This application claims foreign priority benefits of Singapore Application No. 200207050-6 filed Nov. 22, 2002, the entirety of which is incorporated herein by reference.
The present invention relates to packaged microelectronic components and methods for assembling the same. In particular, aspects of the invention relate to leaded microelectronic component packages and to stacked microelectronic component assemblies.
Semiconductor chips or dies are typically encapsulated in a package that protects the chips from the surrounding environment. The packages typically include leads or other connection points that allow the encapsulated chip to be electrically coupled to another microelectronic component. Leaded packages include a semiconductor chip bonded to a lead frame either seated on a die paddle or attached directly to the leads in a leads-over-chip attachment. The contact pads on the semiconductor die are then electrically connected to the chip, e.g., by wire bonding. The connected lead frame and chip may then be encapsulated in a mold compound to form a complete microelectronic component package. In most common applications, the leads extend out from the mold compound, allowing the chip to be electrically accessed. Typically, the leads extend laterally outwardly in a flat array that is part of a lead frame. This lead frame may be trimmed and formed into a desired configuration.
One increasingly popular technique for maximizing device density on a substrate is to stack microelectronic devices on top of one another. Stacking just one device on top of a lower device can effectively double the circuitry within a given footprint; stacking additional devices can further increase the circuit density.
In one approach, multiple microelectronic components are assembled in a single package.
The microelectronic components 20 and 30 and the inner lengths 44 and 54 of the leads 42 and 52, respectively, may be encapsulated in a mold compound 12. An outer length 46 of each lead 42 of the upper lead frame 40 extends outwardly beyond a periphery 14 of the mold compound 12. Similarly, an outer length 56 of each lead 52 of the lower lead frame 50 extends outwardly beyond the periphery 14 of the mold compound 12. The outer lengths 56 of the lower leads 52 may be shaped for connection to a substrate 60 or another microelectronic component. The TSOP 10 shown in
The TSOP 10 shown in
The mold compound 12 of such a TSOP 10 often has a coefficient of thermal expansion (CTE) that differs from the CTE of the leads 42 and 52, wire bonds 24 and 34, and microelectronic components 20 and 30. The changes in temperature inherent in conventional manufacturing processes can warp or otherwise damage the microelectronic components 20 and 30 and/or adversely affect the electrical connections between the microelectronic components 20 and 30 and the lead frames 40 and 50, respectively. If either one of the microelectronic components 20 and 30 or their respective electrical connections is damaged, the entire TSOP 10 is considered defective. As a consequence, either an otherwise acceptable microelectronic component must be discarded with the defective microelectronic component or the microelectronic components 20 and 30 must be separated from one another to remove the defective component. For highly cost-competitive products, such as memory modules, both of these options may prove unduly expensive.
A. Overview
Various embodiments of the present invention provide microelectronic component assemblies, memory modules, computer systems, and methods for forming microelectronic component assemblies, memory modules, and computer systems. The terms “microelectronic component” and “microelectronic component assembly” may encompass a variety of articles of manufacture, including, e.g., SIMM, DRAM, flash-memory, ASICs, processors, flip chips, ball grid array (BGA) chips, or any of a variety of other types of microelectronic devices or components therefor.
One embodiment provides a microelectronic component assembly that includes first and second microelectronic component packages. The first package includes a first microelectronic component having a back surface and a first mold compound formed about the first microelectronic component, with the first mold compound also having a back surface. The first package also includes a plurality of first package contacts and a plurality of electrical connectors. Each of the first package contacts is exposed on the back surface of the first mold compound. At least some of the first package contacts are electrically coupled to the first microelectronic component. The electrical connectors are adapted for connection to another microelectronic component, e.g., a substrate such as a PCB. The electrical connectors are accessible from a location spaced from the back surface of the first mold compound. The second microelectronic component package of this embodiment includes a second microelectronic component having a back surface. A second mold compound formed about the second microelectronic component has a back surface. The back surfaces of the first and second mold compounds are juxtaposed with but spaced from one another to define a peripherally open interpackage gap. The back surface of the first microelectronic component and the back surface of the second microelectronic component are each thermally exposed to the interpackage gap. The second microelectronic component package also includes a plurality of second package contacts electrically coupled to the second microelectronic component. Each second package contact is exposed on the back surface of the second mold compound, and at least one of the second package contacts is electrically coupled to at least one of the first package contacts.
One further embodiment of the invention incorporates such a microelectronic component assembly in a memory module. The memory module also includes a module board configured to be electrically coupled with a higher level microelectronic device. Another adaptation employs such a memory module in a computer system that may also include an input device, an output device, and a processor that is in communication with the input device, the output device, and the memory module.
A microelectronic component assembly in accordance with an alternative embodiment of the invention includes a non-leaded first package, a second package, and a plurality of electrical junctions. The first package includes a first microelectronic die, a dielectric first mold compound, a plurality of contacts, and a first confronting surface. The first confronting surface includes a back surface of the first mold compound, an exposed back surface of the first microelectronic die, and exposed surfaces of the contacts. The second package includes a second microelectronic die, a dielectric second mold compound having a periphery, and a plurality of leads having outer lengths extending outwardly beyond the periphery of the second mold compound and adapted for electrical connection to another microelectronic component. The second package also has a second confronting surface that includes a back surface of the second mold compound, an exposed back surface of the second microelectronic die, and exposed contact surfaces of the leads arranged within the periphery of the second mold compound. Each of the electrical junctions electrically couples one of the contacts to the exposed contact surface of one of the leads. The electrical junctions also physically support the first package with respect to the second package, with the first and second confronting surfaces juxtaposed with but spaced from one another to define a fluid passage between the back surface of the first microelectronic die and the back surface of the second microelectronic die.
Still another embodiment of the invention provides a method of assembling a microelectronic component assembly. In accordance with this method, a first confronting surface of a first microelectronic component package is juxtaposed with a second confronting surface of a second microelectronic component package. So juxtaposing the packages aligns an array of exposed first contacts on the first confronting surface with a mating array of exposed second contacts on the second confronting surface. This also juxtaposes an exposed back surface of a first microelectronic component included in the first microelectronic component package with an exposed back surface of a second microelectronic component included in the second microelectronic component package. The first package is electrically coupled to the second package with a plurality of electrical junctions. Each electrical junction electrically couples one of the first contacts to one of the second contacts. The electrical junctions also support the first package with respect to the second package, with the first confronting surface spaced from the second confronting surface to define a peripherally open air gap therebetween.
For ease of understanding, the following discussion is subdivided into three areas of emphasis. The first section discusses certain microelectronic component assemblies; the second section relates to computer systems in select embodiments; and the third section outlines methods in accordance with other embodiments of the invention.
B. Microelectronic Component Assemblies
The first microelectronic component package 110 includes a mold compound 112 formed about a first microelectronic component 120. The mold compound 112 may comprise a curable dielectric resin, e.g., a silicon particle-filled polymer, suitable for forming under heat and pressure by transfer molding and the like. A wide variety of suitable resins are well known in the art and commercially available from a number of sources.
In the illustrated embodiment, the mold compound 112 surrounds five of the six sides of the centrally positioned microelectronic component 120. As shown in
The first package 110 has a confronting surface 116. The confronting surface 116 may be substantially planar and include a back surface of the mold compound 112 and a back surface 122 of the microelectronic component 120. In the embodiment shown in
The first microelectronic component 120 may comprise a single microelectronic component or a subassembly of separate microelectronic components. In the embodiment shown in
The first package 110 also includes a plurality of contacts 124. These contacts 124 may be exposed in an array on the confronting surface 116 of the first package 110. The contacts 124 of the first package 110 may be carried adjacent a periphery of the mold compound 112. In one embodiment (not shown), the contacts 124 comprise leads that extend outwardly beyond the periphery of the mold compound 112. In the embodiment shown in
In the specific implementation shown in
At least some of the contacts 124 are electrically coupled to component terminals 123 of the first microelectronic component 120. This may be accomplished using conventional methods, e.g., by connecting the component terminals 123 and contacts 124 with wire bonds 126.
The second microelectronic component package 130 includes a mold compound 132 that is formed about and partially encapsulates a second microelectronic component 140. The mold compound 132 has a periphery that is spaced from the periphery of the centrally disposed second microelectronic component 140. A back surface of the mold compound 132 may also define a portion of the confronting surface 136 of the second microelectronic component package 130.
The second microelectronic component 140 may be the same kind of microelectronic component as the first microelectronic component 120, or the first and second microelectronic components 120 and 140 may comprise different types of components having different functions. In one embodiment, both the first microelectronic component 120 and the second microelectronic component 140 comprise memory elements, e.g., SIMM, DRAM, or flash memory. In such an embodiment, the microelectronic component assembly 100 may be used in a memory module of a computer system, as explained below.
The second microelectronic component package 130 includes a plurality of leads 144. Each of these leads has an inner length with an exposed surface defining a contact 146 on the confronting surface 136 of the package 130. The leads 144 also serve as electrical connectors adapted for connection to another microelectronic component, e.g., a PCB or other substrate (60 in FIG. 1). Hence, each lead 144 extends outwardly from the contact 146 beyond the periphery 134 of the mold compound 132. The outer length 148 of each of the leads 144 may be bent into any desired shape for connection to another microelectronic component. In the embodiment shown in
In
The illustrated embodiment employs exposed outer lead lengths 148 to electrically connect the package 130 to another microelectronic component (not shown), but the package 130 need not include such exposed outer lengths. Any other electrical connector accessible from a location spaced from the confronting surface 136 may be used instead. For example, an array of contacts may be carried on a front surface 113 of the mold compound 112, as suggested by Farnworth et al. in U.S. Pat. No. 6,020,629, the entirety of which is incorporated herein by reference.
The second microelectronic component 140 includes a plurality of component terminals 143 arranged in an array, e.g., a peripheral array, on an active surface 147. One or more of the leads 144 may be electrically coupled to a component terminal 143 of the second microelectronic component 140, such as via the wire bonds 149 shown in FIG. 2.
The second microelectronic component 140 has a back surface 142 that defines part of the confronting surface 136 of the second package 130. In the embodiment shown in
The first microelectronic component package 110 is electrically coupled to the second microelectronic component package 130. In particular, one or more of the contacts 124 of the first microelectronic component package 110 may be electrically coupled to the contacts 146 of the second microelectronic component package 130 by an electrical junction 150. In one particular embodiment, each of the first package contacts 124 is electrically coupled to one of the second package contacts 146 by a single electrically independent electrical junction 150. In this particular embodiment, the second package contacts 146 are arranged in an array that mates with the array of first package contacts 124.
In one embodiment, the electrical junctions 150 not only electrically couple the first package contacts 124 to the second package contacts 146, but also physically support the first microelectronic component package 110 with respect to the second microelectronic component package 130. The electrical junctions 150 may take a variety of forms. For example, the electrical junctions 150 may comprise a reflowed solder. (One process for forming such a reflowed solder junction 150 is discussed below.) Such solder junctions are well known in the art. Alternatives to a reflowed solder include conductive or conductive-filled epoxy columns or pillars, spheres (either conductive or insulative) covered with a conductive material, and anisotropic “Z-axis” films. Other suitable junctions will be known to those of ordinary skill in the art.
The confronting surface 116 of the first microelectronic component package 110 may be juxtaposed with but spaced from the confronting surface 136 of the second microelectronic component package 130. These two confronting surfaces 116 and 136 may be spaced from one another a distance equivalent to the height of the electrical junctions 150. These spaced-apart confronting surfaces 116 and 136 define an interpackage gap between the first microelectronic component package 110 and the second microelectronic component package 130. In the illustrated embodiment, the back surface 122 of the first microelectronic component 120 is juxtaposed with the back surface 142 of the second microelectronic component 140 across this interpackage gap 160. This thermally exposes the back surfaces 122 and 142 to the interpackage gap 160.
This interpackage gap 160 defines a fluid passage between the two confronting surfaces 116 and 136. In one embodiment, the interpackage gap 160 is filled with air and is peripherally open. This defines openings between the electrical junctions 150 through which air may flow. For example, the electrical junctions 150 may be spaced from one another about the peripheries 114 and 134 of the first package 110 and second package 130, respectively. Allowing air to flow through the interpackage gap 160 can help cool the microelectronic components 120 and 140. Exposing the first component back surface 122 and the second component back surface 142 directly to the interpackage gap 160 allows heat to dissipate rapidly from the components 120 and 140. This can significantly reduce the risk of overheating encountered in a conventional stacked TSOP 10 such as that shown in FIG. 1.
The back surfaces 122 and 142 of the microelectronic components 120 and 140, respectively, need not be directly physically exposed to the interpackage gap 160. For example,
In one embodiment, the back surface of each heat sink 121 and 141 exposed to the interpackage gap 160 may be substantially flush with the back surface of the mold compound 112, providing the packages 110 and 130 with substantially planar confronting faces 116 and 136, respectively. In the illustrated embodiment, though, the first heat sink 121 extends into the interpackage gap 160 beyond the back surface of the first mold compound 112 and the second heat sink 141 extends into the interpackage gap 160 beyond the back surface of the second mold compound 132.
The first microelectronic component package 210 in
The second microelectronic component package 230 in
The first package contacts 226 are electrically coupled to the second package contacts 244 by a plurality of electrical junctions 250. As in the prior embodiments, these electrical junctions may comprise reflowed solder junctions or any other suitable electrical junction known in the art. These electrical junctions 250 also physically join the first and second microelectronic component packages 210 and 230 with their confronting surfaces 216 and 236, respectively, juxtaposed with but spaced from one another. This defines an interpackage gap 260, which can facilitate cooling of the microelectronic components 220 and 240 via their thermally exposed back surfaces 222 and 242, respectively.
The first microelectronic component package 310 also includes a plurality of conductive elements 324 having an inner portion 324a and a contact portion 324b. The inner portion 324a of each conductive element 324 may be physically attached to the active surface 327 of the first microelectronic component 320 in any desired fashion, e.g., using a conventional lead-on-chip adhesive tape (not shown). The inner portions 324a of some or all of the conductive elements 324 may be electrically coupled to the component terminals 323 by wire bonds 326. A back surface of each of the contact portions 324b may be exposed on the confronting surface 316 of the package 310. In the illustrated embodiment, the exposed surfaces of the contact portions 324b are generally aligned with the back surface of the mold compound 312 and the microelectronic component back surface 322, yielding a substantially planar first package confronting surface 316.
The second microelectronic component package 330 includes a second microelectronic component 340 that is partially encapsulated in a second mold compound 332, leaving a back surface 342 exposed. A plurality of component terminals 343 may be arranged on the active surface 347 of the second microelectronic component 340, e.g., in a longitudinally extending linear array.
The second microelectronic component package 330 also includes a plurality of conductive elements 344. Each of these conductive elements 344 has an inner length 346 that is partially encapsulated in the mold compound 332 and an outer length 348 that extends outward beyond the periphery 334 of the mold compound 332. An inner portion 346a of the inner length 346 of some or all of the conductive elements 344 may be electrically coupled to one of the component terminals 343 of the second microelectronic component 340 by a wire bond 349 or the like. The inner length 346 of each of the second package conductive elements 344 includes a contact portion 346b having an exposed back surface. The exposed back surfaces of the contact portions 346b, a back surface of the mold compound 332, and the back surface 342 of the microelectronic component 340 collectively define a confronting surface 336 of the second microelectronic component package 330.
The second microelectronic component package 130 of the microelectronic component assembly 100 in
Each of the first package contact portions 324b may be electrically coupled to one of the second package contact portions 346b by an electrical junction 350.
The electrical junction 350 may be formed of the same materials and in much the same fashion as the electrical junction 150 discussed above in connection with
C. Computer Systems
D. Methods
As noted above, other embodiments of the invention provide methods of assembling microelectronic component assemblies. In the following discussion, reference is made to the particular microelectronic component assembly 100 shown in FIG. 2. It should be understood, though, that the reference to this particular microelectronic component assembly 100 is solely for purposes of illustration and that the method outlined below is not limited to any particular microelectronic component assembly design shown in the drawings or discussed in detail above.
In one embodiment, the confronting surface 116 of the first microelectronic component package 110 is juxtaposed with the confronting surface 136 of the second microelectronic component package 130. As shown in
The juxtaposed microelectronic component packages 110 and 130 may be electrically coupled to one another. In the microelectronic component assembly 100 of
The electrical junctions 150 may be formed using any of a variety of conventional processes. In one embodiment, a solder paste is stenciled on the exposed surface of each of the first contacts 124. In another embodiment, the solder paste may be stenciled instead on the exposed surfaces of the second package contacts 146. As is known in the art, heating the stenciled solder paste causes the solder to coalesce into a solder ball, providing an array of solder balls 151 (
As noted above, the contacts 124 of the first microelectronic component package 110 are exposed on and form a part of the first package confronting surface 116. Similarly, the inner length of the leads 144 may be exposed on the confronting surface 136 of the second microelectronic component package 130 to define the second package contacts 146. This may be accomplished in a variety of ways.
The lead frame 170 may be attached to a backing member 180. The backing member 180 spans the width of each opening 174 in the lead frame 170, leaving an exposed surface 182 of the backing member 180 in each opening 174. In one embodiment, the backing member 180 comprises an adhesive tape that can adhesively hold the lead frame 170.
Each of the microelectronic components 120 may be positioned in one of the openings 174 in the lead frame. The back surface (122 in
As suggested in
Once the dielectric resin has been appropriately cured, the backing member 180 may be removed. If the backing member 180 comprises an adhesive tape, for example, it may be peeled away from the lead frame 170 and microelectronic component 120, as shown schematically by the arrow in FIG. 10. Removing the backing member 180 exposes the back surface of each contact 124, the back surface 122 of the microelectronic component 120, and a back surface of the mold compound (not shown in FIG. 10).
The lead frame 170 may be trimmed by cutting away the peripheral dam bar 172 adjacent each opening 174. As shown schematically in
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense, that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number, respectively. When the claims use the word “or” in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.
The above-detailed descriptions of embodiments of the invention are not intended to be exhaustive or to limit the invention to the precise form disclosed above. While specific embodiments of, and examples for, the invention are described above for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. For example, whereas steps are presented in a given order, alternative embodiments may perform steps in a different order. The various embodiments described herein can be combined to provide further embodiments.
In general, the terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the specification, unless the above-detailed description explicitly defines such terms. While certain aspects of the invention are presented below in certain claim forms, the inventors contemplate the various aspects of the invention in any number of claim forms. Accordingly, the inventors reserve the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the invention.
Number | Date | Country | Kind |
---|---|---|---|
200207050-6 | Nov 2002 | SG | national |
Number | Name | Date | Kind |
---|---|---|---|
4012579 | Fox et al. | Mar 1977 | A |
4862245 | Pashby et al. | Aug 1989 | A |
4996587 | Hinrchsmeyer et al. | Feb 1991 | A |
5107328 | Kinsman | Apr 1992 | A |
5128831 | Fox, III et al. | Jul 1992 | A |
5138434 | Wood et al. | Aug 1992 | A |
5140404 | Fogal et al. | Aug 1992 | A |
5252853 | Michii | Oct 1993 | A |
5252857 | Kane et al. | Oct 1993 | A |
5304842 | Farnworth et al. | Apr 1994 | A |
5471369 | Honda et al. | Nov 1995 | A |
5475918 | Kubota et al. | Dec 1995 | A |
5518957 | Kim | May 1996 | A |
5536969 | Matsuoka | Jul 1996 | A |
5583371 | Hori | Dec 1996 | A |
5593927 | Farnworth et al. | Jan 1997 | A |
5663593 | Mostafazadeh et al. | Sep 1997 | A |
5665651 | Asada et al. | Sep 1997 | A |
5677566 | King et al. | Oct 1997 | A |
5696033 | Kinsman | Dec 1997 | A |
5715593 | Kimura | Feb 1998 | A |
5729049 | Corisis et al. | Mar 1998 | A |
5739585 | Akram et al. | Apr 1998 | A |
5744827 | Jeong et al. | Apr 1998 | A |
D394844 | Farnworth | Jun 1998 | S |
5815000 | Farnworth | Sep 1998 | A |
D402638 | Farnworth | Dec 1998 | S |
5847455 | Manteghi | Dec 1998 | A |
5851845 | Wood et al. | Dec 1998 | A |
5866939 | Shin et al. | Feb 1999 | A |
5866953 | Akram et al. | Feb 1999 | A |
5879965 | Jiang et al. | Mar 1999 | A |
5883426 | Tokuno et al. | Mar 1999 | A |
5891753 | Akram | Apr 1999 | A |
5891797 | Farrar | Apr 1999 | A |
5893726 | Farnworth et al. | Apr 1999 | A |
5898224 | Akram | Apr 1999 | A |
5933713 | Farnworth | Aug 1999 | A |
5938956 | Hembree et al. | Aug 1999 | A |
5946553 | Wood et al. | Aug 1999 | A |
5956236 | Corisis et al. | Sep 1999 | A |
5958100 | Farnworth et al. | Sep 1999 | A |
5973393 | Chia et al. | Oct 1999 | A |
5973396 | Farnworth | Oct 1999 | A |
5986209 | Tandy | Nov 1999 | A |
5989941 | Wensel | Nov 1999 | A |
5990566 | Farnworth et al. | Nov 1999 | A |
5994784 | Ahmad | Nov 1999 | A |
RE36469 | Wood et al. | Dec 1999 | E |
6008070 | Farnworth | Dec 1999 | A |
6020624 | Wood et al. | Feb 2000 | A |
6020629 | Farnworth et al. | Feb 2000 | A |
6025728 | Hembree et al. | Feb 2000 | A |
6028356 | Kimura | Feb 2000 | A |
6028365 | Akram et al. | Feb 2000 | A |
6046496 | Corisis et al. | Apr 2000 | A |
6048744 | Corisis et al. | Apr 2000 | A |
6048755 | Jiang et al. | Apr 2000 | A |
6049125 | Brooks et al. | Apr 2000 | A |
6051878 | Akram et al. | Apr 2000 | A |
6060778 | Jeong et al. | May 2000 | A |
6066514 | King et al. | May 2000 | A |
6072233 | Corisis et al. | Jun 2000 | A |
6072236 | Akram et al. | Jun 2000 | A |
6075284 | Choi et al. | Jun 2000 | A |
6075288 | Akram | Jun 2000 | A |
6089920 | Farnworth et al. | Jul 2000 | A |
6093969 | Lin | Jul 2000 | A |
6094058 | Hembree et al. | Jul 2000 | A |
6097087 | Farnworth | Aug 2000 | A |
6103547 | Corisis et al. | Aug 2000 | A |
6107122 | Wood et al. | Aug 2000 | A |
6107680 | Hodges | Aug 2000 | A |
6117382 | Thummel | Sep 2000 | A |
6117710 | Mostafazadeh et al. | Sep 2000 | A |
6124634 | Akram et al. | Sep 2000 | A |
6133068 | Kinsman | Oct 2000 | A |
6137162 | Park et al. | Oct 2000 | A |
6148509 | Schoenfeld et al. | Nov 2000 | A |
6150710 | Corisis | Nov 2000 | A |
6150717 | Wood et al. | Nov 2000 | A |
6153924 | Kinsman | Nov 2000 | A |
6159764 | Kinsman et al. | Dec 2000 | A |
6172419 | Kinsman | Jan 2001 | B1 |
6175149 | Akram | Jan 2001 | B1 |
6184465 | Corisis | Feb 2001 | B1 |
6198172 | King et al. | Mar 2001 | B1 |
6208020 | Minamio et al. | Mar 2001 | B1 |
6208519 | Jiang et al. | Mar 2001 | B1 |
6210992 | Tandy et al. | Apr 2001 | B1 |
6212767 | Tandy | Apr 2001 | B1 |
6215175 | Kinsman | Apr 2001 | B1 |
6215177 | Corisis et al. | Apr 2001 | B1 |
6225689 | Moden et al. | May 2001 | B1 |
6228548 | King et al. | May 2001 | B1 |
6228687 | Akram et al. | May 2001 | B1 |
6229202 | Corisis | May 2001 | B1 |
6232229 | Reinberg | May 2001 | B1 |
6235554 | Akram et al. | May 2001 | B1 |
6246108 | Corisis et al. | Jun 2001 | B1 |
6246110 | Kinsman et al. | Jun 2001 | B1 |
6258623 | Moden et al. | Jul 2001 | B1 |
6258624 | Corisis | Jul 2001 | B1 |
6259153 | Corisis | Jul 2001 | B1 |
6261865 | Akram | Jul 2001 | B1 |
6265660 | Tandy | Jul 2001 | B1 |
6277671 | Tripard | Aug 2001 | B1 |
6277704 | Reinberg | Aug 2001 | B1 |
6281577 | Oppermann et al. | Aug 2001 | B1 |
6284571 | Corisis et al. | Sep 2001 | B1 |
6291894 | Farnworth et al. | Sep 2001 | B1 |
6294839 | Mess et al. | Sep 2001 | B1 |
6297543 | Hong et al. | Oct 2001 | B1 |
6303469 | Larson et al. | Oct 2001 | B1 |
6303981 | Moden | Oct 2001 | B1 |
6303985 | Larson et al. | Oct 2001 | B1 |
6310390 | Moden | Oct 2001 | B1 |
6314639 | Corisis | Nov 2001 | B1 |
6316285 | Jiang et al. | Nov 2001 | B1 |
6326242 | Brooks et al. | Dec 2001 | B1 |
6326244 | Brooks et al. | Dec 2001 | B1 |
6326687 | Corisis | Dec 2001 | B1 |
6326697 | Farnworth | Dec 2001 | B1 |
6326698 | Akram | Dec 2001 | B1 |
6329220 | Bolken et al. | Dec 2001 | B1 |
6329705 | Ahmad | Dec 2001 | B1 |
6331221 | Cobbley | Dec 2001 | B1 |
6331448 | Ahmad | Dec 2001 | B1 |
6331453 | Bolken et al. | Dec 2001 | B1 |
6332766 | Thummel | Dec 2001 | B1 |
6337510 | Chun-Jen et al. | Jan 2002 | B1 |
6339254 | Venkateshwaran et al. | Jan 2002 | B1 |
6344976 | Schoenfeld et al. | Feb 2002 | B1 |
6403398 | Ohuchi et al. | Jun 2002 | B2 |
6429528 | King et al. | Aug 2002 | B1 |
6486545 | Glenn et al. | Nov 2002 | B1 |
6498393 | Fujimoto et al. | Dec 2002 | B2 |
6501184 | Shin et al. | Dec 2002 | B1 |
6516516 | Lee | Feb 2003 | B1 |
6518659 | Glenn | Feb 2003 | B1 |
6576494 | Farnworth | Jun 2003 | B1 |
6630729 | Huang | Oct 2003 | B2 |
6819003 | Farnworth | Nov 2004 | B2 |
6830955 | Shin et al. | Dec 2004 | B2 |
6836009 | Koon et al. | Dec 2004 | B2 |
6841423 | Farnworth | Jan 2005 | B2 |
20030042581 | Fee et al. | Mar 2003 | A1 |
20030164554 | Fee et al. | Sep 2003 | A1 |
20050026325 | Koon et al. | Feb 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20040100772 A1 | May 2004 | US |