Method of removing an amorphous oxide from a monocrystalline surface

Information

  • Patent Grant
  • 6693033
  • Patent Number
    6,693,033
  • Date Filed
    Friday, October 26, 2001
    23 years ago
  • Date Issued
    Tuesday, February 17, 2004
    20 years ago
Abstract
A method of removing an amorphous oxide from a surface of a monocrystalline substrate is provided. The method includes depositing a passivation material overlying the amorphous oxide. The monocrystalline substrate is then heated so that the amorphous oxide layer decomposes into at least one volatile species that is liberated from the surface.
Description




FIELD OF THE INVENTION




This invention relates generally to a method for preparing a monocrystalline surface for deposition of a monocrystalline oxide thereon, and more particularly to a method for removing an amorphous oxide from a monocrystalline surface.




BACKGROUND OF THE INVENTION




Single crystal oxides, such as perovskites, are attractive materials due to their simple crystal structures and unique ferroelectric, dielectric, and optical properties. The high quality epitaxial growth of single crystal oxides on monocrystalline substrates, such as silicon, is desirable for numerous device applications, such as optical waveguides, ferroelectrics, nonvolatile high density memory devices, MOS devices and the like.




For many years, attempts to grow monocrystalline oxides on monocrystalline substrates have proven difficult because of the easily-formed amorphous oxide layer that forms on the substrate surface in an oxygen atmosphere. This amorphous oxide layer prevents high quality growth of monocrystalline oxides on monocrystalline substrates. Because an ordered and stable substrate surface is needed to facilitate the growth of high quality monocrystalline oxide layers, it is desirable to remove the amorphous oxide layer from the surface of the substrate before depositing the monocrystalline oxide layer.




Accordingly, a method of removing an amorphous oxide layer from a monocrystalline substrate is needed. In addition, a method for forming an ordered and stable surface on a monocrystalline substrate for subsequent growth of a monocrystalline oxide layer is needed.











BRIEF DESCRIPTION OF THE DRAWINGS




The present invention is illustrated by way of example and not limitation in the accompanying figures, in which like references indicate similar elements, and in which:





FIG. 1

illustrates, in cross section, a semiconductor structure having a monocrystalline substrate and a native amorphous oxide formed thereon;





FIG. 2

illustrates, in cross section, a passivation material layer formed overlying the native amorphous oxide layer of the semiconductor structure of

FIG. 1

;





FIG. 3

illustrates, in cross section, the semiconductor structure of

FIG. 2

in which voids have formed in the native amorphous oxide layer;





FIG. 4

illustrates, in cross section, the semiconductor structure of

FIG. 3

wherein the material of the passivation layer has passivated exposed portions of the monocrystalline substrate;





FIG. 5

illustrates, in cross section, the semiconductor structure of

FIG. 4

wherein the native amorphous oxide layer has been removed and the monocrystalline substrate has been passivated by the passivation layer; and





FIG. 6

illustrates, in cross section, the semiconductor structure of

FIG. 5

wherein a monocrystalline oxide has been grown overlying the monocrystalline substrate.











Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.




DETAILED DESCRIPTION OF THE DRAWINGS




A method for removing an amorphous oxide from the surface of a monocrystalline substrate and producing an ordered surface on the substrate for subsequent growth of a monocrystalline oxide is illustrated in

FIGS. 1-6

.

FIG. 1

illustrates schematically, in cross section, a portion of a semiconductor structure


20


that includes a monocrystalline substrate


22


having an amorphous oxide layer


24


. In this context, the term “monocrystalline” shall have the meaning commonly used within the semiconductor industry. The term shall refer to materials that are a single crystal or that are substantially a single crystal and shall include those materials having a relatively small number of defects such as dislocations and the like as are commonly found in substrates of silicon or germanium or mixtures of silicon and germanium and epitaxial layers such materials commonly found in the semiconductor industry.




Substrate


22


, in accordance with an embodiment of the invention, is a monocrystalline semiconductor or compound semiconductor material, such as, for example, materials from Group IV of the periodic table. Examples of Group IV semiconductor materials include silicon, germanium, mixed silicon and germanium, mixed silicon and carbon, mixed silicon, germanium and carbon, and the like. Preferably, substrate


22


is a wafer containing silicon or germanium, and most preferably is a high quality monocrystalline silicon wafer having a (100) orientation, as used in the semiconductor industry. The substrate is oriented on axis or, at most, about 6° off axis.




At least a portion of the semiconductor substrate


22


has a bare surface, although other portions of the substrate may encompass other structures. The term “bare” in this context means that the surface in the portion of the substrate has been cleaned to remove any oxides, contaminants, or other foreign material. As is well known, bare substrates such as silicon may be highly reactive and may readily form native amorphous oxide layer


24


. The term “bare” is intended to encompass such a native oxide layer. A thin oxide may also be intentionally grown on the semiconductor substrate, although such a grown oxide is not essential to the process in accordance with the invention. In order to epitaxially grow a monocrystalline oxide layer overlying the monocrystalline substrate, the native amorphous oxide layer


24


must first be removed to expose the crystalline structure of the underlying substrate.




The following process is preferably carried out by ultra high vacuum (UHV) molecular beam epitaxy (MBE), although other epitaxial processes may also be used in accordance with the present invention. In one exemplary embodiment of the invention, monocrystalline substrate


22


is positioned with a processing chamber of an UHV MBE. Monocrystalline substrate


22


may then be heated below the sublimation temperature of the amorphous oxide layer


24


, preferably to a temperature of about 500° C., although it will be appreciated that heating Substrate


22


at this point in the process is not essential to the present invention. Referring to

FIG. 2

, a passivation material layer


26


is deposited overlying the MBE. The passivation material layer


26


may comprise alkali or alkaline earth metals, combinations of alkali and/or alkaline earth metals, the oxides of alkali or alkaline earth metals or the combinations of oxides of alkali and/or alkaline earth metals. Examples of materials suitable for passivation material layer


26


include strontium, strontium oxide, barium, barium oxide, a combination of strontium and barium, and the like. The MBE process is initiated by opening shutters in the MBE apparatus to expose one or more sources of the passivation material, creating a flux of the passivation material. The flux of the passivation material may be set depending on the melting point and vapor pressure of the passivation material. Typically, the flux of the material is in the range of about 1 Angstrom/minute to about 10 Angstroms/minute. In a preferred embodiment of the invention, the flux of the passivation material may be terminated when passivation material layer


26


has grown to its desired thickness. Alternatively, a continuous flux of the passivation material may be provided during the process. If a continuous flux of the passivation material is provided during processing, it may be desirable to provide in situ monitoring of the thickness of passivation material layer


26


, such as by a reflection high energy electron diffraction (RHEED) crystal oscillation thickness monitor, so that the thickness of passivation material layer


26


does not reach a thickness that would prevent or otherwise adversely affect removal of amorphous oxide layer


24


. Preferably, about one to five monolayers of passivation material layer


26


, and more preferably about one to 2 monolayers of passivation material layer


26


, is deposited overlying the amorphous oxide layer


24


, although it will be appreciated that passivation material layer


26


may be of any thickness suitable for facilitating the removal of amorphous oxide layer


24


.




The substrate is then heated to a temperature in the range of from about 700° C. to about 900° C.

FIG. 3

illustrates, in cross section, structure


20


upon being heated to about 700° C. or higher. At this temperature, molecules from the amorphous oxide layer


24


are liberated from the surface of monocrystalline substrate


22


, forming voids


28


in amorphous oxide layer


24


. The passivation material layer


26


overlying amorphous oxide layer


24


facilitates liberation of the amorphous oxide layer from the surface of the monocrystalline substrate


22


, thus increasing the rate of removal of the amorphous oxide layer. The passivation material serves as a catalyst that promotes the ejection of electrons from one or both of the passivation material and the amorphous oxide. This results in a dipole field between the passivation material and the amorphous oxide which causes the amorphous oxide to be in an activated state. Accordingly, the amorphous oxide more readily decomposes into volatile species that are liberated from the monocrystalline substrate surface. In addition, portions of the monocrystalline substrate


22


exposed during formation of the voids


28


are passivated by the passivation material of passivation material layer


26


, as illustrated in FIG.


4


. Without the presence of the passivation material from passivation material layer


26


, the voids would continue to grow into the monocrystalline substrate


22


, forming pits in monocrystalline substrate


22


. As the process continues, the amorphous oxide layer


24


continues to be liberated from the surface of monocrystalline substrate


22


, which in turn continues to be passivated by the passivation material of passivation material layer


26


.

FIG. 5

illustrates, in cross section, structure


30


, which results from the above-described process. At conclusion of the process, substantially all of amorphous oxide layer


24


has been liberated from monocrystalline substrate


22


and passivation material layer


26


provides an ordered and stable surface overlying monocrystalline substrate


22


.




Following the removal of the amorphous oxide layer


24


from the surface of the substrate, the substrate may be cooled to a temperature in the range of about 200-800° C., preferably 350-450° C., and a monocrystalline oxide layer


42


, as illustrated in

FIG. 6

, may then be epitaxially grown overlying passivation material layer


26


to form structure


40


. Monocrystalline oxide layer


42


is preferably selected for its crystalline compatibility with the underlying monocrystalline substrate


22


. Materials that are suitable for monocrystalline oxide


42


include metal oxides such as the alkaline earth metal titanates, alkaline earth metal zirconates, alkaline earth metal hafnates, alkaline earth metal tantalates, alkaline earth metal ruthenates, alkaline earth metal niobates, alkaline earth metal vanadates, alkaline earth metal tin-based perovskites, lanthanum aluminate, lanthanum scandium oxide, and gadolinium oxide. Most of these materials are insulators, although strontium ruthenate, for example is a conductor. Generally, these materials are metal oxides or metal nitrides, and more particularly, these metal oxide or nitrides typically include at least two different metallic elements.




Structure


40


may also include an amorphous interface layer


44


, which is preferably an oxide formed by the oxidation of the surface of substrate


22


during or after the growth of monocrystalline oxide layer


42


. The thickness of layer


44


may be sufficient to relieve strain attributed to mismatches between the lattice constants of monocrystalline substrate


22


and monocrystalline oxide layer


42


. Typically, layer


44


has a thickness in the range of approximately 0.5-5 nm.




The following example illustrates a process, in accordance with one embodiment of the invention, for fabricating a semiconductor structure such as the structure depicted in FIG.


6


. The process starts by providing a monocrystalline semiconductor substrate comprising silicon or germanium. In accordance with a preferred embodiment of the invention, the semiconductor substrate is a silicon wafer having a (100) orientation. The substrate is oriented on axis or, at most, about 6° off axis. At least a portion of a silicon substrate has a native amorphous silicon oxide layer. In order to epitaxially grow a monocrystalline oxide layer overlying the monocrystalline silicon substrate, the native amorphous silicon oxide layer must first be removed to expose the crystalline structure of the underlying silicon substrate. The process is preferably performed in an UHV MBE apparatus, although other epitaxial processes may also be used in accordance with the present invention. The silicon substrate is positioned within the processing chamber of an UHV MBE unit and heated to a temperature below the sublimation temperature of silicon oxide, preferably about 500° C. Shutters in the MBE apparatus are then opened to expose one or more strontium sources to produce a flux of strontium preferably in the range of about 1 Angstrom/minute to about 10 Angstroms/minute and more preferably about 4 Angstroms/minute. One to two monolayers of strontium is then deposited overlying the native amorphous oxide layer. Alternatively, three to four monolayers of strontium oxide may be deposited on the silicon substrate surface by exposing one or more strontium sources in an atmosphere having an oxygen partial pressure in the range of from about 1×10


−8


torr to 1×10


−7


torr.




The silicon substrate is then heated to a temperature of at least 720° C. The strontium (or strontium oxide) serves as a catalyst that increases the rate of removal of the silicon oxide from the surface of the silicon substrate. The strontium promotes the ejection of electrons from one or both of the strontium layer and the silicon oxide layer. This results in a dipole field between the strontium layer and the silicon oxide layer. The dipole field weakens the Si—O bonds of the silicon oxide layer which causes the silicon oxide layer to be in an activated state. Accordingly, the silicon oxide more readily decomposes into a volatile species that is liberated from the monocrystalline silicon substrate surface according to the following reaction:






SiO


2


+Sr(or SrO)→SiO(g)+O


+




+e







+Sr(or SrO).






As the silicon oxide is liberated from the silicon substrate surface, voids, such as voids


28


illustrated in

FIG. 3

, begin to form in the native amorphous silicon oxide layer. Without strontium (or strontium oxide) overlying the silicon oxide layer, the voids would continue to grow into the silicon substrate, resulting in pits in the silicon surface. However, the strontium serves to passivate the exposed silicon substrate surface so further etching of the silicon substrate will be reduced or eliminated. Accordingly, a strontium-terminated silicon (100) substrate with an ordered 2×1 structure results. If an ordered (2×1) structure has not been achieved at this stage of the process, the structure may be exposed to additional strontium until an ordered (2×1) structure is obtained. If strontium oxide is used to passivate the silicon substrate surface, the process may be continued so that the strontium oxide reacts with the silicon substrate to form volatile SiO, leaving a strontium-terminated silicon substrate. This strontium layer forms a template for the subsequent growth of an ordered monocrystalline oxide layer.




Following the removal of the amorphous silicon oxide from the surface of the silicon substrate, in accordance with one embodiment of the invention, the substrate is cooled to a temperature in the range of about 200-800° C., preferably 350-450° C., and a monocrystalline oxide layer of strontium titanate is grown on the template layer by MBE. The MBE process is initiated by opening shutters in the MBE apparatus to expose strontium, titanium and oxygen sources. The ratio of strontium and titanium is approximately 1:1. The partial pressure of oxygen is initially set at a minimum value to grow stoichiometric strontium titanate at a growth rate of about 0.1-0.8 nm per minute, preferably about 0.3-0.5 nm per minute. After initiating growth of the strontium titanate, the partial pressure of oxygen is increased above the initial minimum value. The stoichiometry of the strontium titanate can be controlled during growth by monitoring RHEED patterns and adjusting the fluxs. The overpressure of oxygen causes the growth of an amorphous silicon oxide interface layer at the interface between the underlying substrate and the strontium titanate layer. This step may be applied either during or after the growth of the SrTiO


3


layer. The growth of the silicon oxide interface layer results from the diffusion of oxygen through the strontium titanate layer to the interface where the oxygen reacts with silicon at the surface of the underlying substrate. The strontium titanate grows as an ordered (100) monocrystal with the (100) crystalline orientation rotated by 45° with respect to the underlying silicon substrate. Strain that otherwise might exist in the strontium titanate layer because of the small mismatch in lattice constant between the silicon substrate and the growing crystal is relieved in the amorphous silicon oxide interface layer.




The method described above illustrates a method for removing an amorphous silicon oxide from a silicon substrate and for forming a semiconductor structure including a silicon substrate and an overlying monocrystalline oxide layer comprising strontium titanate by the process of molecular beam epitaxy. The process can also be carried out by chemical vapor deposition (CVD), metal organic chemical vapor deposition, (MOCVD), migration enhanced epitaxy (MEE), atomic layer epitaxy (ALE), physical vapor deposition (PVD), chemical solution deposition (CSD), pulsed laser deposition (PLD), or the like. Further, by a similar process, native amorphous oxides may be removed from other monocrystalline substrates such as germanium, mixed silicon and germanium, mixed silicon and carbon, mixed germanium and carbon, mixed silicon, germanium and carbon, and the like. In addition, by a similar process other monocrystalline oxide layers such as alkaline earth metal titanates, zirconates, hafnates, tantalates, vanadates, ruthenates, and niobates, alkaline earth metal tin-based perovskites, lanthanum aluminate, lanthanum scandium oxide, and gadolinium oxide, can also be grown.




In the foregoing specification, the invention has been described with reference to specific embodiments. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present invention.




Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. As used herein, the terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.



Claims
  • 1. A method of removing an amorphous oxide from a surface of a monocrystalline substrate, the method comprising:depositing a passivation material overlying said amorphous oxide; and heating said surface so that said amorphous oxide layer decomposes into at least one volatile species that is liberated from said surface.
  • 2. The method of claim 1, wherein said heating is performed after said depositing.
  • 3. The method of claim 1, wherein said heating is performed during said depositing.
  • 4. The method of claim 1, further comprising epitaxially growing a monocrystalline oxide layer overlying said surface of said monocrystalline substrate.
  • 5. The method of claim 4, further comprising forming an amorphous oxide interface layer overlying said monocrystalline substrate and underlying said monocrystalline oxide layer.
  • 6. The method of claim 1, further comprising heating said monocrystalline substrate to a temperature below the sublimation temperature of said amorphous oxide layer before said depositing.
  • 7. The method of claim 1, wherein said monocrystalline substrate comprises one of silicon, germanium, a combination of silicon and germanium, a combination of silicon and carbon, and a combination of silicon, germanium and carbon.
  • 8. The method of claim 1, wherein said passivation material comprises at least one of an alkali earth metal, an alkali earth metal oxide, an alkaline earth metal, and an alkaline earth metal oxide.
  • 9. The method of claim 8, wherein said passivation material comprises one of strontium and strontium oxide.
  • 10. The method of claim 4, wherein said monocrystalline oxide comprises at least one of alkaline earth metal titanates, alkaline earth metal zirconates, alkaline earth metal hafnates, alkaline earth metal tantalates, alkaline earth metal ruthenates, alkaline earth metal niobates, alkaline earth metal vanadates, alkaline earth metal tin-based perovskites, lanthanum aluminate, lanthanum scandium oxide, and gadolinium oxide.
  • 11. The method of claim 1, wherein said heating comprises heating to a temperature in the range of from about 700° C. to about 900° C.
  • 12. The method of claim 1, further comprising heating said surface so that said passivation material passivates said monocrystalline substrate and forms an ordered layer thereon.
  • 13. The method of claim 1, wherein said depositing is performed by the process of ultra high vacuum molecular beam epitaxy.
  • 14. A method of fabricating a semiconductor structure utilizing a monocrystalline substrate having an amorphous oxide formed thereon, the method comprising:depositing a passivation material overlying said substrate and said amorphous oxide; heating said monocrystalline substrate so that said amorphous oxide layer decomposes into at least one volatile species that is liberated from said monocrystalline substrate; and depositing a monocrystalline oxide overlying said monocrystalline substrate.
  • 15. The method of claim 14, wherein said heating is performed after said depositing.
  • 16. The method of claim 14, wherein said heating is performed during said depositing.
  • 17. The method of claim 14, said passivation material comprising at least one of an alkali metal, an alkali metal oxide, an alkaline metal and an alkaline metal oxide.
  • 18. The method of claim 14, further comprising forming an amorphous oxide interface layer overlying said monocrystalline substrate and underlying said monocrystalline oxide layer.
  • 19. The method of claim 14, further comprising heating said monocrystalline substrate to a temperature below the sublimation temperature of said amorphous oxide layer before said depositing.
  • 20. The method of claim 14, said monocrystalline substrate comprising one of silicon, germanium, a combination of silicon and germanium, a combination of silicon and carbon, and a combination of silicon, germanium and carbon.
  • 21. The method of claim 17, said passivation material comprising one of strontium and strontium oxide.
  • 22. The method of claim 14, wherein said monocrystalline oxide comprises at least one of alkaline earth metal titanates, alkaline earth metal zirconates, alkaline earth metal hafnates, alkaline earth metal tantalates, alkaline earth metal ruthenates, alkaline earth metal niobates, alkaline earth metal vanadates, alkaline earth metal tin-based perovskites, lanthanum aluminate, lanthanum scandium oxide, and gadolinium oxide.
  • 23. The method of claim 14, wherein said heating comprises heating to a temperature in the range of from about 700° C. to about 900° C.
  • 24. The method of claim 14, further comprising heating said monocrystalline substrate so that said passivation material passivates said monocrystalline substrate and forms an ordered layer thereon.
  • 25. The method of claim 14, wherein said depositing is performed by the process of ultra high vacuum molecular beam epitaxy.
  • 26. A method of removing an amorphous oxide from a monocrystalline substrate, the method comprising:depositing a passivation material overlying said monocrystalline surface; and heating said monocrystalline substrate, wherein said passivation material promotes the ejection of electrons from at least one of the passivation material and the amorphous oxide, said ejection of electrons producing a dipole field between said passivation material and the amorphous oxide facilitating the decomposition of the amorphous oxide into volatile species and resulting in the passivation of the monocrystalline substrate by the passivation material.
  • 27. The method of claim 26, further comprising epitaxially growing a monocrystalline oxide layer overlying said surface of said monocrystalline substrate.
  • 28. The method of claim 26, further comprising heating said monocrystalline substrate to a temperature below the sublimation temperature of said amorphous oxide before said depositing.
  • 29. The method of claim 26, wherein said monocrystalline substrate comprises silicon and said passivation material comprises one of strontium and strontium oxide.
RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 09/502,023 filed on Feb. 10, 2000, which application is incorporated herein by reference.

US Referenced Citations (446)
Number Name Date Kind
3670213 Nakawaga et al. Jun 1972 A
3766370 Walther Oct 1973 A
3802967 Ladany et al. Apr 1974 A
3914137 Huffman et al. Oct 1975 A
3935031 Adler Jan 1976 A
4006989 Andringa Feb 1977 A
4084130 Holton Apr 1978 A
4120588 Chaum Oct 1978 A
4146297 Alferness et al. Mar 1979 A
4174422 Matthews et al. Nov 1979 A
4242595 Lehovec Dec 1980 A
4284329 Smith et al. Aug 1981 A
4289920 Hovel Sep 1981 A
4297656 Pan Oct 1981 A
4392297 Little Jul 1983 A
4398342 Pitt et al. Aug 1983 A
4404265 Manasevit Sep 1983 A
4424589 Thomas et al. Jan 1984 A
4439014 Stacy et al. Mar 1984 A
4442590 Stockton et al. Apr 1984 A
4452720 Harada et al. Jun 1984 A
4459325 Nozawa et al. Jul 1984 A
4482422 McGinn et al. Nov 1984 A
4482906 Hovel et al. Nov 1984 A
4484332 Hawrylo Nov 1984 A
4503540 Nakashima et al. Mar 1985 A
4523211 Morimoto et al. Jun 1985 A
4594000 Falk et al. Jun 1986 A
4629821 Bronstein-Bonte et al. Dec 1986 A
4661176 Manasevit Apr 1987 A
4667088 Kramer May 1987 A
4667212 Nakamura May 1987 A
4681982 Yoshida Jul 1987 A
4748485 Vasudev May 1988 A
4756007 Qureshi et al. Jul 1988 A
4772929 Manchester et al. Sep 1988 A
4773063 Hunsperger et al. Sep 1988 A
4774205 Choi et al. Sep 1988 A
4777613 Shahan et al. Oct 1988 A
4793872 Meunier et al. Dec 1988 A
4802182 Thornton et al. Jan 1989 A
4815084 Scifres et al. Mar 1989 A
4841775 Ikeda et al. Jun 1989 A
4845044 Ariyoshi et al. Jul 1989 A
4846926 Kay et al. Jul 1989 A
4855249 Akasaki et al. Aug 1989 A
4868376 Lessin et al. Sep 1989 A
4872046 Morkoc et al. Oct 1989 A
4876208 Gustafson et al. Oct 1989 A
4876219 Eshita et al. Oct 1989 A
4882300 Inoue et al. Nov 1989 A
4885376 Verkade Dec 1989 A
4888202 Murakami et al. Dec 1989 A
4889402 Reinhart Dec 1989 A
4891091 Shastry Jan 1990 A
4896194 Suzuki Jan 1990 A
4901133 Curran et al. Feb 1990 A
4910164 Shichijo Mar 1990 A
4912087 Aslam et al. Mar 1990 A
4928154 Umeno et al. May 1990 A
4934777 Jou et al. Jun 1990 A
4952420 Walters Aug 1990 A
4959702 Moyer et al. Sep 1990 A
4963508 Umeno et al. Oct 1990 A
4963949 Wanlass et al. Oct 1990 A
4965649 Zanio et al. Oct 1990 A
4981714 Ohno et al. Jan 1991 A
4984043 Vinal Jan 1991 A
4999842 Huang et al. Mar 1991 A
5018816 Murray et al. May 1991 A
5028976 Ozaki et al. Jul 1991 A
5051790 Hammer Sep 1991 A
5053835 Horikawa et al. Oct 1991 A
5055445 Belt et al. Oct 1991 A
5055835 Sutton Oct 1991 A
5060031 Abrokwah et al. Oct 1991 A
5063081 Cozzette et al. Nov 1991 A
5063166 Mooney et al. Nov 1991 A
5067809 Tsubota Nov 1991 A
5073981 Giles et al. Dec 1991 A
5075743 Behfar-Rad Dec 1991 A
5081062 Vasudev et al. Jan 1992 A
5081519 Nishimura et al. Jan 1992 A
5103494 Mozer Apr 1992 A
5116461 Lebby et al. May 1992 A
5119448 Schaefer et al. Jun 1992 A
5122852 Chan et al. Jun 1992 A
5127067 Delcoco et al. Jun 1992 A
5130762 Kulick Jul 1992 A
5132648 Trinh et al. Jul 1992 A
5140651 Soref et al. Aug 1992 A
5141894 Bisaro et al. Aug 1992 A
5143854 Pirrung et al. Sep 1992 A
5144409 Ma Sep 1992 A
5155658 Inam et al. Oct 1992 A
5159413 Calviello et al. Oct 1992 A
5163118 Lorenzo et al. Nov 1992 A
5173474 Connell et al. Dec 1992 A
5173835 Cornett et al. Dec 1992 A
5181085 Moon et al. Jan 1993 A
5185589 Krishnaswamy et al. Feb 1993 A
5191625 Gustavsson Mar 1993 A
5194397 Cook et al. Mar 1993 A
5194917 Regener Mar 1993 A
5198269 Swartz et al. Mar 1993 A
5208182 Narayan et al. May 1993 A
5210763 Lewis et al. May 1993 A
5216729 Berger et al. Jun 1993 A
5221367 Chisholm et al. Jun 1993 A
5225031 McKee et al. Jul 1993 A
5227196 Itoh Jul 1993 A
5244818 Jokers et al. Sep 1993 A
5248564 Ramesh Sep 1993 A
5260394 Tazaki et al. Nov 1993 A
5266355 Wernberg et al. Nov 1993 A
5270298 Ramesh Dec 1993 A
5280013 Newman et al. Jan 1994 A
5281834 Cambou et al. Jan 1994 A
5283462 Stengel Feb 1994 A
5286985 Taddiken Feb 1994 A
5293050 Chapple-Sokol et al. Mar 1994 A
5306649 Hebert Apr 1994 A
5310707 Oishi et al. May 1994 A
5312765 Kanber May 1994 A
5314547 Heremans et al. May 1994 A
5323023 Fork Jun 1994 A
5326721 Summerfelt Jul 1994 A
5334556 Guldi Aug 1994 A
5352926 Andrews Oct 1994 A
5356509 Terranova et al. Oct 1994 A
5356831 Calviello et al. Oct 1994 A
5357122 Okubora et al. Oct 1994 A
5358925 Neville Connell et al. Oct 1994 A
5371734 Fischer Dec 1994 A
5372992 Itozaki et al. Dec 1994 A
5373166 Buchan et al. Dec 1994 A
5391515 Kao et al. Feb 1995 A
5393352 Summerfelt Feb 1995 A
5394489 Koch Feb 1995 A
5395663 Tabata et al. Mar 1995 A
5397428 Stoner et al. Mar 1995 A
5399898 Rostoker Mar 1995 A
5404581 Honjo Apr 1995 A
5405802 Yamagata et al. Apr 1995 A
5406202 Mehrgardt et al. Apr 1995 A
5418216 Fork May 1995 A
5418389 Watanabe May 1995 A
5420102 Harshavardhan et al. May 1995 A
5427988 Sengupta et al. Jun 1995 A
5436759 Dijaili et al. Jul 1995 A
5438584 Paoli et al. Aug 1995 A
5441577 Sasaki et al. Aug 1995 A
5442191 Ma Aug 1995 A
5442561 Yoshizawa et al. Aug 1995 A
5444016 Abrokwah et al. Aug 1995 A
5450812 McKee et al. Sep 1995 A
5452118 Maruska Sep 1995 A
5453727 Shibasaki et al. Sep 1995 A
5466631 Ichikawa et al. Nov 1995 A
5473047 Shi Dec 1995 A
5473171 Summerfelt Dec 1995 A
5478653 Guenzer Dec 1995 A
5479033 Baca et al. Dec 1995 A
5479317 Ramesh Dec 1995 A
5480829 Abrokwah et al. Jan 1996 A
5481102 Hazelrigg, Jr. Jan 1996 A
5482003 McKee et al. Jan 1996 A
5484664 Kitahara et al. Jan 1996 A
5486406 Shi Jan 1996 A
5491461 Partin et al. Feb 1996 A
5492859 Sakaguchi et al. Feb 1996 A
5494711 Takeda et al. Feb 1996 A
5504035 Rostoker et al. Apr 1996 A
5504183 Shi Apr 1996 A
5511238 Bayraktaroglu Apr 1996 A
5512773 Wolf et al. Apr 1996 A
5514484 Nashimoto May 1996 A
5514904 Onga et al. May 1996 A
5515047 Yamakido et al. May 1996 A
5515810 Yamashita et al. May 1996 A
5516725 Chang et al. May 1996 A
5519235 Ramesh May 1996 A
5528057 Yanagase et al. Jun 1996 A
5528067 Farb et al. Jun 1996 A
5528414 Oakley Jun 1996 A
5530235 Stefik et al. Jun 1996 A
5538941 Findikoglu et al. Jul 1996 A
5541422 Wolf et al. Jul 1996 A
5549977 Jin et al. Aug 1996 A
5551238 Prueitt Sep 1996 A
5552547 Shi Sep 1996 A
5553089 Seki et al. Sep 1996 A
5556463 Guenzer Sep 1996 A
5561305 Smith Oct 1996 A
5569953 Kikkawa et al. Oct 1996 A
5572052 Kashihara et al. Nov 1996 A
5576879 Nashimoto Nov 1996 A
5588995 Sheldon Dec 1996 A
5589284 Summerfelt et al. Dec 1996 A
5596205 Reedy et al. Jan 1997 A
5596214 Endo Jan 1997 A
5602418 Imai et al. Feb 1997 A
5603764 Matsuda et al. Feb 1997 A
5606184 Abrokwah et al. Feb 1997 A
5608046 Cook et al. Mar 1997 A
5610744 Ho et al. Mar 1997 A
5614739 Abrokwah et al. Mar 1997 A
5619051 Endo Apr 1997 A
5621227 Joshi Apr 1997 A
5623439 Gotoh et al. Apr 1997 A
5623552 Lane Apr 1997 A
5629534 Inuzuka et al. May 1997 A
5633724 King et al. May 1997 A
5635433 Sengupta Jun 1997 A
5640267 May et al. Jun 1997 A
5650646 Summerfelt Jul 1997 A
5656382 Nashimoto Aug 1997 A
5659180 Shen et al. Aug 1997 A
5661112 Hatta et al. Aug 1997 A
5668048 Kondo et al. Sep 1997 A
5670798 Schetzina Sep 1997 A
5670800 Nakao et al. Sep 1997 A
5674366 Hayashi et al. Oct 1997 A
5679965 Schetzina Oct 1997 A
5682046 Takahashi et al. Oct 1997 A
5686741 Ohori et al. Nov 1997 A
5689123 Major et al. Nov 1997 A
5725641 MacLeod Mar 1998 A
5729394 Sevier et al. Mar 1998 A
5729641 Chandonnet et al. Mar 1998 A
5731220 Tsu et al. Mar 1998 A
5733641 Fork et al. Mar 1998 A
5734672 McMinn et al. Mar 1998 A
5735949 Mantl et al. Apr 1998 A
5741724 Ramdani et al. Apr 1998 A
5745631 Reinker Apr 1998 A
5753300 Wessels et al. May 1998 A
5753928 Krause May 1998 A
5754319 Van De Voorde et al. May 1998 A
5760426 Marx et al. Jun 1998 A
5760427 Onda Jun 1998 A
5764676 Paoli et al. Jun 1998 A
5767543 Ooms et al. Jun 1998 A
5770887 Tadatomo et al. Jun 1998 A
5776359 Schultz et al. Jul 1998 A
5776621 Nashimoto Jul 1998 A
5777350 Nakamura et al. Jul 1998 A
5777762 Yamamoto Jul 1998 A
5778018 Yoshikawa et al. Jul 1998 A
5778116 Tomich Jul 1998 A
5780311 Beasom et al. Jul 1998 A
5789733 Jachimowicz et al. Aug 1998 A
5789845 Wadaka et al. Aug 1998 A
5790583 Ho Aug 1998 A
5792569 Sun et al. Aug 1998 A
5792679 Nakato Aug 1998 A
5796648 Kawakubo et al. Aug 1998 A
5801072 Barber Sep 1998 A
5801105 Yano et al. Sep 1998 A
5807440 Kubota et al. Sep 1998 A
5810923 Yano et al. Sep 1998 A
5812272 King et al. Sep 1998 A
5814583 Itozaki et al. Sep 1998 A
5825055 Summerfelt Oct 1998 A
5825799 Ho et al. Oct 1998 A
5827755 Yonchara et al. Oct 1998 A
5828080 Yano et al. Oct 1998 A
5830270 McKee et al. Nov 1998 A
5833603 Kovacs et al. Nov 1998 A
5834362 Miyagaki et al. Nov 1998 A
5838035 Ramesh Nov 1998 A
5844260 Ohori Dec 1998 A
5846846 Suh et al. Dec 1998 A
5852687 Wickham Dec 1998 A
5857049 Beranek et al. Jan 1999 A
5858814 Goossen et al. Jan 1999 A
5861966 Ortel Jan 1999 A
5863326 Nause et al. Jan 1999 A
5869845 Vander Wagt et al. Feb 1999 A
5872493 Ella Feb 1999 A
5873977 Desu et al. Feb 1999 A
5874860 Brunel et al. Feb 1999 A
5879956 Seon et al. Mar 1999 A
5880452 Plesko Mar 1999 A
5883564 Partin Mar 1999 A
5883996 Knapp et al. Mar 1999 A
5886867 Chivukula et al. Mar 1999 A
5888296 Ooms et al. Mar 1999 A
5889296 Imamura et al. Mar 1999 A
5896476 Wisseman et al. Apr 1999 A
5907792 Droopad et al. May 1999 A
5912068 Jia Jun 1999 A
5926493 O'Brien et al. Jul 1999 A
5926496 Ho et al. Jul 1999 A
5937274 Kondow et al. Aug 1999 A
5937285 Abrokwah et al. Aug 1999 A
5948161 Kizuki Sep 1999 A
5953468 Finnila et al. Sep 1999 A
5955591 Imbach et al. Sep 1999 A
5959879 Koo Sep 1999 A
5962069 Schindler et al. Oct 1999 A
5963291 Wu et al. Oct 1999 A
5966323 Chen et al. Oct 1999 A
5977567 Verdiell Nov 1999 A
5981400 Lo Nov 1999 A
5981976 Murasato Nov 1999 A
5981980 Miyajima et al. Nov 1999 A
5984190 Nevill Nov 1999 A
5987011 Toh Nov 1999 A
5990495 Ohba Nov 1999 A
5995359 Klee et al. Nov 1999 A
5995528 Fukunaga et al. Nov 1999 A
6002375 Corman et al. Dec 1999 A
6008762 Nghiem Dec 1999 A
6011641 Shin et al. Jan 2000 A
6011646 Mirkarimi et al. Jan 2000 A
6013553 Wallace et al. Jan 2000 A
6020222 Wollesen Feb 2000 A
6022140 Fraden et al. Feb 2000 A
6022410 Yu et al. Feb 2000 A
6022963 McGall et al. Feb 2000 A
6023082 McKee et al. Feb 2000 A
6028853 Haartsen Feb 2000 A
6039803 Fitzgerald et al. Mar 2000 A
6045626 Yano et al. Apr 2000 A
6046464 Schetzina Apr 2000 A
6048751 D'Asaro et al. Apr 2000 A
6049702 Tham et al. Apr 2000 A
6051858 Uchida et al. Apr 2000 A
6055179 Koganei et al. Apr 2000 A
6058131 Pan May 2000 A
6064078 Northrup et al. May 2000 A
6064092 Park May 2000 A
6078717 Nashimoto et al. Jun 2000 A
6083697 Beecher et al. Jul 2000 A
6087681 Shakuda Jul 2000 A
6088216 Laibowitz et al. Jul 2000 A
6090659 Laibowitz et al. Jul 2000 A
6093302 Montgomery Jul 2000 A
6096584 Ellis-Monaghan et al. Aug 2000 A
6100578 Suzuki Aug 2000 A
6103008 McKee et al. Aug 2000 A
6103403 Grigorian et al. Aug 2000 A
6107653 Fitzgerald Aug 2000 A
6107721 Lakin Aug 2000 A
6108125 Yano Aug 2000 A
6113690 Yu et al. Sep 2000 A
6114996 Nghiem Sep 2000 A
6121642 Newns Sep 2000 A
6121647 Yano et al. Sep 2000 A
6128178 Newns Oct 2000 A
6134114 Ungermann et al. Oct 2000 A
6136666 So Oct 2000 A
6137603 Henmi Oct 2000 A
6139483 Seabaugh et al. Oct 2000 A
6143072 McKee et al. Nov 2000 A
6143366 Lu Nov 2000 A
6146906 Inoue et al. Nov 2000 A
6150239 Goesele et al. Nov 2000 A
6153010 Kiyoku et al. Nov 2000 A
6153454 Krivokapic Nov 2000 A
6156581 Vaudo et al. Dec 2000 A
6173474 Conrad Jan 2001 B1
6174755 Manning Jan 2001 B1
6175497 Tseng et al. Jan 2001 B1
6175555 Hoole Jan 2001 B1
6180252 Farrell et al. Jan 2001 B1
6180486 Leobandung et al. Jan 2001 B1
6184044 Sone et al. Feb 2001 B1
6184144 Lo Feb 2001 B1
6191011 Gilboa et al. Feb 2001 B1
6194753 Seon et al. Feb 2001 B1
6197503 Vo-Dinh et al. Mar 2001 B1
6204737 Ella Mar 2001 B1
6208453 Wessels et al. Mar 2001 B1
6210988 Howe et al. Apr 2001 B1
6211096 Allman et al. Apr 2001 B1
6222654 Frigo Apr 2001 B1
6224669 Yi et al. May 2001 B1
6225051 Sugiyama et al. May 2001 B1
6229159 Suzuki May 2001 B1
6232910 Bell et al. May 2001 B1
6235145 Li et al. May 2001 B1
6238946 Ziegler May 2001 B1
6239449 Fafard et al. May 2001 B1
6241821 Yu et al. Jun 2001 B1
6242686 Kishimoto et al. Jun 2001 B1
6248459 Wang et al. Jun 2001 B1
6248621 Wilk et al. Jun 2001 B1
6252261 Usui et al. Jun 2001 B1
6253649 Kawahara et al. Jul 2001 B1
6255198 Linthicum et al. Jul 2001 B1
6256426 Duchet Jul 2001 B1
6265749 Gardner et al. Jul 2001 B1
6268269 Lee et al. Jul 2001 B1
6271619 Yamada et al. Aug 2001 B1
6275122 Speidell et al. Aug 2001 B1
6277436 Stauf et al. Aug 2001 B1
6278137 Shimoyama et al. Aug 2001 B1
6278138 Suzuki Aug 2001 B1
6278523 Gorecki Aug 2001 B1
6291319 Yu et al. Sep 2001 B1
6297842 Koizumi et al. Oct 2001 B1
6300615 Shinohara et al. Oct 2001 B1
6306668 McKee et al. Oct 2001 B1
6312819 Jia et al. Nov 2001 B1
6313486 Kencke et al. Nov 2001 B1
6316785 Nunoue et al. Nov 2001 B1
6316832 Tsuzuki et al. Nov 2001 B1
6319730 Ramdani et al. Nov 2001 B1
6320238 Kizilyalli et al. Nov 2001 B1
6326637 Parkin et al. Dec 2001 B1
6326645 Kadota Dec 2001 B1
6338756 Dietze Jan 2002 B2
6339664 Farjady et al. Jan 2002 B1
6340788 King et al. Jan 2002 B1
6343171 Yoshimura et al. Jan 2002 B1
6345424 Hasegawa et al. Feb 2002 B1
6348373 Ma et al. Feb 2002 B1
6359330 Goudard Mar 2002 B1
6362017 Manabe et al. Mar 2002 B1
6367699 Ackley Apr 2002 B2
6372356 Thornton et al. Apr 2002 B1
6372813 Johnson et al. Apr 2002 B1
6389209 Suhir May 2002 B1
6391674 Ziegler May 2002 B2
6392257 Ramdani et al. May 2002 B1
6393167 Davis et al. May 2002 B1
6404027 Hong et al. Jun 2002 B1
6410941 Taylor et al. Jun 2002 B1
6410947 Wada Jun 2002 B1
6411756 Sadot et al. Jun 2002 B2
6417059 Huang Jul 2002 B2
6427066 Grube Jul 2002 B1
6432546 Ramesh et al. Aug 2002 B1
6438281 Tsukamoto et al. Aug 2002 B1
6461927 Mochizuki et al. Oct 2002 B1
6462360 Higgins, Jr. et al. Oct 2002 B1
20010013313 Droopad et al. Aug 2001 A1
20020006245 Kubota et al. Jan 2002 A1
20020008234 Emrick Jan 2002 A1
20020030246 Eisenbeiser et al. Mar 2002 A1
20020047123 Ramdani et al. Apr 2002 A1
20020047143 Ramdani et al. Apr 2002 A1
20020072245 Ooms et al. Jun 2002 A1
20020131675 Litvin Sep 2002 A1
Foreign Referenced Citations (114)
Number Date Country
196 07 107 Aug 1997 DE
197 12 496 Oct 1997 DE
100 17 137 Oct 2000 DE
0 250 171 Dec 1987 EP
0 300 499 Jan 1989 EP
0 309 270 Mar 1989 EP
0 331 467 Sep 1989 EP
0 342 937 Nov 1989 EP
0 455 526 Jun 1991 EP
0 483 993 May 1992 EP
0 514 018 Nov 1992 EP
0 538 611 Apr 1993 EP
0 581 239 Feb 1994 EP
0 602 568 Jun 1994 EP
0 607 435 Jul 1994 EP
0 630 057 Dec 1994 EP
0 682 266 Nov 1995 EP
0 711 853 May 1996 EP
0 777 379 Jun 1997 EP
0 810 666 Dec 1997 EP
0 875 922 Nov 1998 EP
0 881 669 Dec 1998 EP
0 884 767 Dec 1998 EP
0 926 739 Jun 1999 EP
0 957 522 Nov 1999 EP
0 964 259 Dec 1999 EP
0 964 453 Dec 1999 EP
0 993 027 Apr 2000 EP
0 999 600 May 2000 EP
1 001 468 May 2000 EP
1 043 426 Oct 2000 EP
1 043 765 Oct 2000 EP
1 069 606 Jan 2001 EP
1 085 319 Mar 2001 EP
1 109 212 Jun 2001 EP
2 779 843 Dec 1999 FR
1 319 311 Jun 1970 GB
2 335 792 Sep 1999 GB
52-88354 Jul 1977 JP
52-89070 Jul 1977 JP
52-135684 Nov 1977 JP
54-134554 Oct 1979 JP
55-87424 Jul 1980 JP
58-075868 May 1983 JP
58-213412 Dec 1983 JP
60-210018 Oct 1985 JP
60-212018 Oct 1985 JP
61-36981 Feb 1986 JP
61-63015 Apr 1986 JP
61-108187 May 1986 JP
63-34994 Feb 1988 JP
63-131104 Jun 1988 JP
63-198365 Aug 1988 JP
63-289812 Nov 1988 JP
64-50575 Feb 1989 JP
64-52329 Feb 1989 JP
1-102435 Apr 1989 JP
1-179411 Jul 1989 JP
HEI 2-391 Jan 1990 JP
02051220 Feb 1990 JP
3-41783 Feb 1991 JP
03-188619 Aug 1991 JP
5-48072 Feb 1993 JP
5-086477 Apr 1993 JP
05150143 Jun 1993 JP
5-152529 Jun 1993 JP
5-291299 Nov 1993 JP
06-069490 Mar 1994 JP
6-232126 Aug 1994 JP
6-291299 Oct 1994 JP
6-334168 Dec 1994 JP
0812494 Jan 1996 JP
9-67193 Mar 1997 JP
9-82913 Mar 1997 JP
10-256154 Sep 1998 JP
10-303396 Nov 1998 JP
10-321943 Dec 1998 JP
11135614 May 1999 JP
11-238683 Aug 1999 JP
11-260835 Sep 1999 JP
11340542 Dec 1999 JP
2000-068466 Mar 2000 JP
2 000 1645 Jun 2000 JP
2000-351692 Dec 2000 JP
2002-9366 Jan 2002 JP
WO 9210875 Jun 1992 WO
WO 9307647 Apr 1993 WO
WO 9403908 Feb 1994 WO
WO 9745827 Dec 1997 WO
WO 9805807 Jan 1998 WO
WO 9820606 May 1998 WO
WO 9914797 Mar 1999 WO
WO 9914804 Mar 1999 WO
WO 9919546 Apr 1999 WO
WO 9963580 Dec 1999 WO
WO 0006812 Feb 2000 WO
WO 0016378 Mar 2000 WO
WO 0033363 Jun 2000 WO
WO 0048239 Aug 2000 WO
WO 0104943 Jan 2001 WO
WO 0116395 Mar 2001 WO
WO 0133585 May 2001 WO
WO 0137330 May 2001 WO
WO 0159814 Aug 2001 WO
WO 0159820 Aug 2001 WO
WO 0159821 Aug 2001 WO
WO 02 01648 Jan 2002 WO
WO 0203113 Jan 2002 WO
WO 0203467 Jan 2002 WO
WO 0203480 Jan 2002 WO
WO 0209160 Jan 2002 WO
WO 0233385 Apr 2002 WO
WO 0247127 Jun 2002 WO
WO 0250879 Jun 2002 WO
Non-Patent Literature Citations (152)
Entry
Kaushik et al., Device Characteristics of Crystalline Epitaxial Oxides on Silicon Jun. 19-21, 2000, 58th Annual Device Research Conference, pp. 17-20.*
Moon et al., Roles of Buffer Layers in Epitaxial Growth of SrTiO3 Films on Silicon Substrates, Mar. 1994, Jpn J. Appl. Phys., vol. 33 pp. 1472-1477.*
Nakagawara et al., Effects of Buffer Layers in Epitaxial Growth of SrTiO3 Thin Film on Si(100), J. Appl. Phys., 78(12), Dec. 15, 1995, pp. 7226-7230.
Suzuki et al., “A Proposal of Epitaxial Oxide Thin Film Structures For Future Oxide Electronics,” Materials Science and Engineering B41, (1996), pp. 166-173.
W. F. Egelhoff et al., “Optimizing GMR Spin Valves: The Outlook for Improved Properties”, 1998 Int'l Non Volatile Memory Technology Conference, pp. 34-37.
Wang et al., “Processing and Performance of Piezoelectric Films”, Univ. Of MD, Wilcoxon Research Col, and Motorola Labs, May 11, 2000.
M. Rotter et al., “Nonlinear Acoustoelectric Interactions in GaAs/LiNbO3 Structures”, Applied Physics Letters, vol. 75(7), Aug. 16, 1999, pp. 965-967.
K. Sreenivas et al., “Surface Acoustic Wave Propagation on Lead Zirconate Titanate Thin Films,” Appl. Phys. Lett. 52(9), Feb. 29, 1998, pp. 709-711.
M. Rotter et al., “Single Chip Fused Hybrids for Acousto-Electric and Acousto-Optic Applications,” 1997 Applied Physics Letters, vol. 70(16), Apr. 21, 1997, pp. 2097-2099.
A. Mansingh et al., “Surface Acoustic Wave Propagation in PZT/YBCO/SrTiO3 and PbTiO3/YBCO/SrTiO3 Epitaxial Heterostructures,” Ferroelectric, vol. 224, pp. 275-282, 1999.
S. Mathews et al., “Ferroelectric Field Effect Transistor based on Epitaxial Perovskite Heterostructures”, Science, vol. 276, Apr. 11, 1997, pp. 238-240.
R. Houdre et al., “Properties of GaAs on Si Grown by Molecular Beam Epitaxy,” Solid State and Materials Sciences, vol. 16, Issue 2, 1990, pp. 91-114.
S. F. Fang et al., “Gallium Arsenide and Other Compound Semiconductors on Silicon,” J. Appl Phys., 68(7), Oct. 1, 1990, pp. R31-R58.
Carlin et al., Impact of GaAs Buffer Thickness on Electronic Quality of GaAs Grown on Graded Ge/GeSi/Si Substrates, Appl. Phys. Letter, vol. 76, No. 14, Apr. 2000, pp. 1884-1886.
Ringel et al., “Epitaxial Integration of III-V materials and Devices with Si Using Graded GeSi Buffers,” 27th International Symposium on Compound Semiconductors, Oct. 2000.
Zogg et al., “Progress in Compound-Semiconductor-on-Silicon-Heteroepitaxy with Fluroide Buffer Layers,” J. Electrochem Soc., vol. 136, No. 3, Mar. 1998, pp. 775-779.
Xiong et al., “Oxide Defined GaAs Vertical-Cavity Surface-Emitting Lasers on Substrates,” IEEE Photonics Technology Letters, vol. 12, No. 2, Feb. 2000, pp. 110-112.
Clem et al., “Investigation of PZT//LSCO//Pt//Aerogel Thin Film Composites for Uncooled Pyroelectric IR Detectors,” Mat. Res. Soc. Symp. Proc., vol. 541, pp. 661-666, 1999.
Gunapala et al., “Bound-To-Quasi-Bound Qauntum-Well Infrared Photodetectors,” NASA Tech Brief, vol. 22, No. 9, Sep. 1998.
Abhay M. Joshi et al., “Monolithic InGaAs-on-silicon Wave Infrared Detector Arrays,” Intn. Society for Optical Engineering, vol. 2999, pp. 211-224.
Bruley et al., “Nanostructure and Chemistry of a (100)MgO/(100) GaAs Interface,” Appl. Phys Lett, 65(5), Aug. 1994, pp. 564-566.
Fork et al., “Epitaxial MgO On Si(001) for Y-Ba-Cu-O Thin Film Growth by Pulsed Laser Deposition,” Appl. Phys Lett., 58(20), May 20, 1991, pp. 2294-2296.
Himpsel et al., “Dialectrics on Semiconductors,” Materials Science and Engineering, B1(1998), pp. 9-13.
Li et al., “Epitaxial La 0.67Sr0.33Mno3 Magnetic Tunnel Junctions,” J. Appl. Phys. 81(8), Apr. 15, 1997, pp. 5509-5511.
O'Donnell et al., “Clossal Magnetoresistance Magnetic Tunnel Junctions Grown by Molecular-Beam Epitaxy,” Appl. Physics Letters, vol. 76, No. 14, Apr. 3, 2000, pp. 1914-1916.
Mikami et al., “Formation of Si Epi/MgO-Al2O3Eip./SiO3/Si and Its Epitaxial Film Quality,” Fundamental Research Laboratories and Microelectronics Laboratories, pp. 31-34, 1983.
T. Asano et al., “An Epitaxial Si/Insulator/Si Structure Prepared by Vacuum Deposition of CaF2 and Silicon,” Thin Solid Films, vol. 93 (1982), pp. 143-150.
T. Chikyow et al., “Reaction and Regrowth Control of CeO2 on Si(111) Surface for the Silicon-On-Insulator Structure,” Appl. Phys. Lett., vol. 65, No. 8, Aug. 22, 1994, pp. 1030-1032.
J.F. Kang, et al., “Epitaxial Growth of CeO2(100) Films on Si(100) Substrates by Dual Ion Beams Reactive Sputtering,” Solid State Communications, vol. 108, No. 4, pp. 225-227, 1998.
R.A. Morgan et al., “Vertical-Cavity Surface-Emitting Lasers Come of Age,” SPIE, vol. 2683, pp. 18-29.
“Technical Analysis of Qualcomm QCP-800 Portable Cellular Phone (Transmitter Circuitry),” Talus Corporation, Qualcomm QCP-800 Technical Analysis Report, Dec. 10, 1996, pp. 5-8.
Jo-Ey Wong, et al.; “An Electrostatically-Actuated Mems Switch for Power Applications”; IEEE, 2000, pp. 633-638.
T. Mizuno, et al.; “Electron and Hole Mobility Enhancement in Strained-Si MOSFET's on SiGe-on-Insulator Substrates Fabricated by SIMOX Technology”; IEEE Electron Device Letters, vol. 21. No. 5, May 2000; pp. 230-232.
F.M. Buffer, et al.; “Strain-dependence of electron transport in bulk Si and deep-submicron MOSFET's” Computatural Electronics, 2000, Book of Abstracts, IWCE Glasgow 2000, 7th Int'l Workshop on, 2000; pp. 64-65.
S.S. Lu, et al.; “Piezoelectric field effect transistor (PEFET) using In0.2Ga0.8As/Al0.35Ga0.65As/In0.2Ga0.8As/GaAs Strained layer structure on (111)B GaAs substrate”; Electronics Letters, 12th Ma 1994, vol. 30, No. 10; pp. 823-825.
Kihong Kim, et al. “On-Chip Wireless Interconnection with Integrated Antennas”; 2000 IEEE; pp. 20.2.1-20.3.4.
C. Passiopoulos, et al.; “V-Band Single Chip, Direct Carrier BPSK Modulation Transmitter with Integrated Patch Antenna”; 1998 IEEE MTT-S Digest; pp. 305-308.
Mau-Chung Frank Chang, et al.; “RF/Wireless Interconnect for Inter- and Intra-Chip Communications”; Proceedings of the IEEE, vol. 89, No. 4, Apr. 2001; pp. 456-466.
The Electronics Industry Report; Prismark; 2001; pp. 111-120.
J.K. Abrokwah, et al.; “A Manufacturable Complementary GaAs Process”; GaAs IC Symposium, IEEE, 1993, pp. 127-130.
H. Nagata, “A Preliminary Consideration of the Growth Behaviour of CeO2, SrTiO3 and SrVO3 Films on Si Substrate,” Thin Solid Films, 224, 1993, pp. 1-3.
Nagata et al., “Heteroepitaxial Growth of CeO2(001) Films on Si(001) Substrates by Pulsed Laser Deposition in Ultrahigh Vacuum,” Jpn. Journ. Appl. Phys., vol. 30, No. 6B, Jun. 1001, pp. L1136-L1138.
Kado et al., “Heteroepitaxial Growth of SrO Films on Si Substrates,” J. Appl. Phys., 61(6), Mar. 15, 1987, pp. 2398-2400.
H. Ishiwara et al., “Epitaxial Growth of Perovskite Type Oxide Films on Substrates”; Materials Research Symposium Proceedings, vol. 220, pp. 595-600, Apr. 29, May 3, 1991.
J.K. Abrakwah, et al.; “A Manufacturable High-Speed Low-Power Complementary GaAs Process”; Extended Abstracts of the 1994 International Conference on Solid State Devices and Materials, Yokohama, 1994, pp. 592-594.
C.J. Palmstrom et al.; “Stable and Epitaxial Contacts to III-V Compound Semiconductors”; Contacts to Semiconductors Fundamentals and Technology; Noyles Publications, 1993; pp. 67-150.
Jayshri Sabarinathat, et al.; “Submicron three-dimensional infrared GaAs/AlxOy-based photonic crystal using single-step epitaxial growth”; Applied Physics Letters, vol. 78, No. 20, May 14, 2001; pp. 3024-3026.
Philip Ball; “The Next Generation of Optical Fibers”; Technology Review, May 2001; pp. 55-61.
John D. Joannopoulos, et al.; “Molding the Flow of Light”; Photonic Crystals; Princeton University Press, 1995.
Thomas F. Krauss, et al.; “Photonic crystals in the optical regime—past, present and future”; Progress in Quantum Electronics 23 (1999) 51-96.
G. H. Jin, et al.; “PLZT Film Waveguide Mach-Zehnder Electrooptic Modulator”; Journal of Lightwave Technology, vol. 18, No. 6, Jun. 2000; pp. 807-812.
D.E. Aspnes, et al.; “Steps on (001) silicon surfaces”; J. Vac. Sci. Technol. B, vol. 5, No. 4, Jul./Aug. 1987; pp. 939-944.
D.M. Newns, et al.; “Mott transition field effect transistor”; Applied Physics Letters, vol. 73, No. 6, 10 Aug. 1998; pp. 780-782.
Lucent Technologies, Inc. “Arrayed Waveguide Grating Multiplexer/Demultiplexer”; Jan. 2000; 4 pages.
Hisashi Schichijo, et al.; “Co-Integration of GaAs MESFET and Si CMOS Circuits”; IEEE Electron Device Letters, vol. 9, No. 9, Sep. 1988; pp. 444-446.
H. Shichijo, et al.; “GaAs MESFET and Si CMOS Cointegration and Circuit Techniques”; 1988 IEEE: GaAs IC Symposium 239-242.
H. Shichijo, et al.; “Monolithic Process for Co-Integration of GaAs and Silicon Circuits”; 1988 IEEE; pp. 778-781.
Z.H. Zhu, et al. “Growth of InGaAs multi-quantum wells at 1.3 m wavelength on GaAs compliant substrates”; Applied Physics Letters, vol. 72, No. 20, May 18, 1998; pp. 2598-2600.
Kurt Eisenbeiser, et al.; “Metamorphic InAIA/InGaAs Enhancement Mode HEMT's on GaAs Substrates”; IEEE Electron Device Letters, vol. 20, No. 10, Oct. 1999; pp. 507-509.
Tomonori Nagashima, et al.; “Three-Terminal Tandem Solar Cells With a Back-Contact Type Bottom Cell” Higashifuji Technical Center, Toyota Motor Corporation; 4 pages.
James Schellenberg, et al.; “Low-Loss, Planar Monolithic Baluns for K/Ka-Band Applications”; 1999 IEEE MTT-S Digest; pp. 1733-1736.
Arnold Leitner et al; “Pulsed Laser Deposition of Superconducting Strontium Titanate Thin-Films”; Session K11-Thin Films and Borocarbides; Mixed Session, Wednesday Afternoon; Mar. 19, 1997; Room 1202 B, Conv. Center (Abstract).
R.D. Vispute; “High quality optoelectronic grade epitaxial AIN films on -Al203, Si and 6H-SIC by pulsed laser deposition”; Thin Solid Films 299 (1997), pp. 94-103.
T. Warren Weeks, et al.; “GaN thin films deposited via organometallic vapor phase epitaxy on (6H)-SiC(0001) using high-temperature monocrystalline AIN buffer layers” 320 Applied Physics Letters, vol. 67, No. 3, Jul. 17, 1995, pp. 1401-403.
Z. Yu, et al.; “Epitaxial oxide thin films on SI(001)*”; J. Vac. Sci. Technol. B. vol. 18, No. 4, Jul./Aug. 2000; pp. 2139-2145.
Gentex Corporate Website; Photoelectric Smoke Detectors—How They Work; 2001.
Jeffrey B. Casady, et al.; “A Hybrid 6H-SiC Temperature Sensor Operational from 25 C to 500 C”; IEEE Transactions on Components, Packaging, and Manufacturing Technology—Part A, vol. 19, No. 3, Sep. 1996; pp. 416-422.
Ronald W. Waynant, et al.; “Optoelectronic Integrated Circuits”; Electro-Optics Handbook, McGraw-Hill, Inc., 1994; Chapter Twenty Seven.
Antonio Mecozzi, et al.; “The Roles of Semiconductor Optical Amplifiers in Optical Networks”; Optics & Photonics News; Mar. 2001; pp. 37-42.
D.A. Francis, et al.; “A single-chip linear optical amplifier”; OFC, 2001; Mar. 17-22, 2001.
G. Vogg et al.; “Epitaxial alloy films of zintl-phase Ca9Si1-xGex)2”; Journal of Crystal Growth 223 (2001); pp. 573-576.
Peter S. Guilfoyle, et al.; “Optoelectronic Architecture for High-Speed Switching and Processing Applications”; 1998 The Photonics Design and Applications Handbook; pp. H-399-H-406.
Gerald B. Stringfellow; “Organometallic Vapor-Phase Epitaxy: Theory and Practice”; Departments of Materials Science and Engineering and Electrical Engineering, University of Utah; Academic Press, 1989.
M.A. Herman, et al.; “Molecular Beam Epitaxy Fundamentals and Current Status”; Springer-Verlag Berlin Heidelberg, 1989, 1996.
“Integration of GaAs on Si Using a Spinel Buffer Layer”, IBM Technical Bulletin, vol. 30, No. 6, Nov. 1987, p. 365.
“GaInAs Superconducting FET,” IBM Technical Bulletin, vol. 36, No. 8, Aug. 1993, pp. 655-656.
“Epitaxial 3d Structure Using Mixed Spinels,” IBM Technical Bulletin, vol. 30, No. 3, Aug. 1987, p. 1271.
Moon et al., “Roles of Buffer Layers in Epitaxial Growth of SrTiO3 Films on Silicon Substrates,” Japan J of Appl. Phys., vol. 33, Mar. 1994, pp. 1472-1477.
Yodo et al., GaAs Heteroepitaxial Growth on Si Substrates with Thin Si Interlayers in situ Annealed at High Temperatures, 8257b Journal of Vacuum Science & Technology, 1995 May/Jun., vol. 13, No. 3, pp. 1000-1005.
Cuomo et al., “Substrate Effect on the Superconductivity of YBa2Cu3O7 Thin Films,” AIP Conference 1988, pp. 141-148.
McKee et al., “Crystalline Oxides on Silicon: The First Five Monolayers,” Physical Review Letters, vol. 81, No. 14, Oct. 1998, pp. 3014-3017.
McKee et al., “Molecular Beam Epitaxy Growth of Epitaxial Barium Silicide, Barium Oxide, and Barium Titanate on Silicon,” 1991 American Institute of Physics, pp. 782-784, Aug. 13, 1991.
Tambo et al., Molecular Beam Epitaxy Growth of SrTiO3 Films on Si(100)-2x1 with SrO Buffer Layer, Jpn. J. Appl. Phys., vol. 37, 1998, pp. 4454-4459.
McKee et al., “The MBE Growth and Optical Quality of BaTiO3 and SrTiO3 Thin Films on MgO,” Mat. Res. Soc. Symp. Proc., vol. 341, Apr. 1994, pp. 309-314.
McKee et al., “BaSi2 and Thin Film Alkaline Earth Silicides on Silicon,” Appl Phys. Lett., 63(20), Nov. 1993, pp. 2818-2820.
McKee et al., “Surface Structures and the Orthorhombic Transformation of Thin Film BaSi2 on Silicon,” Mat. Res. Soc. Symp. Proc., vol. 221, pp. 131-136.
Brian A. Floyd, et al.; “The projected Power Consumption of a Wireless Clock Distribution System and Comparison to Conventional Distribution Systems”; IEEE, 1999; pp. IITC99-249-IITC99-250.
Mori et al., “Epitaxial Growth of SrTiO3 Films on Si(100) Substrates Using a Focused Electron Beam Evaporation Method,” Jpn. J. of Apl. Phys., vol. 30, No. 8A, Aug. 1991, pp. L1415-L1417.
Moon et al., “Growth of Crystalline SrTiO3 Films on Si Substrates Using Thin Fluoride Buffer Layers and Their Electrical Properties,” Jpn. J. of Appl. Phys., vol. 33, (1994), pp. 5911-5916.
Farrow et al., “Heteroepitaxy of Dissimilar Materials,” Mat. Res. Soc. Symposium Proceedings, vol. 221, pp. 29-34, Apr. 29-May 2, 1991.
Ishiwara et al., “Heteroepitaxy on Silicon: Fundamentals, Structure, and Devices,” Mat. Res. Soc., Symposium Proceedings, vol. 116, pp. 369-374, Apr. 5-8, 1988.
Douglas B. Chrisey, et al; Pulsed Laser Deposition of Thin Films; pp. 273-285.
B.A. Block, et al; “Photoluminescence properties of Er3-doped BaTiO3 thin films”; Appl. Phys. Lett. 65 (1), Jul. 4, 1994, pp. 25-27.
Kevin J. Chen et al; “A Novel Ultrafast Functional Device: Resonant Tunneling High Electron Mobility Transistor”; Electron Devices Meetingk 1996; IEEE Hong Kong; Jun. 29, 1996; pp. 60-63, XP010210167.
Wenhua Zhu et al.; “Molecular Beam Epitaxy of GaAs on Si-on-Insulator”; 320 Applied Physics Letters 59(1991) Jul. 8, No. 2; pp. 210-212.
Umesh K. Mishra et al; “Oxide Based Compound Semiconductor Electronics”; Electron Devices Meeting; 1997; Technical Digest, International; Washington, D.C.; Dec. 7-10, 1997; pp. 545-548.
J.M. Daughton et al.; “Applications of Spin Dependent Transport Materials”; J. Phys. D. Appl Phys. 32(1999) R169-R177.
Wei Zhang et al.; “Stress Effect and Enhanced Magnetoresistance in La0.67Ca0.33MnO3-δ Films”; Physical Review, B. Condensed Matter; American Institute of Physics; vol. 58, No. 21, Part 1; Dec. 1, 1998; pp. 14143-14146.
Q.-Y. Tong et al.; “IOS-a new type of materials combination for system-on-a chip preparation”; 1999 IEEE International SOI Conference, Oct. 1999; pp. 104-105.
T. Kanniainen et al.; “Growth of Dielectric 1hfo2/Ta205 Thin Film Nanolaminate Capacitors By Atomic Layer Epitaxy”; Electrochemical Society Proceedings, U.S. Electrochemical Society; Pennington, N.J.; Aug. 31, 1997; pp. 36-46.
Myung Bok Lee; “Heteroepitaxial Growth of BaTiO3 Films on Si by Pulsed Laser Deposition”; Applied Physics Letters; Mar. 13, 1995; pp. 1331-1333.
Myung Bok Lee; “Formation and Characterization of Eptiaxial TiO2 and BaTiO3/TiO2 Films on Si Substrate”; Japan Journal Applied Physics Letters; vol. 34; 1995; pp. 808-811.
Gilbert Lecarpentier et al.; “High Accuracy Machine Automated Assembly for Opto Electronics”; 2000 Electronic Components and Technology Conference; pp. 1-4.
R. Ramesh; “Ferroelectric La-Sr-Co-O/Pb-Zr-Ti-O/La-Sr-Co-O Heterostructures on Silicon via Template Growth”; 320 Applied Physics Letters; 63(1993); Dec. 27,; No. 26; pp. 3592-3594.
K. Eisengbeiser; “Field Effect Transistors with SrTiO3 Gate Dielectric on Si”; Applied Physics Letters; vol. 76, vol. 76, No. 10; Mar. 6, 2000; pp. 1324-1326.
Stephen A. Mass; “Microwave Mixers”; Second Edition; 2pp.
Douglas J. Hamilton et al.; “Basic Integrated Circuit Engineering”; pp. 2; 1975.
Takeshi Obata; “Tunneling Magnetoresistance at Up to 270 K in La0.8Sr0.2MnO3/SrTiO3/La0.8Sr0.2MnO3 Junctions with 1.6-nm-Thick Barriers”; Applied Physics Letters; vol. 74, No. 2; Jan. 11, 1999; pp. 290-292.
Wei Zhang et al.; “Enhanced Magnetoresistance in La-Ca-Mn-O Films on Si Substrates Using YbaCuO/CeO2 Heterostructures”; Physica C; vol. 282-287, No. 2003; Aug. 1, 1997; pp. 1231-1232.
Shogo Imada et al; “Epitaxial Growth of Ferroelectric YmnO3 Thin Films on Si (111) Substrates by Molecular Beam Epitaxy”; Jpn. J. Appl. Phys. vol. 37 (1998); pp. 6497-6501; Part 1, No. 12A, Dec. 1998.
Ladislav Pust et al; “Temperature Dependence of the Magnetization Reversal in Co(fcc)-BN-Co(poly hcp) Structures”Journal of Applied Physics; vol. 85, No. 8; Apr. 15, 1999; pp. 5765-5767.
C. Martinez; “Epitaxial Metallic Nanostructures on GaAs”; Surface Science; vol. 482-485; pp. 910-915; 2001.
Wen-Ching Shih et al; “Theoretical Investigation of the SAW Properties of Ferroelectric Film Composite Structures”; IEEE Transactions of Ultrasonics, Ferroelectrics, and Frequency Control; vol. 45, No. 2; Mar. 1998; pp. 305-316.
Zhu Dazhong et al.; “Design of ZnO/SiO2/Si Monolithic Integrated Progrmmable SAW Filter”; Proceedings of Fifth International Conference on Solid-State and Integrated Circuit Technology; 21-23; Oct. 1998; pp. 826-829.
Kirk-Othmer Encyclopedia of Chemical Technology; Fourth Edition, vol. 12; Fuel Resources to Heat Stabilizers; A Wiley-Interscience Publication: John Wiley & Sons.
Joseph W. Goodman et al; “Optical Interconnectiosn For VLSI Systems”; Proceedings of the IEEE, vol. 72, No. 7 Jul. 1984.
Fathimulla et al.; “Monolithic Integration of InGaAs/InAIAs MODFETs and RTDs on InP-bonded-to-Si Substrate”, Fourth International Conference on Indium Phosphide and Related Materials, Newport, RI, USA; Apr. 21-24, 1992; pp. 167-170; XP000341253; IEEE, New York, NY, USA; ISBN:0-7803-0522-1.
H. Takahashi et al.; “Arraryed-Waveguide Grating For Wavelength Division Multi/Demultiplexer With Nanometre Resolution”; Electronics Letters; vol. 26, No. 2, 18th Jan. 1990.
Pierret R.F.; “1/J-FET and MESFET”; Field Effect Devices; MA, Addison-Wesley; 1990; pp. 9-22.
M. Schreiter, et al.; “Sputtering of Self-Polarized PXT Films for IR-Detector Arrays”; 1998 IEEE; pp. 181-185.
Hideaki Adachi et al.; “Sputtering Preparation of Ferroelectric PLZT Thin Films and Their Optical Applications”; IEEE Transactions of Ultrasonics, Ferroelectrics and Frequencey Control, vol. 38, No. 6, Nov. 1991.
A.J. Moulson et al.; “Electroceramics Materials Properties Applications”; Chapman & Hall; pp. 366-369.
P.A. Langjahr et al; “Epitaxial Growth and Structure of Cubic and Pseudocubic Perovskite Films on Perovskite Substrates”; Mat. Res. Soc. Symp. Proc., vol. 401; 1995 Materials Research Society; pp. 109-114.
Wang et al.; “Depletion-Mode GaAs MOSFETs with Negligible Drain Current Drift and Hysteresis”; Electron Devices Meeting, 1998, IEDM ′98 Technical Digest; pp. 67-70.
Ben G. Streetman; “Solid State Electronic Devices”; 1990, Prentice Hall; Third Edition; pp. 320-322.
A.Y Wu et al.; “Highly Oriented (Pb,La)(Zr,Ti)O3 Thin Films on Amorphous Substrates”; IEEE, 1992; pp. 301-304.
Timothy E. Glassman et al.; “Evidence for Cooperative Oxidation of MoCVD Precursors Used in BaxSr1-xTiO3 Film Growth”; Mat. Res. Soc. Symp. Proc. vol. 446, 1997 Materials Research Society; pp. 321-326.
S.N. Subbarao et al.; “Monolithic PIN Photodetector and FET Amplifier on GaAs-os-Si”; IEEE, GaAs IC Symposium-163-166; 1989.
T.A. Langdo et al.; “High Quality Ge on Si by Epitaxial Necking”; Applied Physics Letters; vol. 76, No. 25: pp. 3700-3702; Jun. 19, 2000.
Chenning Hu et al.; Solar Cells From Basics to Advanced Systems; McGraw-Hill Book Company; 1983.
O.J. Painter et al; “Room Temperature Photonic Crystal Defect Lasers at Near-Infrared Wavelengths in InGaAsp”; Journal of Lightwave Technology, vol. 17, No. 11; Nov. 1999.
C. Donn et al.; “A 16-Element, K-Band Monolithic Active Receive Phased Array Antenna”; Antennas and Propagation Society International Symposium, 1988; pp. 188-191, vol. 1; Jun. 6-10, 1988.
Don W. Shaw; “Epitaxial GaAs on Si: Progress and Potential Applications”; Mat. Res. Soc. Symp. Proc.; pp. 15-30; 1987.
G.J.M. Dormans, et al.; “PbTiO/3/Thin Films Grown by Organometallic Chemical Vapour Deposition”; Third International Symposium on Integrated Ferroelectrics; Apr. 3-5, 1991 (Abstract).
P.J. Borrelli et al.; “Compositional and Structural Properties of Sputtered PLZT Thin Films”; Ferroelectric Thin Films II Symposium; Dec. 2-4, 1991 (Abstract).
Ranu Nayak et al; “Enhanced acousto-optic diffraction efficiency in a symmetric SrRiO3/BaTiO3/SrTiO3 thin-film heterostructure”; Nov. 1, 2000; vol. 39, No. 31; Applied Optics; pp. 5847-5853.
Ranu Nayak et al; “Studies on acousto-optical interaction in SrTiO3/BaTiO3/SrTiO3 epitaxial thin film heterostructures”; J. Phys. D: Appl. Phys. 32 (1999) 380-387.
S.K. Tweksbury et al.; “Cointegration of Optoelectronics and Submicron CMOS”; Wafer Scale Integration; 1993; Proceedings, Fifth Annual IEEE; Jan. 20, 1993; pp. 358-367.
V. Kaushik et al.; “Device Characteristics of Crystalline Epitaxial Oxides on Silicon”; Device Research Conference, 2000; Conference Digest 58th DRC; pp. 17-20; Jun. 19-21, 2000.
Katherine Derbyshire; “Prospects Bright for Optoelectronics Volume, Cost Drive Manufacturing for Optical Applications”; Semiconductor Magazine; vol. 3, No. 3; Mar. 2002.
Alex Chediak et al; “Integration of GaAs/Si with Buffer Layer and Its Impact on Device Integration”; TICS 4, Prof. Sands. MSE 225, Apr. 12, 2002; pp. 1-5.
S.A. Chambers et al; “Band Discontinuities at Epitaxial SrTiO3/Si(001) Heterojunctions”; Applied Physics Letters; vol. 77, No. 11; Sep. 11, 2000; pp. 1662-1664.
H. Wang et al.; “GaAs/GaAIAs Power HBTs for Mobile Communications”; Microwave Symposium Digest; 1993 IEEE; vol. 2; pp. 549-552.
Y. Ota et al.; “Application of Heterojunction FET to Power Amplifier for Cellular Telephone”; Electronics Letters; 26th May 1994; vol. 30, No. 11; pp. 906-907.
Keiichi Sakuno et al; “A 3.5W HBT MMIC Power Amplifier Module for Mobile Communications”; IEEE 1994; Microwave and Millimeter-Wave Monolithic Circuits Symposium; pp. 63-66.
Mitsubishi Semiconductors Press Release (GaAs FET's) Nov. 8, 1999 pp. 1-2.
R.J. Matyi et al; “Selected Area Heteroepitaxial Growth of GaAs on Silicon for Advanced Device Structures”; 2194 Thin Solid Films; 181 (1989) Dec. 10; No.1; pp. 213-225.
K. Nashimoto et al; “Patterning of Nb, LaOnZr, TiO3 Waveguides for Fabricating Micro-Optics Using Wet Etching and Solid-Phase Epitaxy”; Applied Physics Letters; vol. 75, No. 8; Aug. 23, 1999; pp. 1054-1056.
Bang-Hung Tsao et al; “Sputtered Barium Titanate and Barium Strontium Titanate Films for Capacitor Applications”; Applications of Ferroelectrics, 2000; Proceedings of the 2000 12th International Symposium on vol. 2; pp. 837-840.
Man Fai Ng et al; “Heteroepitaxial growth of lanthanum aluminate films derived from mixed metal nitrates”; Journal of Materials Research; vol. 12, No. 5; pp. 1306.
Yuji Matsumoto et al.; “Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide”; Science; Feb. 2, 2001; vol. 291; pp. 854-856.
S.A. Chambers et al.; “Epitaxial Growth and Properties of Ferromagnetic Co-Doped TiO2 Anatase”; Applied Physics Letters; vol. 79, No. 21; Nov. 19, 2001; pp. 3467-3469.
Continuation in Parts (1)
Number Date Country
Parent 09/502023 Feb 2000 US
Child 09/983854 US