Semiconductor device geometries have dramatically decreased in size since their introduction several decades ago. Modern semiconductor fabrication equipment routinely produces devices with 250 nm, 180 nm, and 65 nm feature sizes, and new equipment is being developed and implemented to make devices with even smaller geometries. The decreasing feature sizes result in structural features on the device having decreased spatial dimensions. The reduced dimensions, in turn, require the use of conductive materials having a very low resistivity and insulation materials having a very low dielectric constant.
Low dielectric constant films are particularly desirable for premetal dielectric (PMD) layers and intermetal dielectric (IMD) layers to reduce the RC time delay of the interconnect metalization, to prevent cross-talk between the different levels of metalization, and to reduce device power consumption. Undoped silicon oxide films deposited using early CVD techniques typically had a dielectric constant (κ) in the range of 4.0 to 4.2. In contrast, various carbon-based dielectric layers that are now commonly used in the semiconductor industry have dielectric constants below 3.0. Many of these carbon-based layers are relatively unstable when initially deposited and are subsequently cured in an oxygen environment and/or annealed to increase the film's stability.
A substrate curing and treatment module is described for performing the curing and post-cure treatment of dielectric layers deposited on the substrate. The modules may include a separate curing chamber and treatment chamber. Substrates may be transferred to the curing chamber of the module with uncured layers deposited thereon by an FCVD process. The deposition process may form an uncured silicon-oxygen-carbon containing layer, silicon-oxygen-nitrogen containing layer, and/or silicon-oxygen-nitrogen-carbon containing layer on the substrate. When the substrate is transferred to the curing chamber, the deposited layer or layers may be cured at temperatures of about 150° C. to about 200° C. in an ozone-containing atmosphere. After the curing, the substrate may be transferred to the treatment chamber of the module an exposed to a water-vapor containing atmosphere at temperatures above the dew point (e.g., about 80° C. to about 100° C.) to form the treated dielectric film. For some fabrication processes, the cured and treated substrates removed from the module are transferred through a load-lock chamber and factory interface (FI) to a front-opening unified pod (FOUP) that stores the substrate as it is removed from the fabrication system.
Embodiments of the invention include a substrate curing and treatment module. The module may include a curing chamber for curing a dielectric layer in an atmosphere that includes ozone, and a treatment chamber for treating the cured dielectric layer in an atmosphere that includes water vapor. The curing chamber may be vertically positioned with respect to the treatment chamber. The module may also include a heating system operatively coupled to the curing chamber and the treatment chamber. The heating system may be operative to adjust a first temperature of the curing chamber to from about 150° C. to about 200° C., and to adjust a second temperature of the treatment chamber to from about 80° C. to about 100° C. The module may further include an access door on both the curing chamber and the treatment chamber. Each access door is operable to be moved to an open position to receive a substrate, and operable to be moved to a closed sealed position during while the substrate is being cured or treated.
Embodiments of the invention further include a substrate processing system that has a plurality of deposition chambers, and a first robotic arm operable to move a substrate between one of the deposition chambers and a load-lock substrate holding area. The system may also have a second robotic arm operable to move the substrate between the load-lock substrate holding area and a curing chamber of a substrate curing and treatment module. The substrate curing and treatment module is attached to the load-lock substrate holding area, and may include: The curing chamber for curing a dielectric layer in an atmosphere comprising ozone, and a treatment chamber for treating the cured dielectric layer in an atmosphere comprising water vapor. The curing chamber may be vertically positioned with respect to the treatment chamber. The module may also include a heating system operatively coupled to the curing chamber and the treatment chamber, where the heating system is operative to adjust a first temperature of the curing chamber to from about 150° C. to about 200° C., and to adjust a second temperature of the treatment chamber to from about 80° C. to about 100° C. The module may still further include an access door on both the curing chamber and the treatment chamber. Each of the access doors are operable to be moved to an open position to receive a substrate, and operable to be moved to a closed sealed position during while the substrate is being cured or treated.
Additional embodiments and features are set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the specification or may be learned by the practice of the invention. The features and advantages of the invention may be realized and attained by means of the instrumentalities, combinations, and methods described in the specification.
A further understanding of the nature and advantages of the present invention may be realized by reference to the remaining portions of the specification and the drawings wherein like reference numerals are used throughout the several drawings to refer to similar components. In some instances, a sublabel is associated with a reference numeral and follows a hyphen to denote one of multiple similar components. When reference is made to a reference numeral without specification to an existing sublabel, it is intended to refer to all such multiple similar components.
Both chambers include an access door 106a-b that is operable to move to an open position to receive one or more substrates 108a-c, and also operable to move to a closed sealed position while the substrate is being cured or treated. Module 100 shows substrate racks 112a-b that can hold a plurality of substrates 108a-c in the chambers at the same time. This makes module 100 a batch cure and treatment module that can perform curing and treatment steps simultaneously on multiple substrates (e.g., 2 or more substrates, 3 or more substrates, 4 or more substrates, 5 or more substrates, 10 or more substrates, etc.). Additional embodiments may include an alternate structure for holding the substrates, such as a platen that may be translatable in a vertical, horizontal, and/or circular direction. These alternate structures may be operable to hold a single substrate or multiple substrates.
The module 100 may receive substrates from a robotic arm 114 that has a positioning arm 116 operable to move a substrate into and out of the curing chamber 102 and transfer chamber 104. The positioning arm 116 may place a substrate 108a-c into the substrate rack 112a of the curing chamber 102, and later remove the cured substrate from the curing chamber. The positing arm 116 may also transfer the cured substrate from the curing chamber 102 to the substrate rack 112b of the treatment chamber 104. The arm 116 may also remove the cured and treated substrate from the treatment chamber 104. In the embodiment shown, the positioning arm 116 may be extended into and retracted from the chambers of module 100, as well as move in a vertical direction between the chambers. The arm 116 may also rotate to receive or place substrates from a substrate holding area near the module 100.
The module 100 may also include a gas distribution system 118 and heating system 122 coupled to the curing and treatment chambers, respectively, to control the atmospheric conditions and temperatures of the chambers. As noted above, substrate curing may include exposing the substrate to an ozone-containing atmosphere at about 150° C. to about 200° C., and substrate treatment may include exposing the cured substrate to an water-vapor containing atmosphere at about 80° C. to about 100° C.
The gas distribution system 118 is operable to control the flow of gases from a gas source (not shown) into the curing chamber 102 and treatment chamber 104. In module 100, the delivery mechanism includes gas conduits 120a-b that transport gases from the gas delivery system to each of the chambers. The gas delivery system may also include a gas return (not shown) that removes gases from the chambers of module 100. The gas return may be coupled to a vacuum pump and exhaust that are fluidly coupled to the module 100.
The gases delivered by gas distribution system 118 to the curing chamber 102 may include molecular oxygen, ozone, argon, and molecular nitrogen, among other gases. The gases may be mixed and sent to the curing chamber 102 in a single stream, or provided separately and first mixed in the chamber. The gases delivered to the treatment chamber 104 by distribution system 118 may include water vapor, argon, and molecular nitrogen, among other gases.
The heating system 122 is operatively coupled to heating elements (not shown) in both the curing chamber 102 and the treatment chamber 104. These heating elements are independently controlled by the heating system 122 to permit the temperature of the curing chamber 102 to be different than the temperature of the treatment chamber 104. Independent temperature sensors (not shown) may be present in the chambers to monitor the chamber temperature and provide feedback to the heating system 122 for adjusting and/or maintaining the temperature in the chamber.
Referring now to
As shown in
The modules 202a-b may be reversibly, and substantially leak-tightly coupled to the load-lock chamber 204. The coupling mechanism may include reversible fasteners (e.g., threaded bolts, screws, etc.) and gaskets that leak-tightly couple the modules 202a-b to the load-lock chamber. The load-lock chamber 204 includes openings aligned with the access doors of the curing and treatment chambers of the modules 202a-b, to permit a robot arm to transfer substrates between the load-lock chamber and the modules.
Substrate wafers may be provided to the system through the FOUPs 208a-d, which may sealingly couple to the FI 206. The substrates may pass through the FI 206 and into the load-lock chamber 204 with the aid of a robotic arm (not shown) positioned in the FI. Another robotic arm may then transfer the substrate from the load-lock chamber 204 to one of the processing chambers 210a-f that deposit one or more uncured dielectric layers on the substrate.
After the deposition, the robotic arm may transfer the substrate from the processing chamber 210a-f back to the load-lock chamber 204, where the initial robotic arm may place the substrate into a curing chamber of one of the modules 202a-b through an open access door in the chamber. As noted in the description of
Having described several embodiments, it will be recognized by those of skill in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the invention. Additionally, a number of well-known processes and elements have not been described in order to avoid unnecessarily obscuring the present invention. Accordingly, the above description should not be taken as limiting the scope of the invention.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included.
As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a process” includes a plurality of such processes and reference to “the substrate” includes reference to one or more substrates and equivalents thereof known to those skilled in the art, and so forth.
Also, the words “comprise,” “comprising,” “include,” “including,” and “includes” when used in this specification and in the following claims are intended to specify the presence of stated features, integers, components, or steps, but they do not preclude the presence or addition of one or more other features, integers, components, steps, acts, or groups.
This application is a non-provisional, and claims the benefit, of commonly assigned U.S. Provisional Application No. 61/389,957, filed Oct. 5, 2010, entitled “Module for Ozone Cure and Post-Cure Moisture Treatment,” the entirety of which is herein incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4147571 | Stringfellow et al. | Apr 1979 | A |
4200666 | Reinberg | Apr 1980 | A |
4816098 | Davis et al. | Mar 1989 | A |
4818326 | Liu et al. | Apr 1989 | A |
4910043 | Freeman et al. | Mar 1990 | A |
4931354 | Wakino et al. | Jun 1990 | A |
4946593 | Pinigis | Aug 1990 | A |
5016332 | Reichelderfer et al. | May 1991 | A |
5110407 | Ono et al. | May 1992 | A |
5212119 | Hah et al. | May 1993 | A |
5271972 | Kwok et al. | Dec 1993 | A |
5279784 | Bender et al. | Jan 1994 | A |
5364488 | Minato et al. | Nov 1994 | A |
5393708 | Hsia et al. | Feb 1995 | A |
5426076 | Moghadam | Jun 1995 | A |
5434109 | Geissler et al. | Jul 1995 | A |
5468687 | Carl et al. | Nov 1995 | A |
5485420 | Lage et al. | Jan 1996 | A |
5530293 | Cohen et al. | Jun 1996 | A |
5547703 | Camilletti et al. | Aug 1996 | A |
5558717 | Zhao et al. | Sep 1996 | A |
5578532 | van de Ven et al. | Nov 1996 | A |
5587014 | Iyechika et al. | Dec 1996 | A |
5593741 | Ikeda | Jan 1997 | A |
5620525 | van de Ven et al. | Apr 1997 | A |
5622784 | Okaue et al. | Apr 1997 | A |
5635409 | Moslehi | Jun 1997 | A |
5665643 | Shin | Sep 1997 | A |
5691009 | Sandhu | Nov 1997 | A |
5769951 | van de Ven et al. | Jun 1998 | A |
5786263 | Perera | Jul 1998 | A |
5811325 | Lin et al. | Sep 1998 | A |
5843233 | van de Ven et al. | Dec 1998 | A |
5853607 | Zhao et al. | Dec 1998 | A |
5882417 | van de Ven et al. | Mar 1999 | A |
5925411 | van de Ven et al. | Jul 1999 | A |
5926737 | Ameen et al. | Jul 1999 | A |
5935340 | Xia et al. | Aug 1999 | A |
5937308 | Gardner et al. | Aug 1999 | A |
5937323 | Orczyk et al. | Aug 1999 | A |
5961850 | Satou et al. | Oct 1999 | A |
5966595 | Thakur et al. | Oct 1999 | A |
6008515 | Hsia et al. | Dec 1999 | A |
6009830 | Li et al. | Jan 2000 | A |
6014979 | Van Autryve et al. | Jan 2000 | A |
6017791 | Wang et al. | Jan 2000 | A |
6024044 | Law et al. | Feb 2000 | A |
6087243 | Wang | Jul 2000 | A |
6090442 | Klaus et al. | Jul 2000 | A |
6090723 | Thakur et al. | Jul 2000 | A |
6110838 | Loewenstein | Aug 2000 | A |
6114219 | Spikes et al. | Sep 2000 | A |
6121130 | Chua et al. | Sep 2000 | A |
6140242 | Oh et al. | Oct 2000 | A |
6146970 | Witek et al. | Nov 2000 | A |
6150286 | Sun et al. | Nov 2000 | A |
6156394 | Yamasaki et al. | Dec 2000 | A |
6156581 | Vaudo et al. | Dec 2000 | A |
6165834 | Agarwal et al. | Dec 2000 | A |
6180490 | Vassiliev et al. | Jan 2001 | B1 |
6187682 | Denning et al. | Feb 2001 | B1 |
6191004 | Hsiao | Feb 2001 | B1 |
6207587 | Li et al. | Mar 2001 | B1 |
6211040 | Liu et al. | Apr 2001 | B1 |
6258690 | Zenke | Jul 2001 | B1 |
6287962 | Lin | Sep 2001 | B1 |
6296255 | Hashimoto | Oct 2001 | B1 |
6302964 | Umotoy et al. | Oct 2001 | B1 |
6339997 | Nakagawa et al. | Jan 2002 | B1 |
6355581 | Vassiliev et al. | Mar 2002 | B1 |
6383954 | Wang et al. | May 2002 | B1 |
6387207 | Janakiraman et al. | May 2002 | B1 |
6406677 | Carter et al. | Jun 2002 | B1 |
6413583 | Moghadam et al. | Jul 2002 | B1 |
6448187 | Yau et al. | Sep 2002 | B2 |
6469283 | Burkhart et al. | Oct 2002 | B1 |
6503557 | Joret | Jan 2003 | B1 |
6506253 | Sakuma | Jan 2003 | B2 |
6508879 | Hashimoto | Jan 2003 | B1 |
6509283 | Thomas | Jan 2003 | B1 |
6524931 | Perera | Feb 2003 | B1 |
6528332 | Mahanpour et al. | Mar 2003 | B2 |
6544900 | Raaijmakers et al. | Apr 2003 | B2 |
6548416 | Han et al. | Apr 2003 | B2 |
6548899 | Ross | Apr 2003 | B2 |
6559026 | Rossman et al. | May 2003 | B1 |
6566278 | Harvey et al. | May 2003 | B1 |
6583063 | Kahn et al. | Jun 2003 | B1 |
6583069 | Vassiliev et al. | Jun 2003 | B1 |
6589868 | Rossman | Jul 2003 | B2 |
6596654 | Bayman et al. | Jul 2003 | B1 |
6599839 | Gabriel et al. | Jul 2003 | B1 |
6602806 | Xia et al. | Aug 2003 | B1 |
6614181 | Harvey et al. | Sep 2003 | B1 |
6624064 | Sahin et al. | Sep 2003 | B1 |
6630413 | Todd | Oct 2003 | B2 |
6645303 | Frankel et al. | Nov 2003 | B2 |
6656804 | Tsujikawa et al. | Dec 2003 | B2 |
6660391 | Rose et al. | Dec 2003 | B1 |
6667553 | Cerny et al. | Dec 2003 | B2 |
6670284 | Yin | Dec 2003 | B2 |
6676751 | Solomon et al. | Jan 2004 | B2 |
6682659 | Cho et al. | Jan 2004 | B1 |
6682969 | Basceri et al. | Jan 2004 | B1 |
6683364 | Oh et al. | Jan 2004 | B2 |
6706634 | Seitz et al. | Mar 2004 | B1 |
6716770 | O'Neill et al. | Apr 2004 | B2 |
6756085 | Waldfried et al. | Jun 2004 | B2 |
6762126 | Cho et al. | Jul 2004 | B2 |
6787191 | Hanahata et al. | Sep 2004 | B2 |
6794290 | Papasouliotis et al. | Sep 2004 | B1 |
6800571 | Cheung et al. | Oct 2004 | B2 |
6818517 | Maes | Nov 2004 | B1 |
6819886 | Runkowske et al. | Nov 2004 | B2 |
6830624 | Janakiraman et al. | Dec 2004 | B2 |
6833052 | Li et al. | Dec 2004 | B2 |
6833322 | Anderson et al. | Dec 2004 | B2 |
6833578 | Tu et al. | Dec 2004 | B1 |
6835278 | Selbrede et al. | Dec 2004 | B2 |
6849520 | Kim et al. | Feb 2005 | B2 |
6858523 | Deboer et al. | Feb 2005 | B2 |
6858533 | Chu et al. | Feb 2005 | B2 |
6867086 | Chen et al. | Mar 2005 | B1 |
6872323 | Entley et al. | Mar 2005 | B1 |
6875687 | Weidman et al. | Apr 2005 | B1 |
6890403 | Cheung | May 2005 | B2 |
6900067 | Kobayashi et al. | May 2005 | B2 |
6955836 | Kumagai et al. | Oct 2005 | B2 |
6958112 | Karim et al. | Oct 2005 | B2 |
7018902 | Visokay et al. | Mar 2006 | B2 |
7033960 | You et al. | Apr 2006 | B1 |
7077904 | Cho et al. | Jul 2006 | B2 |
7084076 | Park et al. | Aug 2006 | B2 |
7087497 | Yuan et al. | Aug 2006 | B2 |
7109114 | Chen et al. | Sep 2006 | B2 |
7115419 | Suzuki | Oct 2006 | B2 |
7122222 | Xiao et al. | Oct 2006 | B2 |
7129185 | Aoyama et al. | Oct 2006 | B2 |
7148155 | Tarafdar et al. | Dec 2006 | B1 |
7176144 | Wang et al. | Feb 2007 | B1 |
7183177 | Al-Bayati et al. | Feb 2007 | B2 |
7192626 | Dussarrat et al. | Mar 2007 | B2 |
7205248 | Li et al. | Apr 2007 | B2 |
7220461 | Hasebe et al. | May 2007 | B2 |
7297608 | Papasouliotis et al. | Nov 2007 | B1 |
7335609 | Ingle et al. | Feb 2008 | B2 |
7399388 | Moghadam et al. | Jul 2008 | B2 |
7419903 | Haukka et al. | Sep 2008 | B2 |
7435661 | Miller et al. | Oct 2008 | B2 |
7456116 | Ingle et al. | Nov 2008 | B2 |
7498273 | Mallick et al. | Mar 2009 | B2 |
7514375 | Shanker et al. | Apr 2009 | B1 |
7521378 | Fucsko et al. | Apr 2009 | B2 |
7524735 | Gauri et al. | Apr 2009 | B1 |
7524750 | Nemani et al. | Apr 2009 | B2 |
7541297 | Mallick et al. | Jun 2009 | B2 |
7622369 | Lee et al. | Nov 2009 | B1 |
7745352 | Mallick et al. | Jun 2010 | B2 |
7749574 | Mahajani et al. | Jul 2010 | B2 |
7790634 | Munro et al. | Sep 2010 | B2 |
7803722 | Liang | Sep 2010 | B2 |
7825038 | Ingle et al. | Nov 2010 | B2 |
7825044 | Mallick et al. | Nov 2010 | B2 |
7867923 | Mallick et al. | Jan 2011 | B2 |
7902080 | Chen et al. | Mar 2011 | B2 |
7915139 | Lang et al. | Mar 2011 | B1 |
7935643 | Liang et al. | May 2011 | B2 |
7943514 | West | May 2011 | B2 |
7943531 | Nemani et al. | May 2011 | B2 |
7989365 | Park et al. | Aug 2011 | B2 |
7994019 | Kweskin et al. | Aug 2011 | B1 |
8119544 | Hasebe et al. | Feb 2012 | B2 |
8129555 | Cheng et al. | Mar 2012 | B2 |
8232176 | Lubomirsky et al. | Jul 2012 | B2 |
8236708 | Kweskin et al. | Aug 2012 | B2 |
8242031 | Mallick et al. | Aug 2012 | B2 |
8264066 | Lo et al. | Sep 2012 | B2 |
8304351 | Wang et al. | Nov 2012 | B2 |
8318584 | Li et al. | Nov 2012 | B2 |
8445078 | Liang et al. | May 2013 | B2 |
8449942 | Liang et al. | May 2013 | B2 |
8466067 | Liang et al. | Jun 2013 | B2 |
8466073 | Wang et al. | Jun 2013 | B2 |
9153442 | Wang | Oct 2015 | B2 |
20010021595 | Jang | Sep 2001 | A1 |
20010029114 | Vulpio et al. | Oct 2001 | A1 |
20010038919 | Berry et al. | Nov 2001 | A1 |
20010042511 | Liu et al. | Nov 2001 | A1 |
20010048980 | Kishimoto et al. | Dec 2001 | A1 |
20010054387 | Frankel et al. | Dec 2001 | A1 |
20010055889 | Iyer | Dec 2001 | A1 |
20020027286 | Sundararajan et al. | Mar 2002 | A1 |
20020048969 | Suzuki et al. | Apr 2002 | A1 |
20020068416 | Hsieh et al. | Jun 2002 | A1 |
20020068466 | Lee et al. | Jun 2002 | A1 |
20020079523 | Zheng et al. | Jun 2002 | A1 |
20020081817 | Bhakta et al. | Jun 2002 | A1 |
20020081842 | Sambucetti et al. | Jun 2002 | A1 |
20020086166 | Hendricks et al. | Jul 2002 | A1 |
20020113039 | Mok et al. | Aug 2002 | A1 |
20020119607 | Miyasaka et al. | Aug 2002 | A1 |
20020127350 | Ishikawa et al. | Sep 2002 | A1 |
20020129769 | Kim et al. | Sep 2002 | A1 |
20020134506 | Franklin | Sep 2002 | A1 |
20020142585 | Mandal | Oct 2002 | A1 |
20020146879 | Fu et al. | Oct 2002 | A1 |
20020160585 | Park | Oct 2002 | A1 |
20020164421 | Chiang et al. | Nov 2002 | A1 |
20020164429 | Gaillard et al. | Nov 2002 | A1 |
20020164891 | Gates et al. | Nov 2002 | A1 |
20020177298 | Konishi et al. | Nov 2002 | A1 |
20020182893 | Ballantine et al. | Dec 2002 | A1 |
20030001201 | Yuzuriha et al. | Jan 2003 | A1 |
20030023113 | Druzkowski et al. | Jan 2003 | A1 |
20030040199 | Agarwal | Feb 2003 | A1 |
20030064154 | Laxman et al. | Apr 2003 | A1 |
20030077918 | Wu et al. | Apr 2003 | A1 |
20030113992 | Yau et al. | Jun 2003 | A1 |
20030118748 | Kumagai et al. | Jun 2003 | A1 |
20030124873 | Xing et al. | Jul 2003 | A1 |
20030143841 | Yang et al. | Jul 2003 | A1 |
20030159656 | Tan et al. | Aug 2003 | A1 |
20030172872 | Thakur et al. | Sep 2003 | A1 |
20030194881 | Totsuka et al. | Oct 2003 | A1 |
20030199151 | Ho et al. | Oct 2003 | A1 |
20030203653 | Buchanan et al. | Oct 2003 | A1 |
20030207561 | Dubin et al. | Nov 2003 | A1 |
20030232495 | Moghadam et al. | Dec 2003 | A1 |
20040008334 | Sreenivasan et al. | Jan 2004 | A1 |
20040020601 | Zhao et al. | Feb 2004 | A1 |
20040029352 | Beyer et al. | Feb 2004 | A1 |
20040029353 | Zheng et al. | Feb 2004 | A1 |
20040048492 | Ishikawa et al. | Mar 2004 | A1 |
20040064965 | Huang | Apr 2004 | A1 |
20040065253 | Tois et al. | Apr 2004 | A1 |
20040079118 | M'Saad et al. | Apr 2004 | A1 |
20040082131 | Tsujikawa et al. | Apr 2004 | A1 |
20040084680 | Ruelke et al. | May 2004 | A1 |
20040110354 | Natzle et al. | Jun 2004 | A1 |
20040139983 | Lakshmanan et al. | Jul 2004 | A1 |
20040146661 | Kapoor et al. | Jul 2004 | A1 |
20040152342 | Li et al. | Aug 2004 | A1 |
20040161899 | Luo et al. | Aug 2004 | A1 |
20040166680 | Miyajima et al. | Aug 2004 | A1 |
20040175501 | Lukas et al. | Sep 2004 | A1 |
20040180557 | Park et al. | Sep 2004 | A1 |
20040183202 | Usami | Sep 2004 | A1 |
20040185641 | Tanabe et al. | Sep 2004 | A1 |
20040194706 | Wang et al. | Oct 2004 | A1 |
20040197843 | Chou et al. | Oct 2004 | A1 |
20040216672 | Ishii | Nov 2004 | A1 |
20040216844 | Janakiraman et al. | Nov 2004 | A1 |
20040219780 | Ohuchi | Nov 2004 | A1 |
20040224534 | Beulens et al. | Nov 2004 | A1 |
20040231590 | Ovshinsky | Nov 2004 | A1 |
20040241342 | Karim et al. | Dec 2004 | A1 |
20040253826 | Ivanov et al. | Dec 2004 | A1 |
20050001556 | Hoffman et al. | Jan 2005 | A1 |
20050014354 | Ozawa et al. | Jan 2005 | A1 |
20050019494 | Moghadam et al. | Jan 2005 | A1 |
20050026443 | Goo et al. | Feb 2005 | A1 |
20050042889 | Lee et al. | Feb 2005 | A1 |
20050062165 | Saenger et al. | Mar 2005 | A1 |
20050087140 | Yuda et al. | Apr 2005 | A1 |
20050097771 | Yi et al. | May 2005 | A1 |
20050112901 | Ji et al. | May 2005 | A1 |
20050118794 | Babayan et al. | Jun 2005 | A1 |
20050121145 | Du Bois et al. | Jun 2005 | A1 |
20050142895 | Ingle et al. | Jun 2005 | A1 |
20050153574 | Mandal | Jul 2005 | A1 |
20050160974 | Ivanov et al. | Jul 2005 | A1 |
20050181555 | Haukka et al. | Aug 2005 | A1 |
20050186731 | Derderian et al. | Aug 2005 | A1 |
20050186789 | Agarwal | Aug 2005 | A1 |
20050196533 | Hasebe et al. | Sep 2005 | A1 |
20050196935 | Ishitsuka et al. | Sep 2005 | A1 |
20050196977 | Saito et al. | Sep 2005 | A1 |
20050224866 | Higashi et al. | Oct 2005 | A1 |
20050227017 | Senzaki et al. | Oct 2005 | A1 |
20050227499 | Park et al. | Oct 2005 | A1 |
20050230350 | Kao et al. | Oct 2005 | A1 |
20050233595 | Choi et al. | Oct 2005 | A1 |
20050250340 | Chen et al. | Nov 2005 | A1 |
20050257890 | Park et al. | Nov 2005 | A1 |
20050260347 | Narwankar et al. | Nov 2005 | A1 |
20050287775 | Hasebe et al. | Dec 2005 | A1 |
20060011984 | Currie | Jan 2006 | A1 |
20060014399 | Joe | Jan 2006 | A1 |
20060030151 | Ding et al. | Feb 2006 | A1 |
20060030165 | Ingle et al. | Feb 2006 | A1 |
20060046427 | Ingle et al. | Mar 2006 | A1 |
20060046506 | Fukiage | Mar 2006 | A1 |
20060055004 | Gates et al. | Mar 2006 | A1 |
20060068599 | Baek et al. | Mar 2006 | A1 |
20060075966 | Chen et al. | Apr 2006 | A1 |
20060088985 | Haverkort et al. | Apr 2006 | A1 |
20060090694 | Cho et al. | May 2006 | A1 |
20060091104 | Takeshita et al. | May 2006 | A1 |
20060096540 | Choi | May 2006 | A1 |
20060102977 | Fucsko et al. | May 2006 | A1 |
20060105106 | Balseanu et al. | May 2006 | A1 |
20060110939 | Joshi et al. | May 2006 | A1 |
20060110943 | Swerts et al. | May 2006 | A1 |
20060121394 | Chi | Jun 2006 | A1 |
20060158101 | Camilletti et al. | Jul 2006 | A1 |
20060159847 | Porter et al. | Jul 2006 | A1 |
20060160372 | Dorfman | Jul 2006 | A1 |
20060162661 | Jung et al. | Jul 2006 | A1 |
20060178018 | Olsen | Aug 2006 | A1 |
20060211265 | Trott | Sep 2006 | A1 |
20060223315 | Yokota et al. | Oct 2006 | A1 |
20060228903 | McSwiney et al. | Oct 2006 | A1 |
20060252240 | Gschwandtner et al. | Nov 2006 | A1 |
20060263522 | Byun | Nov 2006 | A1 |
20060281496 | Cedraeus | Dec 2006 | A1 |
20060286774 | Singh et al. | Dec 2006 | A1 |
20060286776 | Ranish et al. | Dec 2006 | A1 |
20070004170 | Kawasaki et al. | Jan 2007 | A1 |
20070010072 | Bailey et al. | Jan 2007 | A1 |
20070020392 | Kobrin et al. | Jan 2007 | A1 |
20070026689 | Nakata et al. | Feb 2007 | A1 |
20070031598 | Okuyama et al. | Feb 2007 | A1 |
20070031609 | Kumar et al. | Feb 2007 | A1 |
20070032054 | Ramaswamy et al. | Feb 2007 | A1 |
20070049044 | Marsh | Mar 2007 | A1 |
20070065578 | McDougall | Mar 2007 | A1 |
20070066022 | Chen et al. | Mar 2007 | A1 |
20070077777 | Gumpher | Apr 2007 | A1 |
20070092661 | Ryuzaki et al. | Apr 2007 | A1 |
20070099438 | Ye et al. | May 2007 | A1 |
20070108404 | Stewart et al. | May 2007 | A1 |
20070111546 | Iyer et al. | May 2007 | A1 |
20070128864 | Ma et al. | Jun 2007 | A1 |
20070134433 | Dussarrat et al. | Jun 2007 | A1 |
20070166892 | Hori | Jul 2007 | A1 |
20070173073 | Weber | Jul 2007 | A1 |
20070181966 | Watatani et al. | Aug 2007 | A1 |
20070232071 | Balseanu et al. | Oct 2007 | A1 |
20070232082 | Balseanu et al. | Oct 2007 | A1 |
20070275569 | Moghadam et al. | Nov 2007 | A1 |
20070281106 | Lubomirsky et al. | Dec 2007 | A1 |
20070281448 | Chen et al. | Dec 2007 | A1 |
20070281495 | Mallick et al. | Dec 2007 | A1 |
20070281496 | Ingle et al. | Dec 2007 | A1 |
20070289534 | Lubomirsky et al. | Dec 2007 | A1 |
20070298585 | Lubomirsky et al. | Dec 2007 | A1 |
20080000423 | Fukiage | Jan 2008 | A1 |
20080014711 | Choi et al. | Jan 2008 | A1 |
20080014759 | Chua et al. | Jan 2008 | A1 |
20080020591 | Balseanu et al. | Jan 2008 | A1 |
20080026597 | Munro et al. | Jan 2008 | A1 |
20080038486 | Treichel et al. | Feb 2008 | A1 |
20080063809 | Lee | Mar 2008 | A1 |
20080070409 | Park et al. | Mar 2008 | A1 |
20080081104 | Hasebe et al. | Apr 2008 | A1 |
20080085607 | Yu et al. | Apr 2008 | A1 |
20080096364 | Wilson et al. | Apr 2008 | A1 |
20080099431 | Kumar et al. | May 2008 | A1 |
20080102223 | Wagner et al. | May 2008 | A1 |
20080102650 | Adams et al. | May 2008 | A1 |
20080182382 | Ingle et al. | Jul 2008 | A1 |
20080188087 | Chen et al. | Aug 2008 | A1 |
20080202419 | Smith | Aug 2008 | A1 |
20080206954 | Choi et al. | Aug 2008 | A1 |
20080241358 | Joe et al. | Oct 2008 | A1 |
20080260969 | Dussarrat et al. | Oct 2008 | A1 |
20080276867 | Schaller | Nov 2008 | A1 |
20080305648 | Fukazawa et al. | Dec 2008 | A1 |
20080318429 | Ozawa et al. | Dec 2008 | A1 |
20090031953 | Ingle et al. | Feb 2009 | A1 |
20090035917 | Ahn et al. | Feb 2009 | A1 |
20090053901 | Goto et al. | Feb 2009 | A1 |
20090054674 | Lukas et al. | Feb 2009 | A1 |
20090061647 | Mallick et al. | Mar 2009 | A1 |
20090075490 | Dussarrat et al. | Mar 2009 | A1 |
20090093132 | Xu et al. | Apr 2009 | A1 |
20090095714 | Chen et al. | Apr 2009 | A1 |
20090104755 | Mallick et al. | Apr 2009 | A1 |
20090104789 | Mallick et al. | Apr 2009 | A1 |
20090104790 | Liang | Apr 2009 | A1 |
20090104791 | Nemani et al. | Apr 2009 | A1 |
20090104798 | Hirano | Apr 2009 | A1 |
20090142935 | Fukuzawa et al. | Jun 2009 | A1 |
20090156017 | Fukazawa et al. | Jun 2009 | A1 |
20090170282 | Dong | Jul 2009 | A1 |
20090181550 | Hasebe et al. | Jul 2009 | A1 |
20090194809 | Cho | Aug 2009 | A1 |
20090203225 | Gates et al. | Aug 2009 | A1 |
20090206409 | Arisumi et al. | Aug 2009 | A1 |
20090209081 | Matero et al. | Aug 2009 | A1 |
20090215251 | Vellaikal et al. | Aug 2009 | A1 |
20090224374 | Bhatia et al. | Sep 2009 | A1 |
20090232985 | Dussarrat et al. | Sep 2009 | A1 |
20090242957 | Ma et al. | Oct 2009 | A1 |
20090277587 | Lubomirsky et al. | Nov 2009 | A1 |
20090280650 | Lubomirsky et al. | Nov 2009 | A1 |
20090289284 | Goh et al. | Nov 2009 | A1 |
20090294925 | Lin et al. | Dec 2009 | A1 |
20090298257 | Lee et al. | Dec 2009 | A1 |
20090325391 | De Vusser et al. | Dec 2009 | A1 |
20100052066 | Yu et al. | Mar 2010 | A1 |
20100059889 | Gosset et al. | Mar 2010 | A1 |
20100081094 | Hasebe et al. | Apr 2010 | A1 |
20100081293 | Mallick et al. | Apr 2010 | A1 |
20100099236 | Kwon et al. | Apr 2010 | A1 |
20100136313 | Shimizu et al. | Jun 2010 | A1 |
20100140756 | Kozasa et al. | Jun 2010 | A1 |
20100143609 | Fukazawa et al. | Jun 2010 | A1 |
20100184302 | Lee et al. | Jul 2010 | A1 |
20100190317 | Iwasawa et al. | Jul 2010 | A1 |
20100190348 | Akae et al. | Jul 2010 | A1 |
20100221428 | Dussarrat | Sep 2010 | A1 |
20100221925 | Lee et al. | Sep 2010 | A1 |
20100227276 | Mizuno | Sep 2010 | A1 |
20100255655 | Mallick et al. | Oct 2010 | A1 |
20100261318 | Feng et al. | Oct 2010 | A1 |
20100283097 | Endoh et al. | Nov 2010 | A1 |
20110014798 | Mallick et al. | Jan 2011 | A1 |
20110034035 | Liang et al. | Feb 2011 | A1 |
20110034039 | Liang et al. | Feb 2011 | A1 |
20110045676 | Park et al. | Feb 2011 | A1 |
20110111137 | Liang et al. | May 2011 | A1 |
20110129616 | Ingle et al. | Jun 2011 | A1 |
20110136347 | Kovarsky et al. | Jun 2011 | A1 |
20110159213 | Cai et al. | Jun 2011 | A1 |
20110159703 | Liang et al. | Jun 2011 | A1 |
20110165347 | Miller et al. | Jul 2011 | A1 |
20110165781 | Liang et al. | Jul 2011 | A1 |
20110186990 | Mawatari et al. | Aug 2011 | A1 |
20110187000 | West | Aug 2011 | A1 |
20110217851 | Liang et al. | Sep 2011 | A1 |
20110223774 | Kweskin et al. | Sep 2011 | A1 |
20120003840 | Wang et al. | Jan 2012 | A1 |
20120009802 | LaVoie et al. | Jan 2012 | A1 |
20120074387 | King | Mar 2012 | A1 |
20120079982 | Lubomirsky | Apr 2012 | A1 |
20120083133 | Solis et al. | Apr 2012 | A1 |
20120094468 | Bhatia et al. | Apr 2012 | A1 |
20120094476 | Tanaka et al. | Apr 2012 | A1 |
20120111831 | Ha | May 2012 | A1 |
20120122302 | Weidman et al. | May 2012 | A1 |
20120142192 | Li et al. | Jun 2012 | A1 |
20120145079 | Lubomirsky et al. | Jun 2012 | A1 |
20120161405 | Mohn et al. | Jun 2012 | A1 |
20120177846 | Li et al. | Jul 2012 | A1 |
20120190178 | Wang et al. | Jul 2012 | A1 |
20120193778 | Mawatari | Aug 2012 | A1 |
20120213940 | Mallick | Aug 2012 | A1 |
20120225565 | Bhatia et al. | Sep 2012 | A1 |
20120238108 | Chen et al. | Sep 2012 | A1 |
20120269989 | Liang et al. | Oct 2012 | A1 |
20120292720 | Chen et al. | Nov 2012 | A1 |
20120309205 | Wang et al. | Dec 2012 | A1 |
20130062736 | Brighton et al. | Mar 2013 | A1 |
20130084711 | Liang et al. | Apr 2013 | A1 |
20130149462 | Liang et al. | Jun 2013 | A1 |
20130193578 | Yu et al. | Aug 2013 | A1 |
20150235865 | Wang | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
19654737 | Jul 1997 | DE |
0892083 | Jan 1999 | EP |
1095958 | May 2001 | EP |
1717848 | Nov 2006 | EP |
61-234534 | Oct 1986 | JP |
64-048425 | Feb 1989 | JP |
1-198033 | Aug 1989 | JP |
01-235259 | Sep 1989 | JP |
01241826 | Sep 1989 | JP |
03-197684 | Aug 1991 | JP |
03-286531 | Dec 1991 | JP |
2004-328825 | Nov 1992 | JP |
05-152215 | Jun 1993 | JP |
05-259156 | Oct 1993 | JP |
05-304147 | Nov 1993 | JP |
06-077150 | Mar 1994 | JP |
6-168930 | Jun 1994 | JP |
07-014826 | Jan 1995 | JP |
07-169762 | Jul 1995 | JP |
07-316823 | Dec 1995 | JP |
07-321178 | Dec 1995 | JP |
08-236518 | Sep 1996 | JP |
08-288286 | Nov 1996 | JP |
09-237785 | Sep 1997 | JP |
10-163183 | Jun 1998 | JP |
11-274285 | Oct 1999 | JP |
2001-148382 | May 2001 | JP |
2002-370059 | Dec 2002 | JP |
2003-179054 | Jun 2003 | JP |
2004-012315 | Jan 2004 | JP |
2004-327639 | Nov 2004 | JP |
2005-142448 | Jun 2005 | JP |
2005-268396 | Sep 2005 | JP |
2005-302848 | Oct 2005 | JP |
2008-159824 | Jul 2008 | JP |
2008218684 | Sep 2008 | JP |
2011-220127 | Nov 2011 | JP |
10-2004-0091978 | Nov 2004 | KR |
1020040104533 | Dec 2004 | KR |
10-2005-0003758 | Jan 2005 | KR |
10-2005-0072332 | Jul 2005 | KR |
10-2005-0085838 | Aug 2005 | KR |
10-2005-0094183 | Sep 2005 | KR |
1020060081350 | Jul 2006 | KR |
10-2009-0011765 | Feb 2009 | KR |
10-2009-0121361 | Nov 2009 | KR |
10-2009-0122860 | Dec 2009 | KR |
10-2010-0085743 | Jul 2010 | KR |
200514163 | Apr 2005 | TW |
200707582 | Feb 2007 | TW |
02077320 | Oct 2002 | WO |
03066933 | Aug 2003 | WO |
2005078784 | Aug 2005 | WO |
2007040856 | Apr 2007 | WO |
2007140376 | Dec 2007 | WO |
2007140424 | Dec 2007 | WO |
2009055340 | Apr 2009 | WO |
2010080216 | Jul 2010 | WO |
2012145148 | Oct 2012 | WO |
2013025336 | Feb 2013 | WO |
Entry |
---|
Franz, et al., “Conversion of silicon nitride into silicon dioxide through the influence of oxygen,” Solid-State Electronics, Jun. 1971, pp. 449-505, vol. 14, Issue 6, Germany. Abstract Only. |
International Search Report and Written Opinion of PCT/US2011/066275, mailed Sep. 24, 2012, 9 pages. |
Tripp, et al., “The Anodic Oxidation of Silicon Nitride Films on Silicon,” Journal of the Electrochemical Society, 1970, pp. 157-159, 117(2). |
Usenko, et al., “Silicon Nitride Surface Conversion into Oxide to Enable Hydrophilic Bonding,” ECS Meeting Abstracts, 2010, 1 page, Abstract #1716, 218th ECS Meeting. |
International Search Report and Written Opinion of PCT/US2011/054635, mailed Jul. 9, 2012, 11 pages. |
International Search Report and Written Opinion of PCT/US2011/066601, mailed Jul. 20, 2012, 10 pages. |
Alexandrov, Sergei E., et al., “Formation of Silicon Nitride Films by Remote Plasma-enhanced Chemical Vapour Deposition”. Advanced Materials for Optics and Electronics, vol. 2, 301-312 (1993). |
Aylett, B. J. et al., “Silicon-Nitrogen Compounds. Part V. Diphenylamino-derivatives of Silane,” J. Chem. Soc. (A), Apr. 1969, pp. 636-638. |
Aylett, B. J. et al., “Silicon-Nitrogen Compounds. Part VI.1 The Preparation and Properties of Disilazane,” J. Chem. Soc. (A), Apr. 1969, pp. 639-642. |
Aylett, B. J. et al., “The Preparation and Some Properties of Disilylamine—Correspondence,” Inorganic Chemistry, Jan. 1966, p. 167. |
Beach, David B., “Infrared and Mass Spectroscopic Study of the Reaction of Silyl Iodide and Ammonia. Infrared Spectrum to Silylamine,” Inorganic Chemistry, Sep. 1992, pp. 4174-4177, vol. 31, No. 20. |
Bowen, C., et al., “New Processing Techniques: Sweeping of Quartz Wafers and a Practical Method for Processing Quartz Resonators Under Controlled Conditions,”, Proceedings of the 1992 IEEE Frequency Control Symposium, pp. 648-656. |
Burg, Anton B. et al., “Silyl-Amino Boron Compounds,” J. Amer. Chem. Soc., Jul. 1950, pp. 3103-3107, vol. 72. |
Coltrin, M.E., et al., “Chemistry of AlGaN Particulate Formation,” National Nuclear Security Administration, Physical, Chemical, & Nano Sciences Center, Research Briefs, 2005, pp. 42-43. |
Davison, A et al., “The Raman Spectra of Manganese and Rhenium Carbonyl Hydrides and Some Related Species,” Inorganic Chemistry, Apr. 1967, pp. 845-847, vol. 6 No. 4. |
Dussarrat, C. et al., “Low Pressure Chemical Vapor Deposition of Silicon Nitride Using Mono- and Disilylamine,” Chemical Vapor Deposition XVI and EUROCVD 14 vol. 2 Proceedings of the International Symposium, Part of the 203rd Electrochemical Society Meeting in Paris France, Apr. 27-May 2, 2003, 11 pages. |
Gulleri, G. et al., “Deposition Temperature Determination of HDPCVD Silicon Dioxide Films,” 2005, Microelectronic Engineering, vol. 82, pp. 236-241. |
International Search Report and Written Opinion of PCT/US2011/054981, mailed May 9, 2012, 10 pages. |
International Search Report and Written Opinion of PCT/US2011/054984, mailed May 11, 2012, 10 pages. |
Kang, Hun, “A Study of the Nucleation and Formation of Multi-functional Nanostructures using GaN-Based Materials for Device Applications,” Georgia Institute of Technology, Doctor of Philosophy in the School of Electrical & Computer Engineering Dissertation, Dec. 2006, p. 14. |
Lee, Eun Gu, et al., “Effects of Wet Oxidation on the Electrical Properties of sub-10 nm thick silicon nitride films”, Thin Solid Films, Elsevier-Sequoia S.A. Lausanne, CH. vol. 205, No. 2, Dec. 1, 1991, pp. 246-251. |
Loboda, M.J., et al., “Chemical influence of inert gas on the thin film stress in plasma-enhanced chemical vapor deposited a-SiN:H films”. Journal of Materials Research, vol. 11, No. 2, Feb. 1996, pp. 391-398. |
Lucovsky, G. et al., “Deposition of silicon dioxide and silicon nitride by remote plasma enhanced chemical vapor deposition,” Journal of Vacuum Science & Technology, vol. 4, No. 3, May-Jun. 1986, pp. 681-688. |
Norman, Arlan D. et al., “Reaction of Silylphosphine with Ammonia,” Inorganic Chemistry, Jun. 1979, pp. 1594-1597, vol. 18 No. 6. |
Sujishi, Sei et al., “Effect of Replacement of Carbon by Silicon in Trimethylamine on the Stabilities of the Trimethylboron Addition Compounds. Estimation of the Resonance Energy for Silicon-Nitrogen Partial Double Bond,” Amer. Chem. Soc., Sep. 20, 1954, pp. 4631-4636, vol. 76. |
Tsu, D. V. et al., “Silicon Nitride and Silicon Diimide Grown by Remote Plasma Enhanced Chemical Vapor Deposition”, Journal of Vacuum Science and Technology: Part A, AVS/AIP, Melville, NY, US, vol. 4, No. 3, Part 01, May 1, 1986, pp. 480-485. |
Ward, L. G. L. et al., “The Preparation and Properties of Bis-Disilanyl Sulphide and Tris-Disilanylamine,” J. Inorg. Nucl. Chem., Dec. 1961, pp. 287-293, vol. 21, Pergamon Press Ltd., Northern Ireland. |
Ward, Laird G. L., “Bromosilane, Iodosilane, and Trisilylamine,” Inorganic Syntheses, 1968, pp. 159-170, vol. 11. |
Zuckerman, J.J., “Inorganic Reactions and Methods,” Formation of Bonds to N, P, As, Sb, Bi (Part 1), ISBN-0-89573-250-5, Jan. 1998, 5 pages, vol. 7, VCH Publishers, Inc., New York. |
International Search Report and Written Opinion of PCT/US2012/026786, mailed Jan. 2, 2013, 7 pages. |
International Search Report and Written Opinion of PCT/US2012/031640 mailed Oct. 18, 2012, 10 pages. |
International Search Report and Written Opinion of PCT/US2012/039629, mailed Dec. 26, 2012, 6 pages. |
International Search Report and Written Opinion of PCT/US2012/053999, mailed Feb. 27, 2013, 12 pages. |
International Search Report and Written Opinion of PCT/US2012/065086, mailed Mar. 25, 2013, 10 pages. |
International Search Report and Written Opinion of PCT/US2012/059400, mailed Mar. 26, 2013, 11 pages. |
Wang Li et al., “Properties of Hydrogenated Amorphous Silicon Caarbide Films Irradiated by Excimer Pulse Laser,” 1998, Abstract Only. |
Ying-Yu et al., “Preparation of SiC Thin Film Using Organosilicon by Remote Plasma CVD Method,” 1999, Abstract Only. |
Chinese Office Action (with attached English translation of the Search Report) for Application No. 201180049232.0 dated May 5, 2015; 12 total pages. |
Number | Date | Country | |
---|---|---|---|
20120079982 A1 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
61389957 | Oct 2010 | US |