The present invention relates to devices having substrates with openings passing through the substrates and conductors in the openings. Some-devices of the invention incorporate non-electronically-functioning components. Examples include micro-electro-mechanical systems (MEMS) and other micro-structure-technology (MST) structures.
Integrated circuit fabrication technology has been used to create micro-electro-mechanical and micro-electro-optical structures. Examples of such structures include relays, micropumps, and optical devices for fingerprint recognition.
Improved fabrication techniques and structures suitable for such devices are desirable. It is also desirable to increase the mechanical strength of devices with or without non-electrically functioning components.
Some embodiments of the present invention combine techniques for fabricating micro-electro-mechanical and micro-electro-optical structures with backside contact fabrication technology used for vertical integration and described in PCT publication WO 98/19337 (TruSi Technologies, LLC, May 7, 1998).
The invention is not limited to such embodiments. In some embodiments, a fabrication method comprises:
In some embodiments, the second side is a backside of the first substrate, and the exposed conductor provides backside contact pads. The front side of the first substrate can be bonded to another substrate or substrates which protect the non-electronically-functioning component during processing, including the processing that exposes the conductor. The component is also protected during dicing. The other substrate or substrates can be transparent as needed in the case of an optical component. The other substrate or substrates can be closely positioned to the component to reduce optical distortion. Also, small system area can be achieved.
In some embodiments, the fabrication method comprises:
forming a structure comprising a first substrate which has: a first side, an opening in the first side, and a conductor in the opening;
removing material from the structure so that the conductor becomes exposed on a second side of the first substrate;
wherein removing of the material comprises removing the material from a first portion of the second side of the first substrate to cause the first portion to be recessed relative to a second portion of the second side of the first substrate.
The resulting structure may or may not have a non-electronically-functioning component. In some embodiments, the first substrate is thicker at the second portion than at the first portion. The thicker second portion improves the mechanical strength of the structure.
Other features and advantages of the invention are described below.
The non-electronically-functioning components of structures 120 may include parts of substrate 210. The components may also include released components, i.e. components originally manufactured on another substrate (not shown) and then released from that substrate. See e.g. U.S. Pat. No. 6,076,256 (released mirrors).
Structures 120 can be coupled to circuitry 220 fabricated in and/or on substrate 210. Circuitry 220 may be used in operation of the non-electronically-functioning components. The circuitry may control the components or receive signals indicative of the state of the components. Circuitry 220 may include amplifiers, filters, or any other electronic circuitry. Substrate 210 can be made from a suitable semiconductor material, for example, silicon. In some embodiments, circuitry 220 contains only interconnect lines. In some of these embodiments, substrate 210 is made from a non-semiconductor material, for example, a dielectric polymer or glass.
Circuitry 220 and/or structures 120 are connected to contact structures 230. One structure 230 is shown on a larger scale in FIG. 2B. Structures 230 can be fabricated as described, for example, in PCT publication WO 98/193 37 (TruSi Technologies, LLC, May 7, 1998); U.S. application Ser. No. 09/083,927, filed May 22, 1998 (now U.S. patent no. 6,184,060); and U.S. application Ser. No. 09/456,225, filed Dec. 6, 1999 (now U.S. patent no. 6,322,903); all of which are incorporated herein by reference. Briefly, vias 260 are etched in substrate 210. Insulator 270 is formed in the vias. Conductor 280 (for example, metal) is formed over the insulator 270. Optionally, another material 290 is formed over the conductor 280 to fill the vias
Insulator 270 can be omitted if wafer 210 is made from an insulating material. Also, the vias can be filled with conductor 280.
Structures 120, circuitry 220, and contact structures 230 can be fabricated in any order. For example, circuitry 220 can be made first, contact structures 230 can be made next, and the structures 120 can be made last. Alternatively, the steps forming the elements 230, 220,120 can be interleaved, and the same steps can be used to form more than one of these elements.
Cavities 320 and the alignment marks can be formed by conventional processes. See for example, U.S. Pat. No. 6,097,140 (glass etch).
Wafers 310, 210 are bonded together (FIG. 4). Structures 120 become positioned in cavities 320. The wafers can be bonded by conventional techniques, for example, with an adhesive or a glass frit in vacuum. Before the adhesive is deposited, and even before the structures 120 are attached to wafer 210, portions of wafer 210 can be covered with an insulating material to insulate the wafer from the adhesive.
The wafers can also be bonded by solder bonding, eutectic bonding, thermocompression, with epoxy, and by other techniques, known or to be invented.
Then the backside 210B of wafer 210 (the side opposite to the side bonded to wafer 310) is processed to expose the contacts 280C formed by the conductor 280 at the bottom of vias 260. This processing can be performed by methods described in U.S. patent application Ser. No. 09/456,225 (now U.S. Pat. No. 6,322,903) and PCT application WO 98/19337. According to one such method, substrate 210 and insulator 270 are etched by an atmospheric pressure plasma etch to expose the contacts 280C. Then an insulator 520 (
According to another method, after the conductor 280 has been exposed by the etch of substrate 210 and insulator 270, the structure is turned upside down (FIG. 7), and insulator 520 is deposited by a spin-on or spraying process and then cured. Insulator 520 can be polyimide, glass, or some other flowable material (for example, a flowable thermosetting polymer.) The top surface of layer 520 is substantially planar, or at any rate the layer 520 is thinner over contact structures 230 than elsewhere. In some embodiments, layer 520 does not cover the contacts 280C. If needed, layer 520 can be etched with a blanket etch to adequately expose the contacts 280C (e.g., if insulator 520 covered the contacts). The etch does not expose the substrate 210. The resulting wafer stmcture is like that of
According to another method, the etch of substrate 210 exposes the insulator 270 but not the conductor 280. See FIG. 8. Insulator 270 protrudes from the substrate surface. The wafer structure is turned upside down (FIG. 8), and insulating layer 520 is formed as described above in connection with FIG. 7. Layer 520 is thinner over the contact structures 230 than elsewhere. In some embodiments, layer 520 does not cover the contact structures. If needed, layer 520 can be etched with a blanket etch to adequately expose the insulator 270 (FIG. 9). Then insulator 270 is etched selectively to insulator 520 to expose the conductor 280. In some embodiments, insulator 270 is silicon dioxide and insulator 520 is polyimide. The resulting wafer structure is like that of FIG. 6.
One advantage of the processes of
The wafer structure is diced into individual chips 1010 (FIG. 10). The structures 120 are protected by the substrates 210, 310 during dicing.
Chips 1010 can be attached to a wiring substrate (not shown), for example, a printed circuit board (PCB). Contacts 280C can be directly attached to the wiring substrate using flip chip technology. See the aforementioned U.S. patent application Ser. No. 09/456,225. Alternatively, chips 1010 can be turned upside down, with the contacts 280C facing up, and the chips can be wire bonded to a lead frame and packaged using conventional technology. Ball grid arrays, chip scale packages, and other packaging technologies, known or to be invented, can be used.
Advantageously, after wafers 210,310 have been bonded together, the structures 120 and circuitry 220 are protected by the two wafers. The area is small because the substrate 310 does not extend around the substrate 210 as in FIG. 1. Cavities 320 can be made shallow so that the substrate 310 can be positioned close to structures 120. This is advantageous for optical applications because optical distortion is reduced. Further, since substrate 310 is placed directly on substrate 210, precise positioning of substrate 310 relative to structures 120 is facilitated.
For optical applications, substrate 310 can be covered by non-reflective coatings. Cavities 320 can be filled with refractive index matching materials. Lenses can be etched in substrate 310.
Substrate 310 may contain electronic circuitry coupled to structures 120 and/or circuitry 220. Substrate 310 can be fabricated from insulating or semiconductor materials. U.S. patent application Ser. No. 09/456,225 describes some techniques that can be used to connect circuitry in substrate 310 to circuitry 220.
Substrate 210 and insulator 270 are etched selectively to mask 1110 to expose contact portions 280C of conductor 280 on backside 210B (FIG. 12). Suitable etching processes are described above in connection with FIG. 5. Then mask 1110 is stripped, and insulating layer 520 (
Conductive layer 1410 (FIG. 14), for example, a metal suitable for integrated circuit bond pads, is deposited and patterned on the wafer backside to provide conductive pads 1410C and conductive lines connecting these pads to conductor 280. Then a suitable insulator 1510 (
Then the wafer structure is diced (FIG. 16). Pads 1410C of the resulting chips 1010 can be attached directly to a wiring substrate, for example, a PCB. The bottom view of a single chip 1010 is shown in FIG. 17.
One advantage of the embodiment of
In
The extensions can be formed in structures that do not have non-electronically-functioning components.
In another embodiment, the wafer structure is processed to the stage of
The wafer structure is tested and diced to form individual chips 1010 (FIG. 20).
Wafer 210 is processed as in FIG. 3. Then wafers 310, 210 are aligned and bonded as shown in FIG. 22. Stand-off features 2110 are bonded to wafer 210. Structures 120 are located between the stand-off features. Then the wafer structure is processed by any of the methods described above in connection with
In the embodiment of
In some embodiments in which the bonding process starts before the material 2110 is hardened, spacers are formed on wafer 310 or 210, or both, to maintain a minimum distance between the two wafers to prevent the wafer 210 from damaging the structures 120. The spacers can be fixed hard features formed on the wafers. Alternatively, the spacers can be hard balls 2120 floating in material 2110. The balls can be made of glass, resin, or some other suitable material (possibly a dielectric). Balls 2120 maintain the minimum distance between the wafers 310,210 when the wafers are bonded together. An exemplary diameter of balls 2120 is 10-30 μm. The diameter is determined by the distance to be maintained between the two wafers. See U.S. Pat. No. 6,094,244, issued Jul. 25, 2000.
In some embodiments, the stand-off features 2110 completely surround the structures 120 and maintain the vacuum in the regions in which the structures 120 are located. The vacuum helps to hermetically isolate the structures 120 when the ambient pressure increases to atmospheric pressure. The strength of the bond between the two wafers is also improved.
In some embodiments, the material 2110 is deposited on wafer 210 rather than wafer 310.
In some embodiments, the material 2110 covers and contacts the structures 120.
In some embodiments, the material 2110 is hardened before the wafers are bonded, and is not used to fill the vias 260.
In
In
In some embodiments, the vias 260 are filled with material 2110, as in FIG. 22.
In
In
Cavities 2710 can be used in conjunction with any of the structures and processes described above in connection with
Structures 120 can be manufactured using multiple wafers. In the example of
The embodiments described above illustrate but do not limit the invention. The invention is not limited to any particular materials, processes, dimensions, layouts, or to any particular types of structures 120. Structures 120 may have mechanical components, that is, components that move during operation. Other embodiments and variations are within the scope of the invention, as defined by the appended claims.
The present application is a division of U.S. patent application Ser. no. 09/791,977 filed Feb. 22, 2001 now U.S. Pat. 6,717,254, incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4463336 | Black et al. | Jul 1984 | A |
4733290 | Reardon et al. | Mar 1988 | A |
4870745 | Lee | Oct 1989 | A |
5270261 | Bertin et al. | Dec 1993 | A |
5453404 | Leedy | Sep 1995 | A |
5472539 | Saia et al. | Dec 1995 | A |
5475318 | Marcus et al. | Dec 1995 | A |
5628917 | MacDonald et al. | May 1997 | A |
5659195 | Kaiser et al. | Aug 1997 | A |
5798283 | Montague et al. | Aug 1998 | A |
5880921 | Tham et al. | Mar 1999 | A |
5904496 | Richards et al. | May 1999 | A |
5919548 | Barron et al. | Jul 1999 | A |
5932940 | Epstein et al. | Aug 1999 | A |
5944537 | Smith et al. | Aug 1999 | A |
5963788 | Barron et al. | Oct 1999 | A |
6012336 | Eaton et al. | Jan 2000 | A |
6037667 | Hembree et al. | Mar 2000 | A |
6054335 | Sun et al. | Apr 2000 | A |
6061169 | Feldman et al. | May 2000 | A |
6071426 | Lee et al. | Jun 2000 | A |
6072608 | Psaltis et al. | Jun 2000 | A |
6075239 | Aksyuk et al. | Jun 2000 | A |
6076256 | Drake et al. | Jun 2000 | A |
6084777 | Kalidas et al. | Jul 2000 | A |
6094244 | Kawata et al. | Jul 2000 | A |
6097140 | Miller et al. | Aug 2000 | A |
6116756 | Peeters et al. | Sep 2000 | A |
6116863 | Ahn et al. | Sep 2000 | A |
6126846 | Silverbrook | Oct 2000 | A |
6142358 | Cohn et al. | Nov 2000 | A |
6147397 | Burns et al. | Nov 2000 | A |
6149190 | Galvin et al. | Nov 2000 | A |
6184060 | Siniaguine | Feb 2001 | B1 |
6322903 | Siniaguine et al. | Nov 2001 | B1 |
Number | Date | Country |
---|---|---|
WO 9818337 | May 1998 | WO |
WO 9819337 | May 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20020115234 A1 | Aug 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09791977 | Feb 2001 | US |
Child | 10109233 | US |