The present invention relates generally to integrated circuit semiconductor chips. More particularly, the present invention pertains to leadframes for bonding with the integrated circuits.
Integrated circuit manufacturers face many design challenges, including reducing the amount of noise in the integrated circuit. Resistance, capacitance and inductance, parasitics of an integrated circuit package, can result in increased signal delays and signal distortions in the electrical signals transmitted to and from the integrated circuit.
Two sources of noise in an integrated circuit package are switching noise and cross-coupling noise, or cross-talk. Switching noise may be an inductive voltage spike that occurs on a conductive path as the result of rapid current switching in the conductive path. Cross-talk is the undesirable appearance of an electrical current in a conductive path as a result of mutual capacitance and inductance between the conductive path and other nearby conductive paths. At higher frequencies, the integrated circuit is even more susceptible to noise.
One approach to reduce noise in an integrated circuit is to increase spacing between transmission lines, such as leads of a leadframe 100 as shown in
Another approach to reduce noise is to reduce the length of the transmission line on a leadframe by using diagonal leads. While diagonal leads minimize the length of the leads, the spacing between the leads would also be decreased. The decreased spacing would increase the overall cross-talk between the leads, and would therefore be undesirable.
Accordingly, there is a need for an integrated circuit package in which the above benefits are achieved and the above problems are overcome.
The present invention solves the above-mentioned needs in the art and other needs which will be understood by those skilled in the art upon reading and understanding the present specification.
A leadframe is provided comprising, in part, a first and second set of conductors. The leadframe is adapted for coupling with a semiconductor integrated circuit. The conductors of the leadframe extend radially from a first end to a second end such that a portion of each conductor has a generally arcuate shape between the first and second end. In one embodiment, the first end of the conductor is for coupling with a printed circuit board, and the second end is for coupling with a semiconductor die. Alternatively, each conductor is sized and spaced such that the line spacing remains constant.
In another embodiment, the conductors have a plurality of segments. Each conductor has at least three segments disposed between the first end and the second end. The segments forming the conductors are disposed such that a portion of each conductor generally has an arcuate shape. In another embodiment, the segments each have substantially the same length. Alternatively, the segments have varying lengths.
In one embodiment, an integrated circuit package is provided comprising a leadframe having a plurality of leads, at least one semiconductor die coupled with the plurality of leads, and an insulating enclosure encapsulating the die and a portion of the leadframe. The leads each extend radially from a first end to a second end such that a portion of each lead has a generally arcuate shape. Alternatively, in another embodiment, the leads each have at least three segments disposed between the first end and the second end.
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which is shown, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that structural changes may be made without departing from the spirit and scope of the present invention. Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.
A portion of a leadframe 200 is illustrated in
In one embodiment, a portion of each lead of the first set of leads 210 has a generally arcuate shape, as the lead 210 extends radially from the first end 220 to the second end 230. For some of the first set of leads 210, a substantial portion of the lead has a generally arcuate shape. The arcuate shape of each lead of the first set of leads 210 has a different arc length than the other leads of the first set of leads 210. In another embodiment, each lead of the first set of leads 210 is spaced and sized such that the line spacing between at least one lead, or alternatively each lead, remains constant from the first end 220 to the second end 230. Each lead of the second set of leads 215 extends substantially straight from the first end 220 to the third end 225.
Another embodiment is illustrated in
In one embodiment, each lead of the first set of leads 310 has at least three segments 340. The segments 340 are disposed such that a portion of each lead of the first set of leads 310 has a generally arcuate shape between the first end 320 and the second end 330. The arcuate shape of each lead of the first set of leads 310 has a different arc length than the other leads of the first set of leads 310. The segments 340 are substantially straight, and are each substantially the same length and substantially the same width. In one embodiment, at least one of the segments 340 is substantially straight and has a different length. In another embodiment, at least one of the segments 340′ has an arcuate shape as shown in
The leadframe 200 of
As shown in
In one embodiment, the leadframe 400, semiconductor die 460 and wire bonding 480 are enclosed in protective, electrically insulative material such that ends of the leads are exposed to allow connection to be made to other electrical components. In another embodiment, leadframe 400, semiconductor die 460 and wire bonding 480 are encapsulated in plastic, thereby forming the integrated circuit package 405.
An integrated circuit package including the leadframe according to the invention has reduced effective inductance and cross-talk relative to existing integrated circuit packages. Below are simulated inductances and resistances for the tightly radiused leads of the conventional right angle leadframe shown in
The results in Table 1 reveal the decreased inductance for the present invention. The inductance and resistance of each lead is less for the arcuate leadframe and the segmented leadframe than in the tightly radiused leadframe. In particular, the longer leads experience the greatest improvement in using the arcuate leadframe and the segmented leadframe versus the tightly radiused leadframe.
Advantageously, the radiused leadframe provides for lower inductance, resistance, and capacitance of leads in a leadframe, as opposed to leads with tightly radiused corners. These factors are important when the leads are carrying high-frequency signals, or signals having high-frequency harmonics, such as sub-nanosecond rise times. The continuous arcuate shape of the leads and the constant width of the leads maintains line spacing between the leads. This consistency maximizes layout space of the leadframe without increasing cross-talk. In addition, a single leadframe strip or assembly can comprise leadframes for any number of a predetermined number of chips.
It is to be understood that the above description is intended to be illustrative, and not restrictive. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
This application is a continuation of application Ser. No. 09/004,214, filed Jan. 9, 1998, now U.S. Pat. No. 6,362,426 issued Mar. 26, 2002.
Number | Name | Date | Kind |
---|---|---|---|
3484534 | Kilby et al. | Dec 1969 | A |
3908075 | Jackson et al. | Sep 1975 | A |
4062107 | Blackman et al. | Dec 1977 | A |
4118858 | Taylor et al. | Oct 1978 | A |
4298769 | Richman | Nov 1981 | A |
4514750 | Adams | Apr 1985 | A |
4743956 | Olla et al. | May 1988 | A |
4806409 | Walter et al. | Feb 1989 | A |
4807018 | Cellai | Feb 1989 | A |
4974053 | Kinoshita et al. | Nov 1990 | A |
5036380 | Chase | Jul 1991 | A |
5115298 | Loh | May 1992 | A |
5138430 | Gow, III et al. | Aug 1992 | A |
5200362 | Lin et al. | Apr 1993 | A |
5200364 | Loh | Apr 1993 | A |
5313102 | Lim et al. | May 1994 | A |
5397916 | Normington | Mar 1995 | A |
5457340 | Templeton, Jr. et al. | Oct 1995 | A |
5569956 | Chillara et al. | Oct 1996 | A |
5659950 | Adams et al. | Aug 1997 | A |
5773878 | Lim et al. | Jun 1998 | A |
6362426 | Harrison et al. | Mar 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20020132390 A1 | Sep 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09004214 | Jan 1998 | US |
Child | 10072743 | US |