Power semiconductor package with strap

Information

  • Patent Grant
  • 6873041
  • Patent Number
    6,873,041
  • Date Filed
    Friday, July 11, 2003
    21 years ago
  • Date Issued
    Tuesday, March 29, 2005
    19 years ago
Abstract
A semiconductor package and a method for fabricating a semiconductor package are disclosed. In one embodiment, the semiconductor package includes an exposed portion of a conductive strap at a package horizontal first surface and exposed surfaces of multiple leads at a package horizontal second surface. A power semiconductor die is mounted on a die pad connected to at least one lead having an exposed surface. Heat generated by the die within the package may be dissipated through thermal paths including the exposed surfaces.
Description
BACKGROUND

1. Field of the Invention


The present invention relates to semiconductor packaging, and more particularly to a semiconductor package with an electrically-conductive strap for power applications.


2. Description of the Related Art


Integrated circuit die are conventionally enclosed in plastic packages that provide protection from hostile environments and enable electrical interconnection between the integrated circuit die and printed circuit boards. The package elements may include, for example, a metal leadframe, a die, bonding material to attach the die to the leadframe, bond wires that electrically connect pads on the die to individual leads of the leadframe. A hardened plastic encapsulant material typically covers the die, the bond wires, at least a portion of the leadframe, and forms the exterior of the package.


The leadframe is typically the central supporting structure of such a package. A portion of the leadframe is internal to the package. That is, the plastic encapsulant material conventionally surrounds a central portion of the leadframe with lead portions of the leadframe extending externally outward from the sides of the package. The externally extending lead portions may be used to connect the package to external circuitry.


In conventional eight-lead, small outline integrated circuit (“SOIC-8”) high-power metal-oxide-semiconductor field effect transistor (“PMOSFET”) packages, the sources and drains of the individual transistor devices of the PMOSFET are typically connected in parallel by respective thin layers of metal on the opposed surface of the die, which, in turn, are electrically coupled to the leads of the package. This thin layer of metal, in turn, is externally connected to each of three leads of the package.


In conventional versions of this type of package, the conductive layer spanning the sources of the individual transistor devices are connected to the leads (or an intermediate structure) of a package substrate by a relatively large number (typically 14) of parallel bond wires. However, these wires have contributed to a number of problems associated with this type of device, including relatively high internal thermal and electrical resistances.


More recently, it has been learned that at least some of the foregoing problems can be alleviated by replacing the large number of bond wires with a single, elongated conductive strap that connects the thin layer of metal on top of the die to the source leads of the substrate. This approach, however, has also been somewhat problematic due to the inability of this design to effectively dissipate heat generated by the die. Accordingly, a need exists to provide a semiconductor package that provides for greater, or improved, heat dissipation capabilities.


SUMMARY OF THE INVENTION

A semiconductor package is provided that includes a die pad with a semiconductor die disposed thereon and a plurality of leads electrically coupled to the die via a conductive strap. Each of the leads has opposing first and second surfaces. An encapsulant material encapsulates the die, at least a portion of the die pad, at least a portion of the strap, and at least a portion of lead first surfaces. Second surfaces of the leads may be exposed in a plane of a horizontal exterior surface of the encapsulant, thereby permitting external electrical connectivity to the package and dissipation of heat through the lead second surfaces. A surface of the die pad and/or leads connected to the die pad also may be exposed at the horizontal exterior package surface. The exposed surfaces of the die pad and leads may be adjacent to or surrounded by recessed surfaces that are under-filled by the encapsulant material and are thus locked to the encapsulant material.


In one embodiment, a portion of the conductive strap is exposed through, and may be substantially flush with, a horizontal exterior surface of the encapsulant material opposite the die pad and leads. The exposed lead surfaces, the exposed portion of the conductive strap, and the exposed portion of the die pad provide multiple thermal paths for dissipation of heat generated by the die to the external environment.


A power MOSFET embodiment of the package conforms to a standard eight-lead small outline integrated circuit (SOIC-8) package style and has better heat dissipation capabilities than conventional SOIC-8 packages. In addition, because the leads and die pad are in the plane of the horizontal exterior surface, the package is very thin.


The present invention is best understood by reference to the following detailed description when read in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional side view of a semiconductor package in accordance with an embodiment of the present invention.



FIG. 2 is a top plan view of the semiconductor package of FIG. 1.



FIG. 3 is a bottom plan view of the semiconductor package of FIG. 1.



FIG. 4 is a cross-sectional side view of a semiconductor package in accordance with an embodiment of the present invention.



FIG. 5 is a top plan view of the semiconductor package of FIG. 4.



FIG. 6 is a bottom plan view of the semiconductor package of FIG. 4.



FIG. 7 is a cross-sectional side view of a semiconductor package in accordance with an embodiment of the present invention.



FIG. 8 is a top plan view of the semiconductor package of FIG. 7.



FIG. 9 is a bottom plan view of the semiconductor package of FIG. 7.



FIG. 10 is a breakaway cross-sectional side view of a strap foot in accordance with an embodiment of the present invention.



FIG. 11 is a breakaway cross-sectional side view of a strap foot in accordance with an embodiment of the present invention.



FIG. 12 is a breakaway cross-sectional side view of a strap foot in accordance with an embodiment of the present invention.


Common reference numerals are used throughout the drawings and detailed description to indicate like elements.





DETAILED DESCRIPTION

The present application has some relation to semiconductor packages and methods disclosed in U.S. patent application Ser. Nos. 09/536,236, 09/587,136, 09/816,852, and 09/733,148, all of which are expressly incorporated herein by reference in their respective entireties. The present invention may be applied to some or all of the semiconductor packages disclosed in these applications. Further, the assembly methods disclosed in these applications may be modified in accordance with the present invention.



FIGS. 1-3 show a lead frame semiconductor package 100 in accordance with one embodiment of the present invention. The semiconductor package 100 includes a semiconductor die 102, a metal die pad 104, a first set of metal leads 106, a second set of metal leads 114, 116, 118, and 120, and a conductive strap 122.


The die pad 104 has a first surface 124 (FIG. 1) and a second surface 126 and has a recessed portion 127 formed about the entire periphery thereof. A lateral edge surface 128 and a transverse surface 130 that are generally orthogonal and intersect along a recessed portion inside corner 132 generally define the recessed portion 127. The lateral edge surface 128 is substantially orthogonal to the second surface 126 of the die pad 104 and intersects the second surface 126 of the die pad 104 along corner 125. The corner 125 generally defines the second surface 126 of the die pad 104.


The transverse surface 130 of the recessed portion 127 may be substantially parallel with the first and second surfaces 124 and 126 of the die pad 104 and may be substantially perpendicular to the lateral edge surface 128. The recessed portion 127 may be formed by techniques such as etching, coining, stamping, or the like. During molding, encapsulant material 194 is permitted to enter into and generally under-fill the recessed portion 127 to secure the die pad 104 within the package 100 while permitting the second surface 126 of the die pad 104 to be exposed through lower horizontal second surface 198 of the encapsulant material 194 for external electrical connection.


The leads 106 each have opposing first and second surfaces 134 and 136, which are generally parallel to each other. The second surface 136 of each lead 106 extends between and intersects a corresponding external lateral edge 138 and a corresponding internal lateral edge 140. The internal lateral edge 140 and a corresponding transverse surface 142 are generally orthogonal and define a recessed portion 143 adjacent the second surface 136 of each of the leads 106. In one embodiment, the leads 106 are drain leads, in that they are electrically coupled to the drain terminal of PMOSFET semiconductor die 102.


During molding, the encapsulant material 194 is permitted to enter into and generally under-fill the recessed portion 143 of each of the leads 106 to secure the leads 106 within the package 100 while permitting the second surfaces 136 of the leads 106 to be exposed through the lower horizontal second surface 198 of the encapsulant material 194 for external electrical connection.


The lead 114 (FIG. 3) has an exposed surface 146. The lead 114 has the same configuration as the leads 106, as discussed above, including an inner recessed portion (not shown) like the recessed portion 143 of lead 106 that is under-filled by encapsulant material 194. A surface 146 of lead 14 is exposed and coplanar with second surface 136 of leads 106 in the plane of lower horizontal second surface 198 of encapsulant material 194 for external electrical connection. In one embodiment, an upper encapsulated surface (not shown) of lead 114 is electrically coupled in a flipchip style connection to a gate terminal of a PMOSFET die 102.


The inner edge 136b of exposed second surface 136 of leads 106 and the inner edge 146b of exposed surface 146 of lead 114 is rounded, which can facilitate the encapsulation process, help avoid delamination, and reduce stress concentration points. Corners of exposed second surface 126 of die pad 104 may be rounded for the same reasons.


The leads 116, 118, 120 (FIG. 3) may be formed integrally with or may be fused to the die pad 104. Each of leads 116, 118, 120 includes an exposed second surface 160. The second surfaces 160 of the leads 116, 118, 120 may be coplanar with the second surface 126 of the die pad 104 and the second surface 198 of the encapsulant 194.


The outer edges 136a, 146a, 116a, 118a, and 120a of leads 106, 114, and 116, 118, and 120, respectively, are generally orthogonal and, in this embodiment, extend slightly beyond the tapered sidewalls 195 of encapsulant material 194. Typically, the outer edges 136a, 146a, 116a, 118a, and 120a are formed by severing the leads from a leadframe, such as with a punch or saw.


The die 102, which may comprise a PMOSFET device, is mounted on the first surface 124 of the die pad 104. The die 102 includes opposing first and second surfaces 162 and 163, which may be substantially parallel to each other. The second surface 163 of the die 102 is mounted on the first surface 124 of the die pad 104 with metal solder, an electrically conductive die attach adhesive, or other conventional conductive die attach means. In one embodiment, the leads 116, 118, 120 are source leads in that they are integrally coupled with die pad 104, which, in turn, is electrically coupled to the source terminal of a PMOSFET die 102.


The strap 122 is formed of an electrically conductive material, such as stamped copper or an alloy thereof, and includes a planar uppermost cover portion 170 disposed between and formed integrally with an inclined first connection portion 172 and an inclined second connection portion 174. The strap 122 also includes a flange portion 176 formed integrally with the second connection portion 174 of the strap 122. The flange portion 176 of the strap 122 is mounted on and is electrically and thermally coupled to the first surface 162 of the die 102 by a conductive layer 177, such as solder or an electrically conductive adhesive epoxy. The strap 122 also includes at least one horizontally extending peripheral foot 180 formed integrally with the first connection portion 172 of the strap 122. Foot 180 is mounted on, and is thermally and electrically coupled to first surface 134 of the leads 106. The strap 122 is adhered to the leads 106 and to the die 102 by solder or an epoxy-based adhesive that is both thermally and electrically conductive. Additional details regarding the manner in which the root 180 may be coupled to the leads 106 are described below with reference to FIGS. 10-12.


The flange portion 176 is substantially planar and has a lip 182 formed along side and end edges thereof. As shown, the lip 182 extends vertically away from the first surface 162 of the die 102 to create a space between the lip 182 and the first surface 162 of the die 102. Typically, a layer of conductive adhesive material, which is the epoxy 177 in this example, is disposed between the flange portion 176 and the first surface 162 of the die 102 to secure the flange portion 176 to the first surface 162 of the die 102. In this configuration, the epoxy 177 is substantially thicker between the lip 182 and first surface 162 of the die 102 than between the first surface 162 of the die 102 and other areas of the flange portion 176. The thicker epoxy between the lip 182 and first surface 162 of the die 102 aids in alleviating high stress regions around the edges of the flange portion 176.


The cover portion 170 of the strap 122 is substantially planar and includes first and second surfaces 186 and 188, respectively, and has a through hole 190 formed therein. The through hole 190 extends between the first and second surfaces 186 and 188 of the cover portion 170 and is defined by a sidewall 192. As shown in FIG. 2, the through hole 190 may comprise an elongated slot with semicircular ends. Of course, however, the shape of the through hole 190 may vary. For example, the through hole 192 may comprise a through hole having a circular or rectangular cross-sectional shape.


The through hole 190 is useful during the process of molding the encapsulant material 194 about the package components. The through hole 190 permits passage of molten encapsulant material 194 from adjacent the first surface 186 of the cover portion 170 through the through hole 190 and into a region adjacent the second surface 188 of the cover portion 170. Permitting the molten encapsulant material 194 to pass through the hole 190 also helps prevent the strap 122 from being disconnected during the molding process. A portion of the encapsulant material 194 fills the through hole 190.


The first surface 186 of the cover portion 170 is generally defined by a peripheral edge 189 and may be generally rectangular. As illustrated in FIG. 2, the peripheral edge 189 may include opposing curved indentations 191 adjacent the first and second connection portions 172 and 174 to facilitate bending the strap 122 into the respective cover portion 170 and first and second connection portions 172 and 174.


The encapsulant material 194 is at least partially molded about the aforementioned structures for insulation and protection and includes opposing horizontal exterior first and second surfaces 196 and 198. The first surface 196 of the encapsulant material 194 includes, and is generally defined by, a peripheral corner 197. The encapsulant material 194 also includes sidewalls 195, which taper from a corner 199 to the peripheral corner 197.


The first surface 186 of the cover portion 170 around the through hole 190 is not covered by the encapsulant material 194, but is exposed in and substantially coplanar and flush with the first surface 196 of the encapsulant material 194. The first surface 186 of the cover portion 170 radiates heat effectively to the exterior, since the first surface 186 is not covered with the encapsulant material 194. Such heat is typically generated at the die 102 and conducted through a thermal path including the flange portion 176 and the connection portion 174 of the strap 122 to the first surface 186 of the cover portion 170, where the heat may be dissipated from the first surface 186, such as by radiation.


Optionally, heat sink structures (not shown), including vertical protrusions, such as heat fins, heat pins, and the like may be attached to, or formed on, the first surface 186 of the cover portion 170 to provide additional heat dissipation capability to the package 100. The heat sink structures may be secured on the sow first surface 186 by a thermally conductive adhesive or thermal grease, for example.


As mentioned, the second surface 126 of the die pad 104 and the second surfaces 160 of the leads 116, 118, and 120 are exposed through the second surface 198 of the encapsulant material 194. In one embodiment, the exposed surfaces 126 and 160 are substantially coplanar and flush with the second surface 198 of the encapsulant material 194. The exposed second surface 126 of the die pad 104 and the second surfaces 160 of the leads 116, 118, and 120 (FIG. 3) radiate heat effectively to the exterior. Such heat is typically generated at the die 102 and conducted through thermal paths, which include the die pad 104 the leads 116, 118, and 120 and the second surfaces 126 and 160, respectively.


Additionally, the second surfaces 136 of the leads 106 are exposed through the second surface 198 of the encapsulant material 194. In one embodiment, the exposed second surfaces 136 are substantially coplanar and flush with the second surface 198 of the encapsulant material 194. The exposed second surfaces 136 radiate heat effectively to the exterior. Such heat is typically generated at the die 102 and conducted through a thermal path including the flange portion 176, connection portion 174, cover portion 170, connection portion 172, foot 180, and through the leads 106 to be radiated to the exterior via the exposed second surfaces 136. Further, heat from the die 102 may also be dissipated through the second surface 146 of the lead 114, which may be electrically and thermally coupled to the die 102.


Accordingly, this embodiment provides for multiple thermal paths for dissipation of heat generated at the die 102. Heat may be dissipated through the following exposed surfaces: the first surface 186 of the cover portion 170 of the strap 122, the second surface 126 of the die pad 104, the second surfaces 136 of the leads 106, the second surface 146 of the lead 114, and the second surfaces 160 of the leads 116-120, among other possibilities.


In an alternative embodiment, PMOSFET die 102 is inverted, so that the drain terminal of the die 102 may be electrically coupled to first surface 124 of die pad 104, and the source terminal of the die 102 is electrically coupled by the strap 122 to the leads 106. A bond wire (not shown) may be used to electrically couple the lead 146 to the gate terminal of the die 102.


Depending on the type of die 102, the lead 146 may be omitted, for instance, where the die 102 is a diode.



FIGS. 4-6 illustrate a semiconductor package 400 in accordance with another embodiment of the present invention. The semiconductor package 400 is similar to the semiconductor package 100 (FIGS. 1-3), and has common features, except as follows. Comparing FIGS. 4 and 5 to FIGS. 1 and 2, the first surface 186 of the cover portion 170 of package 400 is not exposed through the first surface 196 of the encapsulant material 194, but is encapsulated by the encapsulant material 194. Nonetheless, this embodiment provides for multiple thermal paths for dissipation of heat generated at the die 102. In this embodiment, heat may be dissipated through the following exposed surfaces: the second surface 126 of the die pad 104, the second surfaces 136 of the leads 106, the exposed surface 146 of the lead 114, and the second surfaces 160 of the leads 116-120. Of course, heat will also radiate through the thin layer of encapsulant material 194 over the first surface 186 of the cover portion 170 of the strap 122.



FIGS. 7-9 illustrate a semiconductor package 700 in accordance with another embodiment of the present invention. The semiconductor package 700 is similar to the semiconductor package 100 (FIGS. 1-3), and has common features, except as follows. The semiconductor package 700 includes a die pad 104′ having opposing first and second surfaces 124′ and 130′. The encapsulant material 194 encapsulates the second surface 130′ of the die pad 104 in its entirety such that no portion of the second surface 130′ is exposed through the encapsulant material 194. The leads 116, 118, and 120 (FIGS. 7 and 9) may be fused to or formed integrally with the die pad 104′ and have respective second surfaces 160 that extend through the second surface 198 of the encapsulant material 194. The second surface 130′ is recessed from the second surface 160 of the leads 116, 118, and 120 so that the encapsulant material 194 under-fills the second surface 130′ within a recess 131 defined by the second surface 130′ and orthogonal surface 133, thereby locking die pad 104 to the encapsulant material 194.


Package 700 provides multiple thermal paths for dissipation of heat generated at the die 102. Heat may be dissipated through the following exposed surfaces: the first surface 186 (FIG. 8) of the cover portion 170 of the strap 122, the second surfaces 136 (FIG. 9) of the leads 106, the second surface 146 (FIG. 9) of the lead 114, and the second surfaces 160 (FIG. 9) of the leads 116, 118, and 120, among other possibilities.



FIGS. 10-12 illustrate several embodiments of the foot 180 of the strap 122 and the lead 106.



FIG. 10 is a breakaway cross-sectional side view of the foot 180 of the strap 122 coupled to the first surface 134 of the lead 106 by a conductive layer 1002 in accordance with an embodiment of the present invention. The conductive layer 1002 thermally, electrically, and physically couples the foot 180 with the lead 106 and may comprise, for example, solder or a conductive adhesive. In one embodiment, the conductive layer 1002 comprises a conductive epoxy material. The conductive layer 1002 is disposed between the first surface 134 of the lead 106 and a transverse surface 1004 of the foot 180 to secure the foot 180 of the strap 122 to the first surface 134 of the lead 106. Thus, the strap 122 and the lead 106 are thermally, electrically, and physically coupled.



FIG. 11 is a breakaway cross-sectional side view of the foot 180 of the strap 122 coupled to the lead 106 in accordance with another embodiment of the present invention. In this embodiment, the lead 106′ has opposing first and second surfaces 134′ and 136′, which are substantially parallel with each other. The lead 106′ also includes a recess 1102 formed in the first surface 134′ of the lead 106′. A recess floor 1104 and recess sidewalls 1106 define the recess 1102. The cross-sectional shape of the recess 1102 in the plane normal to FIG. 11 may comprise, for example, a circular or rectangular cross-sectional shape. The recess floor 1104 intersects and is substantially orthogonal to the recess sidewalls 1106. The exposed second surface 136′ of the lead 106′ is substantially planar, and recess 140 is under-filled with encapsulant material 194.


At least a portion, or all, of the foot 180 of the strap 122 is disposed within the recess 1102, depending on the relative depth of the recess 1102 and thickness of the foot 108. The transverse surface 1104 of the foot 180 may be positioned adjacent or against the recess floor 1104 as shown in FIG. 11. A conductive material 1106, such as solder or a conductive adhesive (e.g., conductive epoxy), is also disposed within the recess 1102 to thermally, electrically, and physically couple foot 180 of the strap 122 to the lead 1106′. The recess 1102 thus mechanically captivates the foot 180 so that significant horizontal movement between the foot 180 and the lead 106′ is prevented. This facilitates placement of the strap 122 and may improve the integrity of the connection.



FIG. 12 is a breakaway cross-sectional side view of a foot 180′ of a strap 122′ coupled to a lead 106″ in accordance with an embodiment of the present invention. In this embodiment, the foot 180′ includes an aperture 1202. The lead 106″ also includes an aperture 1204. As illustrated, the apertures 1202 and 1204 are substantially aligned such that their longitudinal axes are substantially coincident. A conductive material 1206, such as solder or a conductive adhesive (e.g., conductive epoxy) fills the apertures 1202 and 1204 and forms mechanically interlocking “key” therein when the conductive adhesive solidifies or hardens. The apertures 1202 and 1204 may each taper toward the first surface 134″ of the lead 106″ to enhance the interlocking effect of the hardened encapsulant material 1206.


The recess 1102 of FIG. 11 and the apertures 1202 and 1204 of FIG. 12 can be formed with a wide variety of known techniques, including photolithography and etching, electrical-discharge machining (“EDM”), stamping, punching, coining, laser-burning, or the like.


This disclosure provides exemplary embodiments of the present invention. The scope of the present invention is not limited by these exemplary embodiments. Numerous variations, whether explicitly provided for by the specification or implied by the specification, such as variations in structure, dimension, type of material and manufacturing process may be implemented by one of skill in the art in view of this disclosure.

Claims
  • 1. A semiconductor package, comprising: a die having a bottom surface and a top surface; a die pad having first and second surfaces, the bottom surface of the die being mounted to the first surface of the die pad; a plurality of leads, each of the leads having first and second surfaces, at least some of the leads being integrally connected to the die pad; a conductive strap electrically connected to and extending between the top surface of the die and the first surface of at least one of the leads which is not integrally connected to the die pad; and an encapsulant material encapsulating the die, at least a portion of the die pad, at least a portion of the conductive strap, and at least a portion of each of the leads such that the second surface of each of the leads is generally co-planar with an exterior surface of the encapsulant material.
  • 2. The semiconductor package of claim 1 wherein a portion of the conductive strap is exposed in the encapsulant material.
  • 3. The semiconductor package of claim 1 wherein at least a portion of the second surface of the die pad is exposed in the encapsulant material.
  • 4. The semiconductor package of claim 1 wherein the conductive strap includes a through hole which is filled with the encapsulant material.
  • 5. The semiconductor package of claim 1, wherein the conductive strap comprises: a first end portion coupled to the top surface of the die; a second end portion coupled to the first surface of at least one of the leads; and a central portion extending between the first and second end portions, the central portion having a through hole formed therein which is filled with the encapsulant material.
  • 6. The semiconductor package of claim 1 wherein each of the leads includes a recessed portion which is adjacent to the second surface thereof and is filled with the encapsulant material.
  • 7. The semiconductor package of claim 1 wherein the die pad has a recessed portion which is adjacent to and extends about the periphery of the second surface thereof, the recessed portion of the die pad being filled with the encapsulant material.
  • 8. The semiconductor package of claim 1 wherein: the conductive strap includes a flange portion having the lip formed thereon; a conductive layer is disposed between the flange portion and the top surface of the die and between the lip and the die; and the conductive layer has a first thickness adjacent to the lip and a second thickness adjacent to the flange portion, the first thickness exceeding the second thickness.
  • 9. The semiconductor package of claim 1 wherein: each of the leads has a recessed portion formed in the first surface thereof; and the conductive strap has a foot portion which is disposed in the recessed portion of at least one of the leads.
  • 10. The semiconductor package of claim 1 wherein the conductive strap is secured to the first surface of at least one of the leads by a conductive layer.
  • 11. A semiconductor package, comprising: a die; a die pad having first and second surfaces, the die being mounted to the first surface of the die pad; a plurality of leads, each of the leads having first and second surfaces, at least some of the leads being integrally connected to the die pad; a conductive strap electrically connected to and extending between the die and the first surface of at least one of the leads which is not electrically connected to the die pad; and an encapsulant material encapsulating the die, at least a portion of the die pad, at least a portion of the conductive strap, and at least a portion of each of the leads such that a portion of the conductive strap is exposed in and substantially flush with an exterior surface of the encapsulant material, at least a portion of the second surface of the die pad is exposed in and substantially flush with the exterior surface of the encapsulant material, and the second surface of each of the leads is exposed in and substantially flush with the exterior surface of the encapsulant material.
  • 12. The semiconductor package of claim 11 wherein the conductive strap comprises: a first end portion coupled to the die; a second end portion coupled to the first surface of at least one of the leads; and a central portion extending between the first and second end portions, the central portion having a through hole formed therein which is filled with the encapsulant material.
  • 13. The semiconductor package of claim 11 wherein each of the leads has a recessed portion which is adjacent to the second surface thereof and is filled with the encapsulant material.
  • 14. The semiconductor package of claim 11 wherein the die pad has a recessed portion adjacent to and extending about the periphery of the second surface thereof, the recessed portion being filled with the encapsulant material.
  • 15. The semiconductor package of claim 11 wherein: the conductive strap includes a flange portion having a lip formed thereon; a conductive layer is disposed between the flange portion of the conductive strap and the die and between the lip and the die; and the conductive layer has a first thickness adjacent to the lip and a second thickness adjacent to the flange portion, the first thickness exceeding the second thickness.
  • 16. A semiconductor package, comprising: a die; a die pad having first and second surfaces, the die being mounted to the first surface of the die pad; a plurality of leads, each of the leads having first and second surfaces, at least some of the leads being integrally connected to the die pad; a conductive strap electrically connected to and extending between the die and the first surface of at least one of the leads which is not integrally connected to the die pad; and an encapsulant material encapsulating the die, at least a portion of the die pad, at least a portion of the conductive strap, and at least a portion of each of the leads such that the second surface of each of the leads is exposed in and substantially flush with an exterior surface of the encapsulant material; each of the leads having a recessed portion adjacent to the second surface thereof which is filled with the encapsulant material, and the die pad having a recessed portion adjacent to and extending about the periphery of the second surface thereof, the recessed portion of the die pad being filled with the encapsulant material.
  • 17. The semiconductor package of claim 16 wherein the conductive strap comprises a through hole which is filled with the encapsulant material.
  • 18. The semiconductor package of claim 16 wherein at least a portion of the second surface of the die pad is exposed in and substantially flush with the exterior surface of the encapsulant material.
Parent Case Info

This application is a continuation of application Ser. No. 10/008,048 filed on Nov. 7, 2001, now U.S. Pat. No. 6,630,726.

US Referenced Citations (272)
Number Name Date Kind
2596993 Gookin May 1952 A
3435815 Forcier Apr 1969 A
3734660 Davies et al. May 1973 A
3838984 Crane et al. Oct 1974 A
4054238 Lloyd et al. Oct 1977 A
4189342 Kock Feb 1980 A
4258381 Inaba Mar 1981 A
4289922 Devlin Sep 1981 A
4301464 Otsuki et al. Nov 1981 A
4332537 Slepcevic Jun 1982 A
4417266 Grabbe Nov 1983 A
4451224 Harding May 1984 A
4530152 Roche et al. Jul 1985 A
4646710 Schmid et al. Mar 1987 A
4707724 Suzuki et al. Nov 1987 A
4727633 Herrick Mar 1988 A
4737839 Burt Apr 1988 A
4756080 Thorp, Jr. et al. Jul 1988 A
4812896 Rothgery et al. Mar 1989 A
4862245 Pashby et al. Aug 1989 A
4862246 Masuda et al. Aug 1989 A
4907067 Derryberry Mar 1990 A
4920074 Shimizu et al. Apr 1990 A
4935803 Kalfus et al. Jun 1990 A
4942454 Mori et al. Jul 1990 A
4987475 Schlesinger et al. Jan 1991 A
5018003 Yasunaga et al. May 1991 A
5029386 Chao et al. Jul 1991 A
5041902 McShane Aug 1991 A
5059379 Tsutsumi et al. Oct 1991 A
5065223 Matsuki et al. Nov 1991 A
5070039 Johnson et al. Dec 1991 A
5087961 Long et al. Feb 1992 A
5091341 Asada et al. Feb 1992 A
5096852 Hobson Mar 1992 A
5118298 Murphy Jun 1992 A
5151039 Murphy Sep 1992 A
5157475 Yamaguchi Oct 1992 A
5157480 McShane et al. Oct 1992 A
5168368 Gow, 3rd et al. Dec 1992 A
5172213 Zimmerman Dec 1992 A
5172214 Casto Dec 1992 A
5175060 Enomoto et al. Dec 1992 A
5200362 Lin et al. Apr 1993 A
5200809 Kwon Apr 1993 A
5214845 King et al. Jun 1993 A
5216278 Lin et al. Jun 1993 A
5218231 Kudo Jun 1993 A
5221642 Burns Jun 1993 A
5250841 Sloan et al. Oct 1993 A
5252853 Michii Oct 1993 A
5258094 Furui et al. Nov 1993 A
5266834 Nishi et al. Nov 1993 A
5273938 Lin et al. Dec 1993 A
5277972 Sakumoto et al. Jan 1994 A
5278446 Nagaraj et al. Jan 1994 A
5279029 Burns Jan 1994 A
5294897 Notani et al. Mar 1994 A
5327008 Djennas et al. Jul 1994 A
5332864 Liang et al. Jul 1994 A
5335771 Murphy Aug 1994 A
5336931 Juskey et al. Aug 1994 A
5343076 Katayama et al. Aug 1994 A
5358905 Chiu Oct 1994 A
5365106 Watanabe Nov 1994 A
5381042 Lerner et al. Jan 1995 A
5391439 Tomita et al. Feb 1995 A
5406124 Morita et al. Apr 1995 A
5410180 Fujii et al. Apr 1995 A
5414299 Wang et al. May 1995 A
5424576 Djennas et al. Jun 1995 A
5428248 Cha Jun 1995 A
5435057 Bindra et al. Jul 1995 A
5444301 Song et al. Aug 1995 A
5452511 Chang Sep 1995 A
5454905 Fogelson Oct 1995 A
5474958 Djennas et al. Dec 1995 A
5484274 Neu Jan 1996 A
5493151 Asada et al. Feb 1996 A
5508556 Lin Apr 1996 A
5517056 Bigler et al. May 1996 A
5521429 Aono et al. May 1996 A
5528076 Pavio Jun 1996 A
5534467 Rostoker Jul 1996 A
5539251 Iverson et al. Jul 1996 A
5543657 Diffenderfer et al. Aug 1996 A
5544412 Romero et al. Aug 1996 A
5545923 Barber Aug 1996 A
5581122 Chao et al. Dec 1996 A
5592019 Ueda et al. Jan 1997 A
5592025 Clark et al. Jan 1997 A
5594274 Suetaki Jan 1997 A
5604376 Hamburgen et al. Feb 1997 A
5608267 Mahulikar et al. Mar 1997 A
5625222 Yoneda et al. Apr 1997 A
5633528 Abbott et al. May 1997 A
5639990 Nishihara et al. Jun 1997 A
5640047 Nakashima Jun 1997 A
5641997 Ohta et al. Jun 1997 A
5643433 Fukase et al. Jul 1997 A
5644169 Chun Jul 1997 A
5646831 Manteghi Jul 1997 A
5650663 Parthasarathi Jul 1997 A
5661088 Tessier et al. Aug 1997 A
5665996 Williams et al. Sep 1997 A
5673479 Hawthorne Oct 1997 A
5683806 Sakumoto et al. Nov 1997 A
5689135 Ball Nov 1997 A
5696666 Miles et al. Dec 1997 A
5701034 Marrs Dec 1997 A
5703407 Hori Dec 1997 A
5710064 Song et al. Jan 1998 A
5723899 Shin Mar 1998 A
5736432 Mackessy Apr 1998 A
5745984 Cole, Jr. et al. May 1998 A
5753532 Sim May 1998 A
5753977 Kusaka et al. May 1998 A
5766972 Takahashi et al. Jun 1998 A
5770888 Song et al. Jun 1998 A
5776798 Quan et al. Jul 1998 A
5783861 Son Jul 1998 A
5801440 Chu et al. Sep 1998 A
5814877 Diffenderfer et al. Sep 1998 A
5814881 Alagaratnam et al. Sep 1998 A
5814883 Sawai et al. Sep 1998 A
5814884 Davis et al. Sep 1998 A
5817540 Wark Oct 1998 A
5818105 Kouda Oct 1998 A
5821457 Mosley et al. Oct 1998 A
5821615 Lee Oct 1998 A
5834830 Cho Nov 1998 A
5835988 Ishii Nov 1998 A
5844306 Fujita et al. Dec 1998 A
5856911 Riley Jan 1999 A
5859471 Kuraishi et al. Jan 1999 A
5866939 Shin et al. Feb 1999 A
5871782 Choi Feb 1999 A
5874784 Aoki et al. Feb 1999 A
5877043 Alcoe et al. Mar 1999 A
5886397 Ewer Mar 1999 A
5886398 Low et al. Mar 1999 A
5894108 Mostafazadeh et al. Apr 1999 A
5897339 Song et al. Apr 1999 A
5900676 Kweon et al. May 1999 A
5903049 Mori May 1999 A
5903050 Thurairajaratnam et al. May 1999 A
5909053 Fukase et al. Jun 1999 A
5915998 Stidham et al. Jun 1999 A
5917242 Ball Jun 1999 A
5939779 Kim Aug 1999 A
5942794 Okumura et al. Aug 1999 A
5951305 Haba Sep 1999 A
5959356 Oh Sep 1999 A
5969426 Baba et al. Oct 1999 A
5973388 Chew et al. Oct 1999 A
5976912 Fukutomi et al. Nov 1999 A
5977613 Takata et al. Nov 1999 A
5977615 Yamaguchi et al. Nov 1999 A
5977630 Woodworth et al. Nov 1999 A
5981314 Glenn et al. Nov 1999 A
5986333 Nakamura Nov 1999 A
5986885 Wyland Nov 1999 A
6001671 Fjelstad Dec 1999 A
6013947 Lim Jan 2000 A
6018189 Mizuno Jan 2000 A
6020625 Qin et al. Feb 2000 A
6025640 Yagi et al. Feb 2000 A
6031279 Lenz Feb 2000 A
RE36613 Ball Mar 2000 E
6034423 Mostafazadeh Mar 2000 A
6040626 Cheah et al. Mar 2000 A
6043430 Chun Mar 2000 A
6060768 Hayashida et al. May 2000 A
6060769 Wark May 2000 A
6072228 Hinkle et al. Jun 2000 A
6075284 Choi et al. Jun 2000 A
6081029 Yamaguchi Jun 2000 A
6084310 Mizuno et al. Jul 2000 A
6087722 Lee et al. Jul 2000 A
6100594 Fukui et al. Aug 2000 A
6113473 Costantini et al. Sep 2000 A
6118174 Kim Sep 2000 A
6118184 Ishio et al. Sep 2000 A
RE36907 Templeton, Jr. et al. Oct 2000 E
6130115 Okumura et al. Oct 2000 A
6130473 Mostafazadeh et al. Oct 2000 A
6133623 Otsuki et al. Oct 2000 A
6140154 Hinkle et al. Oct 2000 A
6143981 Glenn Nov 2000 A
6169329 Farnworth et al. Jan 2001 B1
6177718 Kozono Jan 2001 B1
6181002 Juso et al. Jan 2001 B1
6184465 Corisis Feb 2001 B1
6194777 Abbott et al. Feb 2001 B1
6197615 Song et al. Mar 2001 B1
6198171 Huang et al. Mar 2001 B1
6201186 Daniels et al. Mar 2001 B1
6201292 Yagi et al. Mar 2001 B1
6204554 Ewer et al. Mar 2001 B1
6208020 Minamio Mar 2001 B1
6208021 Ohuchi et al. Mar 2001 B1
6208023 Nakayama et al. Mar 2001 B1
6211462 Carter, Jr. et al. Apr 2001 B1
6218731 Huang et al. Apr 2001 B1
6222258 Asano et al. Apr 2001 B1
6225146 Yamaguchi et al. May 2001 B1
6229200 Mclellan et al. May 2001 B1
6229205 Jeong et al. May 2001 B1
6239384 Smith et al. May 2001 B1
6242281 Mclellan et al. Jun 2001 B1
6256200 Lam et al. Jul 2001 B1
6258629 Niones et al. Jul 2001 B1
6281566 Magni Aug 2001 B1
6281568 Glenn et al. Aug 2001 B1
6282095 Houghton et al. Aug 2001 B1
6285075 Combs et al. Sep 2001 B1
6291271 Lee et al. Sep 2001 B1
6291273 Miyaki et al. Sep 2001 B1
6294100 Fan et al. Sep 2001 B1
6294830 Fjelstad Sep 2001 B1
6295977 Ripper et al. Oct 2001 B1
6297548 Moden et al. Oct 2001 B1
6303984 Corisis Oct 2001 B1
6303997 Lee Oct 2001 B1
6307272 Takahashi et al. Oct 2001 B1
6309909 Ohgiyama Oct 2001 B1
6316838 Ozawa et al. Nov 2001 B1
6323550 Martin et al. Nov 2001 B1
6326243 Suzuya et al. Dec 2001 B1
6326244 Brooks et al. Dec 2001 B1
6326678 Karnezos et al. Dec 2001 B1
6335564 Pour Jan 2002 B1
6339255 Shin Jan 2002 B1
6348726 Bayan et al. Feb 2002 B1
6355502 Kang et al. Mar 2002 B1
6369454 Chung Apr 2002 B1
6373127 Baudouin et al. Apr 2002 B1
6380048 Boon et al. Apr 2002 B1
6384472 Huang May 2002 B1
6388336 Venkateshwaran et al. May 2002 B1
6395578 Shin et al. May 2002 B1
6400004 Fan et al. Jun 2002 B1
6414385 Huang et al. Jul 2002 B1
6420779 Sharma et al. Jul 2002 B1
6429508 Gang Aug 2002 B1
6437429 Su et al. Aug 2002 B1
6444499 Swiss et al. Sep 2002 B1
6448633 Yee et al. Sep 2002 B1
6452279 Shimoda Sep 2002 B2
6464121 Reijnders Oct 2002 B2
6476469 Hung et al. Nov 2002 B2
6476474 Hung Nov 2002 B1
6482680 Khor et al. Nov 2002 B1
6498099 McLellan et al. Dec 2002 B1
6498392 Azuma Dec 2002 B2
6507096 Gang Jan 2003 B2
6507120 Lo et al. Jan 2003 B2
6534849 Gang Mar 2003 B1
6559525 Huang May 2003 B2
6566164 Glenn et al. May 2003 B1
6566168 Gang May 2003 B2
6630726 Crowley et al. Oct 2003 B1
20010008305 McClellan et al. Jul 2001 A1
20010014538 Kwan et al. Aug 2001 A1
20020011654 Kimura Jan 2002 A1
20020024122 Jung et al. Feb 2002 A1
20020027297 Ikenaga et al. Mar 2002 A1
20020140061 Lee Oct 2002 A1
20020140068 Lee et al. Oct 2002 A1
20020163015 Lee et al. Nov 2002 A1
20030030131 Lee et al. Feb 2003 A1
20030073265 Hu et al. Apr 2003 A1
Foreign Referenced Citations (66)
Number Date Country
19734794 Aug 1997 DE
5421117 Jun 1979 EP
5950939 Mar 1984 EP
0393997 Oct 1990 EP
0459493 Dec 1991 EP
0720225 Mar 1996 EP
07200234 Mar 1996 EP
0794572 Oct 1997 EP
0844665 May 1998 EP
0936671 Aug 1999 EP
098968 Mar 2000 EP
1032037 Aug 2000 EP
55163868 Dec 1980 JP
5745959 Mar 1982 JP
58160095 Aug 1983 JP
59208756 Nov 1984 JP
59227143 Dec 1984 JP
60010756 Jan 1985 JP
60116239 Aug 1985 JP
60195957 Oct 1985 JP
60231349 Nov 1985 JP
6139555 Feb 1986 JP
629639 Jan 1987 JP
63067762 Mar 1988 JP
63205935 Aug 1988 JP
63233555 Sep 1988 JP
63249345 Oct 1988 JP
63316470 Dec 1988 JP
64054749 Mar 1989 JP
1106456 Apr 1989 JP
1175250 Jul 1989 JP
1251747 Oct 1989 JP
3177060 Aug 1991 JP
4098864 Mar 1992 JP
5129473 May 1993 JP
5166992 Jul 1993 JP
5283460 Oct 1993 JP
692076 Apr 1994 JP
6140563 May 1994 JP
6260532 Sep 1994 JP
7297344 Nov 1995 JP
7312404 Nov 1995 JP
864634 Mar 1996 JP
8083877 Mar 1996 JP
8125066 May 1996 JP
8222682 Aug 1996 JP
8306853 Nov 1996 JP
98205 Jan 1997 JP
98206 Jan 1997 JP
98207 Jan 1997 JP
992775 Apr 1997 JP
9293822 Nov 1997 JP
10022447 Jan 1998 JP
10163401 Jun 1998 JP
10199934 Jul 1998 JP
10256240 Sep 1998 JP
00150765 May 2000 JP
556398 Oct 2000 JP
2001060648 Mar 2001 JP
200204397 Aug 2002 JP
941979 Jan 1994 KR
9772358 Nov 1997 KR
100220154 Jun 1999 KR
0049944 Jun 2002 KR
9956136 Nov 1999 WO
9967821 Dec 1999 WO
Continuations (1)
Number Date Country
Parent 10008048 Nov 2001 US
Child 10618192 US