The present invention relates to a semiconductor device comprising semiconductor chips.
Progress has been made in recent years in increasing the speed of semiconductor devices having semiconductor chips such as memory chips and logic chips, so the rate of operation etc. of semiconductor chips has increased, making the semiconductor chips more likely to generate heat. It is therefore necessary to release the heat of the semiconductor chips to outside of the semiconductor device. A large number of organic members which do not readily transfer heat are used in ball grid array (BGA) semiconductor devices in particular, so heat is not readily released into the air from the semiconductor chips in the semiconductor device.
In the semiconductor device described in Patent Document 1, a package is mounted on a mounting board, the package comprising a wiring board and a sealing material, and the wiring board holds a semiconductor chip (semiconductor element). In the semiconductor device, a plurality of heat-radiating solder balls (solder bumps) are provided in a central region of a connecting surface (board connection surface) of the package wiring board with the mounting board. The semiconductor device described in Patent Document 1 has a structure in which heat is transferred from the semiconductor chip to the plurality of heat-radiating solder balls, so heat generated by the semiconductor chip is transferred to the mounting board connected to the semiconductor chip by way of the heat-radiating solder balls, and the heat is released from the mounting board to outside of the semiconductor device.
With the invention described in Patent Document 1, however, the heat-radiating solder balls have to be separately provided in the semiconductor device, and therefore the cost of manufacturing the semiconductor device as a whole increases.
A description will now be given of using the package described in Patent Document 1 for a Package-on-Package (PoP) arrangement in which a plurality of packages having different types of semiconductor chips are stacked. In a PoP semiconductor device, the semiconductor chip of a package positioned below is located directly under the central region of a package stacked on top, so there is no space to provide a plurality of heat-radiating solder balls in the central region of the connecting surface of the package stacked on top. If the heat-radiating solder balls are arranged with a gap being provided between the package on top and the package below, the semiconductor chip of the package below comes into contact with the heat-radiating solder balls and there is no longer contact between the heat-radiating solder balls and the mounting board. As a result, the heat generated by the semiconductor chip cannot be transferred to the mounting board through the heat-radiating solder balls and released, and this leads to a problem in that heat is retained by the semiconductor device.
In order to achieve the abovementioned aim, a semiconductor device according to the present invention comprises a wiring board, a semiconductor chip, and a sealing material. The wiring board includes an insulating substrate, a conductive pattern formed on a first surface of the insulating substrate, and heat-radiating vias which are connected to the conductive pattern. The heat-radiating vias are provided in such a way as to be exposed at the sides of the insulating substrate while also passing through the insulating substrate from the first surface to a second surface thereof. The semiconductor chip is mounted on the wiring board in such a way as to lie over the conductive pattern. The sealing material is formed on the wiring board in such a way as to cover the semiconductor chip.
According to the present invention, a conductive pattern is formed on a first surface of an insulating substrate, so heat generated by a semiconductor chip mounted in such a way as to lie over the conductive pattern is transmitted to the conductive pattern. The heat transmitted to the conductive pattern is then transmitted to the heat-radiating vias which are connected to the conductive pattern, are exposed at the sides of the insulating substrate, and pass through the insulating substrate from the first surface to a second surface thereof, and the heat is then released to outside of the semiconductor device from the heat-radiating vias. This means that it is unnecessary to form a plurality of heat-radiating solder balls in the central region of a semiconductor chip wiring board, and this keeps down the cost of manufacturing the semiconductor device as a whole. Furthermore, a package comprising the semiconductor device according to the present invention can also be used in a PoP semiconductor device because there is no need to form the heat-radiating solder balls.
Furthermore, the heat generated by the semiconductor chip is released to the outside from the heat-radiating vias which are exposed at the sides of the insulating substrate, and as a result there is less risk of heat generated by the semiconductor chip being retained by the semiconductor device, and the reliability of the semiconductor device can be improved.
a is a view in the cross section A-A′ in
b is a view in the cross section B-B′ in
a is a view in cross section showing a step in the assembly of the semiconductor device according to the first mode of embodiment;
b is a view in cross section showing a step in the assembly of the semiconductor device according to the first mode of embodiment;
c is a view in cross section showing a step in the assembly of the semiconductor device according to the first mode of embodiment;
d is a view in cross section showing a step in the assembly of the semiconductor device according to the first mode of embodiment;
e is a view in cross section showing a step in the assembly of the semiconductor device according to the first mode of embodiment;
Modes of embodiment of the present invention will be described below with reference to the figures.
As shown in
The wiring board 2 comprises the insulating substrate 2a such as a glass epoxy board, and predetermined wiring patterns (not depicted) are formed on the first and second surfaces of the insulating substrate 2a, these wiring patterns being covered by an insulating film 2b such as a solder resist film 2b. The wiring pattern on the first surface is formed at a position that does not overlap the conductive pattern 12 in a plane and is not connected to the conductive pattern 12. As shown in
The semiconductor chip 3 is a memory chip for a dynamic random access memory (DRAM), for example, and it has the shape of a rectangular plate, as shown in
Furthermore, as shown in
Heat generated by the semiconductor chip 3 is readily transmitted to the heat-radiating vias 13 through the conductive pattern 12 by virtue of the fact that the conductive pattern 12 provided directly below the semiconductor chip 3 is connected to the heat-radiating vias 13 in this way. The heat is then readily released from the exposed heat-radiating vias 13 to outside of the semiconductor device 1 by virtue of the fact that the heat-radiating vias 13 are exposed at the sides of the insulating substrate 2a. In this mode of embodiment, the surface contact area between the air and the heat-radiating vias 13 is increased at the sides of the insulating substrate 2a by virtue of the fact that the heat-radiating vias 13 are arranged passing through the insulating substrate 2a, and therefore there is a high heat-radiating effect. This means that the semiconductor chip 3 itself is unlikely to retain heat and the reliability of the semiconductor device 1 is improved. In addition, the plating layer 15 is formed on the surface of the heat-radiating vias 13 in the semiconductor device 1, and as a result it is possible to increase the surface area of the metal pattern exposed at the sides of the insulating substrate 2a proportionately with the plating layer 15.
In addition, there is no need to form additional heat-radiating solder balls etc. so the cost of manufacturing the semiconductor device 1 can be kept down.
The steps in the manufacture of the semiconductor device 1 according to the first mode of embodiment of the present invention will be described below with the aid of
As shown in
Next, as shown in
After a semiconductor chip 3 has been mounted in each product formation portion 24, the electrode pads 9 of the mounted semiconductor chip 3 and the connection pads 6 of the motherboard 23 are connected by means of conductive wires 10 (see
Following on from this, as shown in
After the sealing material 4 has been formed on the first surface of the motherboard 23, the process moves to a ball mounting step in which solder balls 5 are formed on the second surface of the motherboard 23. Specifically, as shown in
Finally, the areas between the product formation portions 24 are cut along the dicing lines 25 by means of a dicing apparatus which is not depicted in order to separate the product formation portions 24, and the semiconductor device 1 is completed as a result, as shown in
The lower-stage package 17 comprises a wiring board 2 having a predetermined wiring pattern (not depicted) formed on a first surface thereof, and a semiconductor chip 3 which is mounted in a central region of the first surface of the wiring board 2, with an underfill material 20 interposed. Both surfaces of the wiring board 2 are covered by an insulating film 2b, and openings (not depicted) are provided in the insulating film 2b. Connection lands 19 which are connected to solder balls 5 of the upper-stage package 16, and connection pads 6 which are connected to the semiconductor chip 3 of the lower-stage package 17 are exposed from the openings on the first surface of the wiring board 2. A plurality of lands 7 are exposed from openings on a second surface of the wiring board 2, and solder balls 5 are connected to these lands 7.
The solder balls 5 on the second surface of the wiring board 2 of the upper-stage package 16, and the connection lands 19 on the first surface of the wiring board 2 of the lower-stage package 17 are connected, and a PoP semiconductor device 1 having two different semiconductor chips 3 is formed. Here, the solder balls 5 are not provided in the central region on the second surface of the wiring board 2 of the upper-stage package 16, so the semiconductor chip 3 mounted on the lower-stage package 17 does not come into contact with the solder balls 5 on the second surface of the wiring board 2 of the upper-stage package 16. That is to say, the solder balls 5 on the second surface of the wiring board 2 of the upper-stage package 16 come into contact with the wiring board 2 of the lower-stage package 17 without coming into contact with the semiconductor chip 3 of the lower-stage package 17.
A mounting board 29 such as a motherboard provided inside an electronic device comprises an insulating substrate 2a, and a predetermined wiring pattern (not depicted) is formed on a first surface and a second surface of the insulating substrate 2a. These wiring patterns are covered by an insulating film 2b such as a solder resist film. The insulating film 2b on the first surface comprises openings (not depicted), and a plurality of mounting board-side lands 28 which are connected to the wiring pattern formed on the first surface of the wiring board 2 are exposed from openings in the insulating film 2b. The mounting board-side lands 28 disposed directly below a mounted semiconductor device 1 are connected to lands of the mounted semiconductor device 1. When seen as a plane, the mounting board-side lands 28 disposed around the mounted semiconductor device 1 are connected to the heat-radiating vias 13 by way of solder 30. Heat transmitted to the heat-radiating vias 13 is therefore released from the heat-radiating vias 13 into the air while also being readily transmitted to the mounting board 29, by virtue of the fact that the mounting board-side lands 28 and the heat-radiating vias 13 are connected by way of the solder 30 in this way. In addition, the connection strength between the semiconductor device 1 and the mounting board 29 is enhanced by virtue of the fact that the mounting board-side lands 28 and the heat-radiating vias 13 are fixed by the solder 30, and it is possible to reduce the stress exerted on the solder balls 5 so the reliability of secondary mounting is improved.
As mentioned above, heat generated by the semiconductor chip 3 is released to outside of the semiconductor device 1 from the sides of the insulating substrate 2a through the conductive pattern 12 and the heat-radiating vias 13. In particular, the solder 30 is connected to the heat-radiating vias 13 which pass from the first surface to the second surface of the insulating substrate 2a and the surface contact area between the air and the solder 30 connected to the heat-radiating vias 13 is increased, so a large amount of heat is readily released from the heat-radiating vias 13 through the solder 30. In addition, heat is readily transmitted to the mounting board 29 through the heat-radiating vias 13 and the solder 30. It is therefore no longer necessary to provide heat-radiating solder balls in the central region of the second surface of the wiring board 2 in order to release heat to the mounting board. Accordingly, it is possible to make effective use of an arrangement in which the upper-stage package 16 of a PoP semiconductor device 1 formed by stacking the upper-stage package 16 and a lower-stage package 17 comprises a conductive pattern 12 and heat-radiating vias 13 which are provided in such a way as to be exposed at the sides of an insulating substrate 2a. This means that the heat of the semiconductor chip 3 of the upper-stage package 16 is readily released to outside of the semiconductor device 1 from the heat-radiating vias 13 which are exposed at the sides of the insulating substrate 2a, and the reliability of the PoP semiconductor device 1 is improved.
The description of this mode of embodiment relates to a case in which the connection pads 6 and the conductive pattern 12 are formed in the same layer interposed between the insulating substrate 2a and the insulating film 2b, but the connection pads 6 and the conductive pattern 12 may equally be formed in separate layers. Furthermore, the connection pads 6 and conductive pattern 12 may be formed from different materials.
The description of this mode of embodiment further relates to a case in which the heat-radiating vias 13 are the same size as the through-vias which connect the connection pads 6 and the lands 7, but the heat-radiating vias 13 may be larger than the through-vias which connect the connection pads 6 and the lands 7.
The width of connection wires 14 for connecting a conductive pattern 12 and heat-radiating vias 13 in a semiconductor device 1 according to this mode of embodiment is greater than the width of the connection wires in the first mode of embodiment. The other constituent components of the semiconductor device 1 according to this mode of embodiment and the steps in the manufacture thereof are the same as in the first mode of embodiment and will therefore not be described again.
By increasing the width of the connection wires 14 in this way, the region of connection between the conductive pattern 12 and the heat-radiating vias 13 is increased and the amount of heat transmitted from the conductive pattern 12 to the heat-radiating vias 13 is increased. Heat generated by the semiconductor chip 3 is therefore readily released, through the conductive pattern 12, connection wires 14 and heat-radiating vias 13, to outside of the semiconductor device 1 from the heat-radiating vias 13 which are exposed at the sides of the insulating substrate 2a. As a result, the semiconductor chip 3 itself of the semiconductor device 1 is unlikely to retain heat and the reliability of the semiconductor device 1 is improved. The same advantages as in the first mode of embodiment are also achieved.
It should be noted that by providing a plurality of narrow connection wires 14, it is possible to produce an arrangement in which the total surface area in plan view is equal to that of the abovementioned wide connection wires 14.
A semiconductor device 1 according to this mode of embodiment comprises a heat-radiating plate 26 on the side surfaces of the semiconductor device 1 according to the first mode of embodiment in which the heat-radiating vias 13 are provided, with an adhesive member 8 interposed. After the semiconductor devices 1 have been cut and separated, the heat-radiating plate 26 is bonded over the adhesive member 8 which has been coated on the side surfaces of each semiconductor device 1. The heat-radiating plate 26 is formed from a material having excellent heat transfer properties in order to enhance the heat-radiating effect, and is adapted in such a way that the surface area thereof in contact with the air is increased. The other constituent components of the semiconductor device 1 according to this mode of embodiment and the steps in the manufacture thereof are the same as in the first mode of embodiment and will therefore not be described again.
By connecting the heat-radiating plate 26 to the heat-radiating vias 13 in this way, the surface area on the side surfaces of the semiconductor device 1 in contact with the air is increased. Heat generated by the semiconductor chip 3 and transmitted to the conductive pattern 12 is therefore readily released, through the connection wires 14, heat-radiating vias 13 and heat-radiating plate 26, to outside of the semiconductor device 1 from the heat-radiating plate 26 provided on the sides of the semiconductor device 1. As a result, the semiconductor chip 3 itself of the semiconductor device 1 is unlikely to retain heat and the reliability of the semiconductor device 1 is improved. The same advantages as in the first mode of embodiment are also achieved.
A semiconductor device 1 according to this mode of embodiment has a structure in which a recess 27 is formed in the heat-radiating vias 13 which are exposed at the side surfaces of the insulating substrate 2a of the semiconductor device according to the first mode of embodiment. The recess 27 in the heat-radiating vias 13 may be formed when the semiconductor devices 1 are cut, or may be formed in an additional process after the semiconductor devices 1 have been separated. The recess 27 in the heat-radiating vias 13 is adapted in such a way as to increase the surface contact area with the air in order to enhance the heat-radiating effect. The other constituent components of the semiconductor device 1 according to this mode of embodiment and the steps in the manufacture thereof are the same as in the first mode of embodiment and will therefore not be described again.
By forming the recess 27 in the heat-radiating vias 13 in this way, the surface area of the heat-radiating vias 13 in contact with the air is increased. Heat generated by the semiconductor chip 3 and transmitted to the conductive pattern 12 is therefore readily released, through the connection wires 14 and the heat-radiating vias 13, to outside of the semiconductor device 1 from the heat-radiating vias 13 comprising the recess 27 which are exposed at the sides of the insulating substrate 2a. As a result, the semiconductor chip 3 itself of the semiconductor device 1 is unlikely to retain heat and the reliability of the semiconductor device 1 is improved. The same advantages as in the first mode of embodiment are also achieved.
A semiconductor device 1 according to this mode of embodiment comprises the constituent components of the first mode of embodiment, in addition to which the conductive pattern 12 and the connection pads 6 which are connected to a power source and GND are electrically connected by way of wires 21. The other constituent components of the semiconductor device 1 according to this mode of embodiment and the steps in the manufacture thereof are the same as in the first mode of embodiment and will therefore not be described again.
By electrically connecting the conductive pattern 12 to the connection pads 6 which are connected to the power source and GND by way of the wires 21 in this way, the conductive pattern 12 can serve as part of the wiring pattern on the wiring board 2. The manufacturing process is simplified by forming the conductive pattern 12 together with the wiring pattern on the wiring board 2. As a result, it is possible to keep down the cost of manufacturing the semiconductor device 1. The same advantages as in the first mode of embodiment are also achieved.
A semiconductor device 1 according to this mode of embodiment comprises a wiring board 2, a semiconductor chip 3 mounted in the central region on a first surface of the wiring board 2, and a sealing material 4 formed on the first surface of the wiring board 2.
The other steps in the manufacture of the semiconductor device 1 according to this mode of embodiment are the same as in the first mode of embodiment and will therefore not be described again.
By forming the heat-radiating vias 13 in such a way as to lie either side of the four corners of the wiring board 2 in this way, it is possible to make efficient use of the wires on the wiring board 2. It is therefore possible to form the connection pads 6 and the electrode pads 9 along the sides of the semiconductor chip 3, and a large number of electrode pads 9 are provided on the semiconductor chip 3. The same advantages as in the first mode of embodiment are also achieved.
The specific configuration of the semiconductor device according to the present invention has been described above on the basis of the modes of embodiment, but the present invention is not limited to these modes of embodiment and it goes without saying that various modifications may be made to the abovementioned modes of embodiment within a scope that does not depart from the essential point of the present invention. For example, the abovementioned modes of embodiment describe a semiconductor device in which one semiconductor chip is mounted on one wiring board, but the present invention may equally be applied to a multi-chip package (MCP) semiconductor device in which a plurality of semiconductor chips are placed in a row or stacked on one wiring board.
Furthermore, the abovementioned modes of embodiment describe a semiconductor device in which the electrode pads and connection pads are connected by wires, but the present invention may equally be applied to a flip-chip ball grid array (FC-BGA) semiconductor device in which the semiconductor chip is mounted with the electrode pads and connection pads being directly connected.
The present invention may further be applied to a chip-on-chip (CoC) semiconductor device in which through-electrodes are provided on semiconductor chips, and a chip stack formed by electrically connecting the semiconductor chips and the electrode pads thereof and stacking same is mounted on the semiconductor device.
Number | Date | Country | Kind |
---|---|---|---|
2013-086447 | Apr 2013 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/060466 | 4/11/2014 | WO | 00 |