeng. 14 769-774. |
Zhixiong Liu et al., “Micromechanism fabrication using silicon fusion bonding”, Robotics and Computer Integrated Manufacturing 17 (2001) 131-137. |
Number | Date | Country | |
---|---|---|---|
20130175330 A1 | Jul 2013 | US |
Number | Date | Country | |
---|---|---|---|
61583364 | Jan 2012 | US |