The following description relates to processing of integrated circuits (“ICs”). More particularly, the following description relates to devices and techniques for processing IC dies and assemblies.
The demand for more compact physical arrangements of microelectronic elements such as integrated chips and dies has become even more intense with the rapid progress of portable electronic devices, the expansion of the Internet of Things, nano-scale integration, subwavelength optical integration, and more. Merely by way of example, devices commonly referred to as “smart phones” integrate the functions of a cellular telephone with powerful data processors, memory and ancillary devices such as global positioning system receivers, electronic cameras, a variety of sensors, and local area network connections along with high-resolution displays and associated image processing chips. Such devices can provide capabilities such as full internet connectivity, entertainment including full-resolution video, navigation, electronic banking and more, all in a pocket-size device. Complex portable devices require packing numerous chips and dies into a small space.
Microelectronic elements often comprise a thin slab of a semiconductor material, such as silicon or gallium arsenide. Chips and dies are commonly provided as individual, prepackaged units. In some unit designs, the die is mounted to a substrate or a chip carrier, which is in turn mounted on a circuit panel, such as a printed circuit board (PCB). Dies can be provided in packages that facilitate handling of the die during manufacture and during mounting of the die on the external substrate. For example, many dies are provided in packages suitable for surface mounting.
Numerous packages of this general type have been proposed for various applications. Most commonly, such packages include a dielectric element, commonly referred to as a “chip carrier” with terminals formed as plated or etched metallic structures on the dielectric. The terminals typically are connected to the contacts (e.g., bond pads) of the die by conductive features such as thin traces extending along the die carrier and by fine leads or wires extending between the contacts of the die and the terminals or traces. In a surface mounting operation, the package may be placed onto a circuit board so that each terminal on the package is aligned with a corresponding contact pad on the circuit board. Solder or other bonding material is generally provided between the terminals and the contact pads. The package can be permanently bonded in place by heating the assembly so as to melt or “reflow” the solder or otherwise activate the bonding material.
Many packages include solder masses in the form of solder balls that are typically between about 0.02 mm and about 0.8 mm (5 and 30 mils) in diameter, and are attached to the terminals of the package. A package having an array of solder balls projecting from its bottom surface (e.g., surface opposite the front face of the die) is commonly referred to as a ball grid array or “BGA” package. Other packages, referred to as land grid array or “LGA” packages are secured to the substrate by thin layers or lands formed from solder. Packages of this type can be quite compact. Certain packages, commonly referred to as “chip scale packages,” occupy an area of the circuit board equal to, or only slightly larger than, the area of the device incorporated in the package. This scale is advantageous in that it reduces the overall size of the assembly and permits the use of short interconnections between various devices on the substrate, which in turn limits signal propagation time between devices and thus facilitates operation of the assembly at high speeds.
Semiconductor dies can also be provided in “stacked” arrangements, wherein one die is provided on a carrier, for example, and another die is mounted on top of the first die. These arrangements can allow a number of different dies to be mounted within a single footprint on a circuit board and can further facilitate high-speed operation by providing a short interconnection between the dies. Often, this interconnect distance can be only slightly longer than the thickness of the die itself. For interconnection to be achieved within a stack of die packages, interconnection structures for mechanical and electrical connection may be provided on both sides (e.g., surfaces) of each die package (except, perhaps, for the topmost package). This has been done, for example, by providing contact pads or lands on both sides of the substrate to which the die is mounted, the pads being connected through the substrate by conductive vias or the like. Examples of stacked chip arrangements and interconnect structures are provided in U.S. Patent App. Pub. No. 2010/0232129, the disclosure of which is incorporated by reference herein. In other examples, Through Silicon Vias (TSVs) are used for interconnection to be achieved within a stack of die packages. In some cases, dies or wafers may be bonded in a stacked arrangement using various bonding techniques, including direct dielectric bonding, non-adhesive techniques, such as ZiBond® or a hybrid bonding technique, such as DBI®, both available from Invensas Bonding Technologies, Inc. (formerly Ziptronix, Inc.), an Xperi company (see for example, U.S. Pat. Nos. 6,864,585 and 7,485,968, which are incorporated herein in their entirety).
Stacked die and wafer arrangements, including bonded arrangements, may also be used to form assembled components such as microelectromechanical systems (MEMS), sensors, and the like. See, for example, U.S. Pat. No. 7,109,092, which is incorporated herein in its entirety. In many of these arrangements, it is desirable for the stacked dies and wafers to be sealed at their joined surfaces, for instance, to form a sensor cavity. In some cases, making such seals reliable and long-lasting can be problematic, particularly at the chip scale.
The detailed description is set forth with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different figures indicates similar or identical items.
For this discussion, the devices and systems illustrated in the figures are shown as having a multiplicity of components. Various implementations of devices and/or systems, as described herein, may include fewer components and remain within the scope of the disclosure. Alternately, other implementations of devices and/or systems may include additional components, or various combinations of the described components, and remain within the scope of the disclosure.
Various embodiments of techniques and devices for forming seals and sealed microelectronic devices are disclosed. Seals are disposed at joined (e.g., bonded, coupled, etc.) surfaces of stacked dies and wafers to seal (e.g., hermetically seal) the joined surfaces. The joined surfaces may be sealed to form sensor cavities, or the like, as part of the microelectronic devices. For instance, when a die with a recessed surface is bonded to another die with a flat surface or a recessed surface, a cavity can be formed between the two dies. In some applications, it may be desirable for this cavity to be hermetically sealed, to maintain a specific vacuum level inside the cavity and for predetermined leak rates to be maintained.
The leak rate of a sealed cavity can be looked at as a function of the cavity's volume. For example, if the volume of a cavity is less than or equal to 0.01 cc, generally, the leak rate is to be below 5E-8 atm-cc/s of air to consider the cavity hermetically sealed. If the volume of the cavity ranges between 0.01 and 0.4 cc, the leak rate is to be below 1E-7, and if the volume is greater than 0.4 cc, then the leak rate is to be below 1E-6 for a hermetically sealed cavity (per MIL-STD-883 Method 1014, MIL-STD-750 Method 1071).
The integrity of a seal at the periphery of a stack of dies can be critical to maintain the application specific hermeticity and low leak rates of the package. Metals, ceramics, and glasses are the typical materials used to form the seal and to prevent water vapor or other gases (e.g. oxygen, etc.) from accessing components inside the package. A properly made hermetic seal with a sufficiently low leak rate can keep the interior of a package dry and moisture free for many years.
The techniques disclosed herein include forming seals of one or more metallic materials (for example) at a joint (e.g., a bond line, a seam, etc.) of at least two surfaces, which seals the joined surfaces at the joint. In various implementations, metallic materials may be deposited using electroless plating, or the like. In some embodiments, metallic materials may be deposited directly onto the joined surfaces at or around the joint. In other embodiments, one or more non-metallic materials may be deposited onto the joined surfaces, and metallic material can be deposited over the non-metallic material(s), sealing the joint. The seal may include a continuous sealing ring formed completely around joined dies or wafers (e.g., a periphery of the devices) or one or more partial seals, as desired.
In various embodiments, the techniques disclosed can seal dies and wafers that are stacked and bonded using “ZIBOND®” techniques, which can benefit from the added seal. For example, at
In another example, as shown at
At block 1, a recessed cavity wafer 102 is formed. Although one cavity 202 is shown in the illustration at block 1, one or more cavities 202 of similar or different dimensions may be formed per die location, effectively forming several such recessed cavities 202 on a wafer (or die) 102. At block 2, the cavity wafer 102 is bonded to a MEMS wafer 104 (or any other wafer or die) closing the cavity 202 within. The cavity wafer 102 can be bonded to the MEMS wafer 104 using an intimate surface bonding technique, for example, a ZIBOND® technique, wherein insulating surfaces (e.g., SiOx-SiOx, etc.) are bonded. At block 3, the MEMS wafer 104 may be thinned and patterned to form stand-offs. At block 4, metallization 204 can be added to the patterned surface of the MEMS wafer 104, including pads, contacts, traces, and so forth. In an alternate example, no metallization 204 is added to the surface of the MEMS wafer 104. In the example, the microelectronic device 100 can be attached to another device, such as a logic device wafer, for example, using a Zibond technique (e.g., SiOx-SiOx bond) or the like at the bonded surfaces, or using other bonding techniques for dielectrics (such as a polymeric material, e.g. die attached film or paste) on one or both bonded surfaces.
At block 5, openings are formed in the MEMS wafer 104, accessing the cavity 202, to define the characteristics of the microelectronic device 100, based on the application. At block 6, the microelectronic device 100 can be attached to a logic device wafer (or die) 206, to provide logic/control (for example) for the microelectronic device 100. Metallization layer 204 contact pads of the microelectronic device 100 are coupled to contacts 208 on the surface of the logic device 206. At block 7, portions of the microelectronic device 100 (such as portions of the cavity wafer 102) are removed (e.g., etched, etc.) to provide access to other contact pads of the logic device wafer 206, and so forth. In some instances, the Zibond or DBI interface between the cavity wafer 102 and the MEMS wafer 104 may provide an adequate resistance to the flow of fluids, such as gases and/or liquids. In other embodiments, one or more of the bond lines or coupling joints of the microelectronic device 100 can be sealed for hermeticity (e.g., a predetermined resistance to the flow of fluids, such as gases and/or liquids, and sufficiently low moisture vapor transmission rate, oxygen transmission rate, etc.), as discussed below.
To ensure a strong and hermetically sealed bond, the techniques disclosed herein include bonding insulator surfaces of the wafers (e.g., 102 and 104), then adding a metallic seal at the bond line to improve the hermeticity, as discussed further below.
In various embodiments, the seal ring 302 is comprised of a metallic material (i.e., a metal such as copper, for example, an alloy, or a metallic composition). In some embodiments, two or more metallic materials may be used in layers (or other combinations) to form the seal ring 302. In the various embodiments, the seal ring 302 is deposited using electroless plating, electro-deposition, mechanical printing, or various combinations thereof, or the like.
As shown at
At block 1, a recessed cavity wafer 102 is formed. A channel 406 (or “cavity ring,” partly or fully surrounding the cavity 202) is formed on the cavity-side surface of the wafer 102. The channel 406 may be formed by etching, drilling, or otherwise removing material from the surface of the wafer 102.
At block 2, the cavity wafer 102 is bonded to a MEMS wafer 104 closing the cavity 202 within. The cavity wafer 102 can be bonded to the MEMS wafer 104 using an intimate surface bonding technique, for example, such as a ZIBOND® technique, wherein insulating surfaces (e.g., SiOx-SiOx, etc.) are bonded. In another example, the cavity wafer 102 can be bonded to the MEMS wafer 104 using another dielectric bonding technique (e.g. die attach film or paste, a polymeric material such as a silicone or epoxy, or the like, which may not provide a hermetic seal and may not improve or fix a hermetic seal).
At block 3, the MEMS wafer 104 may be thinned and patterned to form stand-offs. In another case, the stand-offs are optional and may not be formed on the MEMS wafer 104. In such a case, the standoffs can be formed on the logic wafer 206 or can be created by any other material (e.g. die attach film or paste, etc.). At block 4, openings are formed in the MEMS wafer 104, accessing the cavity 202, to define the characteristics of the microelectronic device 100, based on the application. Also, channels 406 are formed in the MEMS wafer 104 (and in the cavity wafer 102, in some examples) for forming interior seals (e.g., 402 and 404) to seal the bonding joint between the cavity wafer 102 and the MEMS wafer 104. In one case the MEMS wafer 104 can be drilled to open an area in the MEMS wafer 104 that is aligned with the cavity ring channel 406 previously formed in the cavity wafer 102. In an alternate case, the MEMS wafer 104 and the cavity wafer 102 can be drilled together to form the cavity ring channel 406 (e.g., the channel 406 in the cavity wafer 102 is formed at this step, while drilling the MEMS wafer 104, rather than being pre-formed prior to bonding the cavity wafer 102 to the MEMS wafer 104).
At block 5, metallization 204 is added to the patterned surface of the MEMS wafer 104, including pads, contacts, traces, and so forth. The cavity ring channel 406 can also be metallized at this time. The channel 406 can be partially or fully filled/plated to form a filled seal ring 402, or the walls of the channel 406 can be metallized/plated to form a conformal seal ring 404. Either the filled seal ring 402 or the conformal seal ring 404 (whichever is used) hermetically seal the bond joint between the cavity wafer 102 and the MEMS wafer 104.
In another example, after bonding, the MEMS wafer 104 and the cavity wafer 102 can be drilled together to form the cavity ring channel 406, which can be metallized and then the openings to the cavity 202 are formed in the MEMS wafer 104.
At block 6, the microelectronic device 100 may be attached to a logic device 206, to provide logic/control (for example) for the microelectronic device 100. Contact pads of the metallized layer 204 of the microelectronic device 100 can be coupled to contacts 208 on the surface of the logic device 206. At block 7, portions of the microelectronic device 100 may be removed (e.g., etched, etc.) to provide access to other contact pads of the logic device 206, and so forth.
A second embodiment, illustrated at
A third embodiment, illustrated at
A fourth embodiment, illustrated at
A fifth embodiment, illustrated at
As shown in
At block 1, a recessed cavity wafer 102 is formed and prepared for bonding to a second wafer 104. In various embodiments, the bonding surface of the second wafer 104 may include an added layer 802, such as an insulating layer, a dielectric layer, a semiconductor layer, a metallic layer, and so forth.
At block 2, the cavity wafer 102 is bonded to the second wafer 104, closing the cavity 202 within. The cavity wafer 102 can be bonded to the second wafer 104 (and the layer 802) using an intimate surface bonding technique, for example, such as a ZIBOND® technique, wherein insulating surfaces (e.g., SiOx-SiOx, etc.) are bonded. In another example, the cavity wafer 102 can be bonded to the second wafer 104 using another dielectric bonding technique (e.g. die attach film or paste, a polymeric material such as a silicone or epoxy, or the like, which may not provide a hermetic seal and may not improve or fix a hermetic seal).
At block 3, the cavity wafer 102 and/or the second wafer 104 may be thinned based on the intended application. At block 4, a coating or layer 804, such as a dielectric layer or the like, may be applied to the exposed surface of the cavity wafer 102. At block 5, one or more channels 406 (or “cavity rings,” partly or fully surrounding the cavities 202) can be formed through portions of the cavity wafer 102, portions of the second wafer 104, and through one or both of the layers 802 and 804. The channels 406 may be formed by etching, drilling, or otherwise removing material from the wafers 102 and 104, and may be open to an outside surface of the cavity wafer 102 or the second wafer 104.
At block 6, the cavity ring channels 406 can be partially or fully filled/plated with a metallic material (e.g., copper) to form filled seal rings 806. The filled seal rings 806 hermetically seal the bond joints between the cavity wafer 102 and the second wafer 104, sealing the cavities 202. In an implementation, the top exposed portion of the metallic seal rings 806 comprise a redistribution layer (RDL).
Referring to
At block 1, a recessed cavity wafer 102 is formed and prepared for bonding to a second wafer 104. In various embodiments, the bonding surface of the second wafer 104 may include an added layer 802, such as an insulating layer, a dielectric layer, a semiconductor layer, a metallic layer, and so forth.
At block 2, the cavity wafer 102 is bonded to the second wafer 104, closing the cavity 202 within. The cavity wafer 102 can be bonded to the second wafer 104 (and the layer 802) using an intimate surface bonding technique, for example, such as a ZIBOND® technique, wherein insulating surfaces (e.g., SiOx-SiOx, etc.) are bonded. In another example, the cavity wafer 102 can be bonded to the second wafer 104 using another dielectric bonding technique (e.g. die attach film or paste, a polymeric material such as a silicone or epoxy, or the like, which may not provide a hermetic seal and may not improve or fix a hermetic seal).
At block 3, the cavity wafer 102 and/or the second wafer 104 may be thinned based on the intended application. Further, the assembly featuring the cavity wafer 102 and the second wafer 104 may be flipped for processing from the second wafer 104 side. At block 4, a coating or layer 804, such as a dielectric layer or the like, may be applied to the exposed surface of the second wafer 104. At block 5, one or more channels 406 (or “cavity rings,” partly or fully surrounding the cavities 202) can be formed through portions of the second wafer 104, portions of the cavity wafer 102, and through one or both of the layers 802 and 804. The channels 406 may be formed by etching, drilling, or otherwise removing material from the wafers 102 and 104, and may be open to an outside surface of the second wafer 104 or the cavity wafer 102. As discussed above, the channels may extend only the interface between wafers (or dies) 102 and 104 and may extend to one or more metallic features such as a pad or via on or within wafer 104.
At block 6, the cavity ring channels 406 can be partially or fully filled/plated with a metallic material (e.g., copper) to form filled seal rings 806. The filled seal rings 806 hermetically seal the bond joints between the second wafer 104 and the cavity wafer 102, sealing the cavities 202. In an implementation, the top exposed portion of the metallic seal rings 806 may comprise a redistribution layer (RDL).
Referring to
In various embodiments, as shown at
At block 1, a recessed cavity wafer 102 is formed and prepared for bonding to a second wafer 104 (which may or may not be a MEMS wafer, for example). In various embodiments, the bonding surface of the second wafer 104 may include an added layer 802, such as an insulating layer, a dielectric layer, a semiconductor layer, a metallic layer, and so forth.
At block 2, the cavity wafer 102 is bonded to the second wafer 104, closing the cavity 202 within. The cavity wafer 102 can be bonded to the second wafer 104 (and the layer 802) using an intimate surface bonding technique, for example, such as a ZIBOND® technique, wherein insulating surfaces (e.g., SiOx-SiOx, etc.) are bonded. In another example, the cavity wafer 102 can be bonded to the second wafer 104 using another dielectric bonding technique (e.g. die attach film or paste, a polymeric material such as a silicone or epoxy, or the like, which may not provide a hermetic seal and may not improve or fix a hermetic seal).
At block 3, the cavity wafer 102 and/or the second wafer 104 may be thinned based on the intended application. At block 4, a coating or layer 804, such as a dielectric layer or the like, may be applied to the exposed surface of the cavity wafer 102. At block 5, one or more channels 406 (or “cavity rings,” partly or fully surrounding the cavities 202) can be formed through portions of the cavity wafer 102, portions of the second wafer 104, and through one or both of the layers 802 and 804. The channels 406 may be formed by etching, drilling, or otherwise removing material from the wafers 102 and 104, and may be open to an outside surface of the cavity wafer 102 or the second wafer 104.
At block 6, the cavity ring channels 406 can be partially filled/plated with a metallic material (e.g., copper) to form conformal seal rings 1202. The seal rings 1202 hermetically seal the bond joints between the cavity wafer 102 and the second wafer 104, sealing the cavities 202. In various embodiments, the channels 406 can be filled/plated to form the conformal seal rings 1202 while a metallic layer 1204 is deposited onto at least a portion of the exposed surface of the cavity wafer 102. Accordingly, in various embodiments, the channels 406 are filled in the same or in separate processes as the deposition of the metallic layer 1204.
Referring to
The top (e.g., exposed) end of the filled seal rings 1202 (e.g., at the top surface of the cavity wafer 102) may be exposed and contact a metal layer for electrical function of the microelectronic device 100, for example, when bonded to another device.
The quantity of seal rings 302, 402, 404, 806, and 1202 shown in the illustrations of
Although the implementations of the disclosure have been described in language specific to structural features and/or methodological acts, it is to be understood that the implementations are not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as representative forms of implementing example devices and techniques.
Each claim of this document constitutes a separate embodiment, and embodiments that combine different claims and/or different embodiments are within the scope of the disclosure and will be apparent to those of ordinary skill in the art upon reviewing this disclosure.
This application is a continuation of U.S. patent application Ser. No. 15/920,759, filed Mar. 14, 2018, which claims the benefit under 35 U.S.C. § 119(e)(1) of U.S. Provisional Application No. 62/474,478, filed Mar. 21, 2017, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4998665 | Hayashi | Mar 1991 | A |
5087585 | Hayashi | Feb 1992 | A |
5322593 | Hasegawa et al. | Jun 1994 | A |
5753536 | Sugiyama et al. | May 1998 | A |
5771555 | Eda et al. | Jun 1998 | A |
5985739 | Plettner et al. | Nov 1999 | A |
5998808 | Matsushita | Dec 1999 | A |
6008126 | Leedy | Dec 1999 | A |
6080640 | Gardner et al. | Jun 2000 | A |
6265775 | Seyyedy | Jul 2001 | B1 |
6374770 | Lee | Apr 2002 | B1 |
6423640 | Lee et al. | Jul 2002 | B1 |
6465892 | Suga | Oct 2002 | B1 |
6777263 | Gan | Aug 2004 | B1 |
6872984 | Leung | Mar 2005 | B1 |
6876062 | Lee et al. | Apr 2005 | B2 |
6887769 | Kellar et al. | May 2005 | B2 |
6908027 | Tolchinsky et al. | Jun 2005 | B2 |
6998712 | Okada et al. | Feb 2006 | B2 |
7045453 | Canaperi et al. | May 2006 | B2 |
7057274 | Heschel | Jun 2006 | B2 |
7078811 | Suga | Jul 2006 | B2 |
7105980 | Abbott et al. | Sep 2006 | B2 |
7193423 | Dalton et al. | Mar 2007 | B1 |
7354798 | Pogge et al. | Apr 2008 | B2 |
7359591 | Vandentop et al. | Apr 2008 | B2 |
7467897 | Hauffe et al. | Dec 2008 | B2 |
7622324 | Enquist et al. | Nov 2009 | B2 |
7750488 | Patti et al. | Jul 2010 | B2 |
7803693 | Trezza | Sep 2010 | B2 |
7972683 | Gudeman et al. | Jul 2011 | B2 |
8183127 | Patti et al. | May 2012 | B2 |
8191756 | Coppeta et al. | Jun 2012 | B2 |
8241961 | Kim et al. | Aug 2012 | B2 |
8269671 | Chen et al. | Sep 2012 | B2 |
8314007 | Vaufredaz | Nov 2012 | B2 |
8349635 | Gan et al. | Jan 2013 | B1 |
8357931 | Schieck et al. | Jan 2013 | B2 |
8377798 | Peng et al. | Feb 2013 | B2 |
8395229 | Garcia-Blanco et al. | Mar 2013 | B2 |
8411444 | Gaynes et al. | Apr 2013 | B2 |
8441131 | Ryan | May 2013 | B2 |
8476146 | Chen et al. | Jul 2013 | B2 |
8476165 | Trickett et al. | Jul 2013 | B2 |
8482132 | Yang et al. | Jul 2013 | B2 |
8501537 | Sadaka et al. | Aug 2013 | B2 |
8524533 | Tong et al. | Sep 2013 | B2 |
8530997 | Yang et al. | Sep 2013 | B1 |
8546928 | Merz et al. | Oct 2013 | B2 |
8620164 | Heck et al. | Dec 2013 | B2 |
8647987 | Yang et al. | Feb 2014 | B2 |
8697493 | Sadaka | Apr 2014 | B2 |
8716105 | Sadaka et al. | May 2014 | B2 |
8802538 | Liu | Aug 2014 | B1 |
8809123 | Liu et al. | Aug 2014 | B2 |
8841002 | Tong | Sep 2014 | B2 |
8916448 | Cheng et al. | Dec 2014 | B2 |
8988299 | Kam et al. | Mar 2015 | B2 |
9093350 | Endo et al. | Jul 2015 | B2 |
9142517 | Liu | Sep 2015 | B2 |
9171756 | Enquist et al. | Oct 2015 | B2 |
9184125 | Enquist et al. | Nov 2015 | B2 |
9224704 | Landru | Dec 2015 | B2 |
9230941 | Chen et al. | Jan 2016 | B2 |
9257399 | Kuang et al. | Feb 2016 | B2 |
9299736 | Chen et al. | Mar 2016 | B2 |
9312229 | Chen et al. | Apr 2016 | B2 |
9337235 | Chen et al. | May 2016 | B2 |
9368866 | Yu | Jun 2016 | B2 |
9385024 | Tong et al. | Jul 2016 | B2 |
9386688 | MacDonald et al. | Jul 2016 | B2 |
9391143 | Tong et al. | Jul 2016 | B2 |
9394161 | Cheng et al. | Jul 2016 | B2 |
9431368 | Enquist et al. | Aug 2016 | B2 |
9437572 | Chen et al. | Sep 2016 | B2 |
9443796 | Chou et al. | Sep 2016 | B2 |
9461007 | Chun et al. | Oct 2016 | B2 |
9496239 | Edelstein et al. | Nov 2016 | B1 |
9536848 | England et al. | Jan 2017 | B2 |
9559081 | Lai et al. | Jan 2017 | B1 |
9620464 | Baks et al. | Apr 2017 | B2 |
9620481 | Edelstein et al. | Apr 2017 | B2 |
9656852 | Cheng et al. | May 2017 | B2 |
9723716 | Meinhold | Aug 2017 | B2 |
9728521 | Tsai et al. | Aug 2017 | B2 |
9741620 | Uzoh et al. | Aug 2017 | B2 |
9768307 | Yamazaki et al. | Sep 2017 | B2 |
9799587 | Fujii et al. | Oct 2017 | B2 |
9834435 | Liu | Dec 2017 | B1 |
9852988 | Enquist et al. | Dec 2017 | B2 |
9881882 | Hsu et al. | Jan 2018 | B2 |
9893004 | Yazdani | Feb 2018 | B2 |
9899442 | Katka | Feb 2018 | B2 |
9929050 | Lin | Mar 2018 | B2 |
9941241 | Edelstein et al. | Apr 2018 | B2 |
9941243 | Kim et al. | Apr 2018 | B2 |
9953941 | Enquist | Apr 2018 | B2 |
9960142 | Chen et al. | May 2018 | B2 |
10002844 | Wang et al. | Jun 2018 | B1 |
10026605 | Doub et al. | Jul 2018 | B2 |
10075657 | Fahim et al. | Sep 2018 | B2 |
10204893 | Uzoh et al. | Feb 2019 | B2 |
10269756 | Uzoh | Apr 2019 | B2 |
10276619 | Kao et al. | Apr 2019 | B2 |
10276909 | Huang et al. | Apr 2019 | B2 |
10446456 | Shen et al. | Oct 2019 | B2 |
10446487 | Huang et al. | Oct 2019 | B2 |
10446532 | Uzoh et al. | Oct 2019 | B2 |
10508030 | Katkar et al. | Dec 2019 | B2 |
10727219 | Uzoh et al. | Jul 2020 | B2 |
10784191 | Huang et al. | Sep 2020 | B2 |
10923408 | Huang et al. | Feb 2021 | B2 |
11004757 | Katkar et al. | May 2021 | B2 |
20020000328 | Motomura et al. | Jan 2002 | A1 |
20020003307 | Suga | Jan 2002 | A1 |
20020094608 | Brooks | Jul 2002 | A1 |
20020179921 | Cohn | Dec 2002 | A1 |
20030098060 | Yoshimi | May 2003 | A1 |
20040084414 | Sakai et al. | May 2004 | A1 |
20040259325 | Gan | Dec 2004 | A1 |
20050009246 | Enquist et al. | Jan 2005 | A1 |
20060001123 | Heck et al. | Jan 2006 | A1 |
20060057945 | Hsu et al. | Mar 2006 | A1 |
20060097335 | Kim et al. | May 2006 | A1 |
20060115323 | Coppeta et al. | Jun 2006 | A1 |
20060197215 | Potter | Sep 2006 | A1 |
20060208326 | Nasiri et al. | Sep 2006 | A1 |
20070029562 | Koizumi | Feb 2007 | A1 |
20070045781 | Carlson et al. | Mar 2007 | A1 |
20070045795 | McBean | Mar 2007 | A1 |
20070096294 | Ikeda et al. | May 2007 | A1 |
20070111386 | Kim et al. | May 2007 | A1 |
20070134891 | Adetutu et al. | Jun 2007 | A1 |
20070188054 | Hasken et al. | Aug 2007 | A1 |
20070222048 | Huang | Sep 2007 | A1 |
20070295456 | Gudeman | Dec 2007 | A1 |
20080080832 | Chen et al. | Apr 2008 | A1 |
20080124835 | Chen et al. | May 2008 | A1 |
20080290490 | Fujii et al. | Nov 2008 | A1 |
20080296709 | Haba et al. | Dec 2008 | A1 |
20090053855 | Summers | Feb 2009 | A1 |
20090186446 | Kwon et al. | Jul 2009 | A1 |
20100078786 | Maeda | Apr 2010 | A1 |
20100096713 | Jung | Apr 2010 | A1 |
20100148341 | Fuji et al. | Jun 2010 | A1 |
20100288525 | Basavanhally et al. | Nov 2010 | A1 |
20100301432 | Kittilsland et al. | Dec 2010 | A1 |
20110115092 | Tago | May 2011 | A1 |
20110147859 | Tanaka et al. | Jun 2011 | A1 |
20110156242 | Sakaguchi | Jun 2011 | A1 |
20110290552 | Palmateer et al. | Dec 2011 | A1 |
20120061776 | Cheng et al. | Mar 2012 | A1 |
20120097733 | Ebefors et al. | Apr 2012 | A1 |
20120100657 | Di Cioccio et al. | Apr 2012 | A1 |
20120112335 | Ebefors et al. | May 2012 | A1 |
20120142144 | Taheri | Jun 2012 | A1 |
20120212384 | Kam et al. | Aug 2012 | A1 |
20120267730 | Renard | Oct 2012 | A1 |
20120286380 | Yazdi et al. | Nov 2012 | A1 |
20120326248 | Daneman et al. | Dec 2012 | A1 |
20130043510 | Shu | Feb 2013 | A1 |
20130099331 | Chen et al. | Apr 2013 | A1 |
20130187245 | Chien et al. | Jul 2013 | A1 |
20130271066 | Signorelli et al. | Oct 2013 | A1 |
20130277774 | Frey et al. | Oct 2013 | A1 |
20130277777 | Chang et al. | Oct 2013 | A1 |
20130293428 | Souriau et al. | Nov 2013 | A1 |
20140175655 | Chen et al. | Jun 2014 | A1 |
20140217557 | Chen et al. | Aug 2014 | A1 |
20140225206 | Lin et al. | Aug 2014 | A1 |
20140225795 | Yu | Aug 2014 | A1 |
20140264653 | Cheng et al. | Sep 2014 | A1 |
20140361413 | Chapelon | Dec 2014 | A1 |
20150001632 | Liu et al. | Jan 2015 | A1 |
20150064498 | Tong | Mar 2015 | A1 |
20150068666 | Abe et al. | Mar 2015 | A1 |
20150091153 | Liu | Apr 2015 | A1 |
20150097215 | Chu et al. | Apr 2015 | A1 |
20150137345 | Choi et al. | May 2015 | A1 |
20150298965 | Tsai et al. | Oct 2015 | A1 |
20150336790 | Geen et al. | Nov 2015 | A1 |
20150336792 | Huang et al. | Nov 2015 | A1 |
20160002029 | Nasiri et al. | Jan 2016 | A1 |
20160107881 | Thompson et al. | Apr 2016 | A1 |
20160137492 | Cheng et al. | May 2016 | A1 |
20160229685 | Boysel | Aug 2016 | A1 |
20160240495 | Lachner et al. | Aug 2016 | A1 |
20160318757 | Chou et al. | Nov 2016 | A1 |
20160343682 | Kawasaki | Nov 2016 | A1 |
20170008757 | Cheng et al. | Jan 2017 | A1 |
20170062366 | Enquist | Mar 2017 | A1 |
20170081181 | Zhang | Mar 2017 | A1 |
20170137281 | Favier et al. | May 2017 | A1 |
20170179029 | Enquist et al. | Jun 2017 | A1 |
20170194271 | Hsu et al. | Jul 2017 | A1 |
20170200711 | Uzoh et al. | Jul 2017 | A1 |
20170225947 | Chen | Aug 2017 | A1 |
20170271222 | Kang | Sep 2017 | A1 |
20170305738 | Chang et al. | Oct 2017 | A1 |
20170338214 | Uzoh et al. | Nov 2017 | A1 |
20180044175 | Ogashiwa et al. | Feb 2018 | A1 |
20180047682 | Chang et al. | Feb 2018 | A1 |
20180096931 | Huang et al. | Apr 2018 | A1 |
20180148327 | Chang | May 2018 | A1 |
20180174995 | Wang et al. | Jun 2018 | A1 |
20180175012 | Wu et al. | Jun 2018 | A1 |
20180182639 | Uzoh et al. | Jun 2018 | A1 |
20180182666 | Uzoh et al. | Jun 2018 | A1 |
20180190580 | Haba et al. | Jul 2018 | A1 |
20180190583 | DeLaCruz et al. | Jul 2018 | A1 |
20180191047 | Huang et al. | Jul 2018 | A1 |
20180219038 | Gambino | Aug 2018 | A1 |
20180226375 | Enquist et al. | Aug 2018 | A1 |
20180269161 | Wu et al. | Sep 2018 | A1 |
20180273377 | Katkar et al. | Sep 2018 | A1 |
20180286805 | Huang et al. | Oct 2018 | A1 |
20180323177 | Yu et al. | Nov 2018 | A1 |
20180323227 | Zhang et al. | Nov 2018 | A1 |
20180331066 | Uzoh et al. | Nov 2018 | A1 |
20180337157 | Wang et al. | Nov 2018 | A1 |
20190051628 | Liu et al. | Feb 2019 | A1 |
20190096741 | Uzoh et al. | Mar 2019 | A1 |
20190096842 | Fountain, Jr. et al. | Mar 2019 | A1 |
20190115277 | Yu et al. | Apr 2019 | A1 |
20190131277 | Yang et al. | May 2019 | A1 |
20190144269 | Rajasekaran | May 2019 | A1 |
20190164914 | Hu et al. | May 2019 | A1 |
20190198407 | Huang et al. | Jun 2019 | A1 |
20190198409 | Katkar et al. | Jun 2019 | A1 |
20190265411 | Huang et al. | Aug 2019 | A1 |
20190333550 | Fisch | Oct 2019 | A1 |
20190348336 | Katkar et al. | Nov 2019 | A1 |
20190385966 | Gao et al. | Dec 2019 | A1 |
20200013637 | Haba | Jan 2020 | A1 |
20200013765 | Fountain, Jr. et al. | Jan 2020 | A1 |
20200043817 | Shen et al. | Feb 2020 | A1 |
20200075534 | Gao et al. | Mar 2020 | A1 |
20200118973 | Wang et al. | Apr 2020 | A1 |
20200126906 | Uzoh et al. | Apr 2020 | A1 |
20200131028 | Cheng et al. | Apr 2020 | A1 |
20200140268 | Katkar et al. | May 2020 | A1 |
20200144217 | Enquist et al. | May 2020 | A1 |
20200194396 | Uzoh | Jun 2020 | A1 |
20200227367 | Haba et al. | Jul 2020 | A1 |
20200294908 | Haba et al. | Sep 2020 | A1 |
20200328162 | Haba et al. | Oct 2020 | A1 |
20200328164 | DeLaCruz et al. | Oct 2020 | A1 |
20200328165 | DeLaCruz et al. | Oct 2020 | A1 |
20200371154 | DeLaCruz et al. | Nov 2020 | A1 |
20200395321 | Katkar et al. | Dec 2020 | A1 |
20210098412 | Haba et al. | Apr 2021 | A1 |
20210134689 | Huang et al. | May 2021 | A1 |
20210181510 | Katkar et al. | Jun 2021 | A1 |
20210193603 | Katkar et al. | Jun 2021 | A1 |
20210193625 | DeLaCruz et al. | Jun 2021 | A1 |
20210202428 | Wang et al. | Jul 2021 | A1 |
20210242152 | Fountain, Jr. et al. | Aug 2021 | A1 |
20210265227 | Katkar et al. | Aug 2021 | A1 |
Number | Date | Country |
---|---|---|
101554988 | Oct 2009 | CN |
2813465 | Dec 2014 | EP |
2000-100679 | Apr 2000 | JP |
2001-102479 | Apr 2001 | JP |
2001-148436 | May 2001 | JP |
2002-353416 | Dec 2002 | JP |
2009-238905 | Oct 2009 | JP |
2010-199608 | Sep 2010 | JP |
2013-33786 | Feb 2013 | JP |
2018-160519 | Oct 2018 | JP |
10-2005-0101324 | Oct 2005 | KR |
10-2015-0097798 | Aug 2015 | KR |
10-2017-0108143 | Sep 2017 | KR |
WO 2005043584 | May 2005 | WO |
WO 2006100444 | Sep 2006 | WO |
WO 2014-074403 | May 2014 | WO |
WO 2017100256 | Jun 2017 | WO |
WO 2017151442 | Sep 2017 | WO |
Entry |
---|
Daneman, “Applying the CMOS Test Flow to MEMS Manufacturing”, InvenSense, Inc., accessed on Apr. 5, 2020. |
Inertial MEMS Manufacturing Trends 2014 Report by Yole Developpement Sample Report, Slide 11, https://www.slideshare.net/Yole_Developpement/yole-inertial-memsmanufacturingtrends2014sample. |
“The Advantages of Integrated MEMS to Enable the Internet of Moving Things”, mCube, White Paper Jan. 2018. |
International Search Report and Written Opinion dated May 31, 2018 in International Application No. PCT/US2018/022688, 14 pages. |
Moriceau, H. et al., “Overview of recent direct wafer bonding advances and applications,” Advances in Natural Sciences—Nanoscience and Nanotechnology, 2010, 11 pages. |
Nakanishi, H. et al., “Studies on SiO2—SiO2 bonding with hydrofluoric acid. Room temperature and low stress bonding technique for MEMS,” Sensors and Actuators, 2000, vol. 79, pp. 237-244. |
Oberhammer, J. et al., “Sealing of adhesive bonded devices on wafer level,” Sensors and Actuators A, 2004, vol. 110, No. 1-3, pp. 407-412, see pp. 407-412, and Figures 1(a)-1(I), 6 pages. |
Plobi, A. et al., “Wafer direct bonding: tailoring adhesion between brittle materials,” Materials Science and Engineering Review Journal, 1999, R25, 88 pages. |
Amirfeiz et al., “Formation of silicon structures by plasma-activated wafer bonding,” Journal of The Electrochemical Society, 2000, vol. 147, No. 7, pp. 2693-2698. |
Beer et al., “Coplanar 122GHz Antenna Array With Air Cavity Reflector for Integration in Plastic Packages”, IEEE Antennas and Wireless Propagation Letters, 11:160-163, Jan. 2012. |
Chung et al., “Room temperature GaAseu + Si and InPeu + Si wafer direct bonding by the surface activate bonding method,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Jan. 2, 1997, vol. 121, Issues 1-4, pp. 203-206. |
Chung et al., “Wafer direct bonding of compound semiconductors and silicon at room temperature by the surface activated bonding method,” Applied Surface Science, Jun. 2, 1997, vols. 117-118, pp. 808-812. |
Farrens et al., “Chemical free room temperature wafer to wafer direct bonding,” J. Electrochem. Soc., The Electrochemical Society, Inc., Nov. 1995, vol. 142, No. 11. pp. 3949-3955. |
Farrens et al., “Chemical free wafer bonding of silicon to glass and sapphire,” Electrochemical Society Proceedings vol. 95-7, 1995, pp. 72-77. |
Gösele et al., “Semiconductor Wafer Bonding: A flexible approach to materials combinations in microelectronics; micromechanics and optoelectronics,” IEEE, 1997, pp. 23-32. |
Gu et al., “A Multilayer Organic Package with 64 Dual-Polarized Antennas for 28GHz 5G Communication”, IBM Research, pp. 1-3, 2017. |
Hosoda et al., “Effect of the surface treatment on the room-temperature bonding of Al to Si and SiO2,” Journal of Materials Science, Jan. 1, 1998, vol. 33, Issue 1, pp. 253-258. |
Hosoda et al., “Room temperature GaAs—Si and InP—Si wafer direct bonding by the surface activated bonding method,” Nuclear Inst. And Methods in Physics Research B, 1997, vol. 121, Nos. 1-4, pp. 203-206. |
Howlader et al., “A novel method for bonding of ionic wafers,” Electronics Components and Technology Conference, 2006, IEEE, pp. 7-pp. |
Howlader et al., “Bonding of p-Si/n-InP wafers through surface activated bonding method at room temperature,” Indium Phosphide and Related Materials, 2001, IEEE International Conference On, pp. 272-275. |
Howlader et al., “Characterization of the bonding strength and interface current of p-Si/ n-lnP wafers bonded by surface activated bonding method at room temperature,” Journal of Applied Physics, Mar. 1, 2002, vol. 91, No. 5, pp. 3062-3066. |
Howlader et al., “Investigation of the bonding strength and interface current of p-SionGaAs wafers bonded by surface activated bonding at room temperature,” J. Vac. Sci. Technol. B 19, Nov./Dec. 2001, pp. 2114-2118. |
International Search Report and Written Opinion dated Apr. 13, 2018 in International Application No. PCT/US2017/067742, 14 pages. |
International Search Report and Written Opinion dated Apr. 16, 2018 in International Application No. PCT/US2017/067741, 17 pages. |
International Search Report and Written Opinion dated Mar. 7, 2019, in International Application No. PCT/US2018/060044, 14 pages. |
International Search Report and Written Opinion dated Apr. 22, 2019 in International Application No. PCT/US2018/064982, 13 pages. |
International Search Report and Written Opinion dated Aug. 26, 2019 in International Application No. PCT/US2019/031113, 14 pages. |
Itoh et al., “Characteristics of fritting contacts utilized for micromachined wafer probe cards,” 2000 American Institute of Physics, AIP Review of Scientific Instruments, vol. 71, 2000, pp. 2224. |
Itoh et al., “Characteristics of low force contact process for MEMS probe cards,” Sensors and Actuators A: Physical, Apr. 1, 2002, vols. 97-98, pp. 462-467. |
Itoh et al., “Development of MEMS IC probe card utilizing fritting contact,” Initiatives of Precision Engineering at the Beginning of a Millennium: 10th International Conference on Precision Engineering (ICPE) Jul. 18-20, 2001, Yokohama, Japan, 2002, Book Part 1, pp. 314-318. |
Itoh et al., “Room temperature vacuum sealing using surface activated bonding method,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, Jun. 8-12, 2003, 2003 IEEE, pp. 1828-1831. |
Ker, Ming-Dou et al., “Fully process-compatible layout design on bond pad to improve wire bond reliability in CMOS Ics,” IEEE Transactions on Components and Packaging Technologies, Jun. 2002, vol. 25, No. 2, pp. 309-316. |
Kim et al., “Low temperature direct Cu—Cu bonding with low energy ion activation method,” Electronic Materials and Packaging, 2001, IEEE, pp. 193-195. |
Kim et al., “Room temperature Cu—Cu direct bonding using surface activated bonding method,” J. Vac. Sci. Technol., 2003 American Vacuum Society, Mar./Apr. 2003, vol. 21, No. 2, pp. 449-453. |
Kim et al., “Wafer-scale activated bonding of Cu—CU, Cu—Si, and Cu—SiO2 at low temperature,” Proceedings—Electrochemical Society, 2003, vol. 19, pp. 239-247. |
Matsuzawa et al., “Room-temperature interconnection of electroplated Au microbump by means of surface activated bonding method,” Electornic Components and Technology Confererence, 2001, 51st Proceedings, IEEE, pp. 384-387. |
Norton, Francis, “Permeation of gases through solids,” Journal of Applied Physics, Janaury 1957, vol. 28, No. 1. |
Onodera et al., “The effect of prebonding heat treatment on the separability of Au wire from Ag-plated Cu alloy substrate,” Electronics Packaging Manufacturing, IEEE Transactions, Jan. 2002, vol. 25, Issue 1, pp. 5-12. |
Reiche et al., “The effect of a plasma pretreatment on the Si/Si bonding behaviouir,” Electrochemical Society Proceedings, 1998, vol. 97-36, pp. 437-444. |
Roberds et al., “Low temperature , in situ, plasma activated wafer bonding,” Electrochecmical Society Proceedings, 1997, vol. 97-36, pp. 598-606. |
Shigetou et al., “Room temperature bonding of ultra-fine pitch and low-profiled Cu electrodes for bump-less interconnect,” 2003 Electronic Components and Technology Conference, pp. 848-852. |
Shigetou et al., “Room-temperature direct bonding of CMP-Cu film for bumpless interconnection,” Electronic Components and Technology Confererence, 51st Proceedings, 2001, IEEE, pp. 755-760. |
Shingo et al., “Design and fabrication of an electrostatically actuated MEMS probe card,” Tranducers, Solid-State Sensors, Actuators and Microsystems, 12th International Conference, Jun. 8-12, 2003, vol. 2, pp. 1522-1525. |
Suga et al., “A new approach to Cu—Cu direct bump bonding, IEMT/IMC Symposium, 1997, Joint International Electronic Manufacturing Symposium and the International Microelectronics Conference,” Apr. 16-18, 1997, IEEE, pp. 146-151. |
Suga et al., “A new bumping process using lead-free solder paste,” Electronics Packaging Manufacturing, IEEE Transactions on (vol. 25, Issue 4), IEEE, Oct. 2002, pp. 253-256. |
Suga et al., “A new wafer-bonder of ultra-high precision using surface activated bonding (SAB) concept,” Electronic Components and Technology Conference, 2001, IEEE, pp. 1013-1018. |
Suga et al., “Bump-less interconnect for next generation system packaging,” Electronic Components and Technology Conference, 2001, IEEE, pp. 1003-1008. |
Suga, T., “Feasibility of surface activated bonding for ultra-fine pitch interconnection—A new concept of bump-less direct bonding for system level packaging,” The University of Tokyo, Research Center for Science and Technology, 2000 Electronic Components and Technology Conference, 2000 IEEE, pp. 702-705. |
Suga, T., “Room-temperature bonding on metals and ceramics,” Proceedings of the Second International Symposium on Semiconductor Wafer Bonding: Science, Technology and Applications, The Electrochemical Society Proceedings, vol. 93-29 (1993), pp. 71-80. |
Suga et al., “Surface activated bonding—an approach to joining at room temperature,” Ceramic Transactions: Structural Ceramics Joining II, The American Ceramic Society, 1993, pp. 323-331. |
Suga et al., “Surface activated bonding for new flip chip and bumpless interconnect systems,” Electronic Components and Technology Conference, 2002, IEEE, pp. 105-111. |
Suga, “UHV room temperature joining by the surface activated bonding method,” Advances in science and technology, Techna, Faenza, Italie, 1999, pp. C1079-C1089. |
Takagi et al., “Effect of surface roughness on room-temperature wafer bonding by Ar beam surface activation,” Japanese Journal of Applied Physics, 1998, vol. 37, Part 1, No. 1, pp. 4197. |
Takagi et al., “Low temperature direct bonding of silicon and silicon dioxide by the surface activation method,” Solid State Sensors and Actuators, 1997, Transducers '97 Chicago, 1997 International Conference, vol. 1, pp. 657-660. |
Takagi et al., “Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation,” Appl. Phys. Lett., 1999. vol. 74, pp. 2387. |
Takagi et al., “Room temperature silicon wafer direct bonding in vacuum by Ar beam irradiation,” Micro Electro Mehcanical Systems, MEMS '97 Proceedings, 1997, IEEE, pp. 191-196. |
Takagi et al., “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” Journal of Micromechanics and Microengineering, 2001, vol. 11, No. 4, pp. 348. |
Takagi et al., “Room-temperature wafer bonding of silicon and lithium niobate by means of arbon-beam surface activation,” Integrated Ferroelectrics: An International Journal, 2002, vol. 50, Issue 1, pp. 53-59. |
Takagi et al., “Surface activated bonding silicon wafers at room temperature,” Appl. Phys. Lett. 68, 2222 (1996). |
Takagi et al., “Wafer-scale room-temperature bonding between silicon and ceramic wafers by means of argon-beam surface activation,” Micro Electro Mechanical Systems, 2001, MEMS 2001, The 14th IEEE International Conference, Jan. 25, 2001, IEEE, pp. 60-63. |
Takagi et al., “Wafer-scale spontaneous bonding of silicon wafers by argon-beam surface activation at room temperature,” Sensors and Actuators A: Physical, Jun. 15, 2003, vol. 105, Issue 1, pp. 98-102. |
Tong et al., “Low temperature wafer direct bonding, Journal of Microelectomechanical systems,” Mar. 1994, vol. 3, No. 1, pp. 29-35. |
Topol et al., “Enabling technologies for wafer-level bonding of 3D MEMS and integrated circuit structures,” 2004 Electronics Components and Technology Conference, 2004 IEEE, pp. 931-938. |
Wang et al., “Reliability and microstructure of Au—Al and Au—Cu direct bonding fabricated by the Surface Activated Bonding,” Electronic Components and Technology Conference, 2002, IEEE, pp. 915-919. |
Wang et al., “Reliability of Au bump—Cu direct interconnections fabricated by means of surface activated bonding method,” Microelectronics Reliability, May 2003, vol. 43, Issue 5, pp. 751-756. |
Weldon et al., “Physics and chemistry of silicon wafer bonding investigated by infrared absorption spectroscopy,” Journal of Vacuum Science & Technology B, Jul./Aug. 1996, vol. 14, No. 4, pp. 3095-3106. |
Xu et al., “New Au—Al interconnect technology and its reliability by surface activated bonding,” Electronic Packaging Technology Proceedings, Oct. 28-30, 2003, Shanghai, China, pp. 479-483. |
Zhang et al., “Antenna-on-Chip and Antenna-in-Package Solutions to Highly Integrated Millimeter-Wave Devices for Wireless Communications”, IEEE Transactions on Antennas and Propagation, 57(10):2830-2841, Oct. 2009. |
Zhou et al., “A Wideband Circularly Polarized Patch Antenna for 60 GHz Wireless Communications”, Wireless Engineering and Technology, 3:97-105, 2012. |
Zoschke, K. et al., “Hermetic wafer level packaging of MEMS components using through silicon via and wafer to wafer bonding technologies,” 2013 Electronic Components & Technology Conference, 2013 IEEE, pp. 1500-1507. |
Ceramic Microstructures: Control at the Atomic Level, Recent Progress in Surface Activated Bonding, 1998, pp. 385-389. |
Taiwan Office Action dated Apr. 20, 2021, Taiwan Application No. 107109294, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20200140267 A1 | May 2020 | US |
Number | Date | Country | |
---|---|---|---|
62474478 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15920759 | Mar 2018 | US |
Child | 16678037 | US |