This invention relates to semiconductor chip packaging and, particularly, to packaging suitable for stacked package modules (such as package-in-package modules).
Semiconductor package substrates typically are laminates of two or more patterned metal layers separated by dielectric layers. Interconnection of the die (one or more, in a stacked die package) to the substrate is made to bond sites in traces in an uppermost metal layer. Interconnection of the package to a motherboard (for example) or to another package in a stacked package module (for example) is made to traces in a lowermost metal layer. Interconnection between upper and lower metal layers is made by vias, which are typically holes in the intervening dielectric layer or layers, filed with conductive material.
In one general aspect the invention features a single metal layer tape substrate, and methods for making the single metal layer substrate. The substrate includes a patterned metal layer having a die attach side and a land side, affixed (for example, laminated) to a patterned dielectric layer. The patterned metal layer includes bond fingers and lands. The metal layer is patterned to provide circuit traces as appropriate for interconnection with the die (on the die attach side) and with other elements (such as other packages in a multi-package module). The dielectric layer is patterned to provide openings exposing bond sites on lands (and, optionally, exposing sites on bond fingers) on the land side of the metal layer. Interconnection of a die with the substrate is made by wire bonding to exposed traces on bond fingers on a die attach side of the metal layer. Lands (and, optionally) bond fingers are exposed on the land side of the metal layer for access to testing the package, and/or for attachment of second-level interconnection to underlying circuitry such as a motherboard. In some embodiments a row of wire bond sites on adjacent bond fingers is exposed on the land side by a common opening in the dielectric layer, providing for a finer pitch interconnect and, accordingly, a higher interconnect density between stacked packages.
In another general aspect the invention features a land grid array package, or a ball grid array package, having a single metal layer tape substrate. The package according to the invention can be made thinner than is possible in a package having a multiple metal layer laminate substrate. The improved thinness can be particularly useful in multi-package modules, as are used for example in wireless and consumer product applications. The package according to the invention can be particularly useful in multi-package modules having an upper inverted package stacked over a lower package.
In another general aspect the invention features a multipackage module including a single metal layer tape substrate land grid array package stacked over a ball grid array package. In some embodiments the ball grid array package has a single metal layer tape substrate. The land grid array package is inverted with respect to the lower ball grid array package, and interconnection between the single metal layer tape substrate land grid array package and the ball grid array package is made by wire bonds leading from the exposed wire bond sites on the land side of the land grid array package.
In another general aspect the invention features a method for making a single metal layer tape substrate, by providing a substrate dielectric layer, patterned to provide openings situated to expose bond finger sites and lands on a metal layer, laminating a metal foil such as a copper foil onto a surface of the dielectric layer, and patterning the metal foil to form bond fingers and lands over said openings. In some embodiments the dielectric layer is a polymer material and in some embodiments the openings are made by punching or etching. In some embodiments the metal foil is affixed to the surface of the dielectric layer using chromium or an adhesive. In some embodiments the method further includes plating exposed surfaces of the patterned foil with a metal. In some embodiments the method further includes applying a dielectric material on a die attach region of the side of the metal foil facing away from the dielectric layer to form a substrate assembly having a die attach side and a land side opposite the die attach side.
In another general aspect the invention features a method for making a semiconductor package by forming the single metal layer tape substrate assembly as described above, affixing a die onto a die mount surface of the die attach side of the substrate assembly; electrically connecting die pads with bond sites on the die attach side of the bond fingers by wire bonds; and encapsulating the die and wire bonds.
In some embodiments the dielectric material is applied to the substrate by supporting the substrate on the land side and printing the dielectric material onto the die attach side. In some embodiments the dielectric material is printed through a screen or stencil, and the surface of the dielectric material is planarized. In some embodiments the plating includes immersing the patterned laminated metal foil and dielectric layer in a plating bath, and in some embodiments the plating is repeated to form a plurality of plating layers, such as plating first with nickel and then with gold.
The invention will now be described in further detail by reference to the drawings, which illustrate alternative embodiments of the invention. The drawings are diagrammatic, showing features of the invention and their relation to other features and structures, and are not made to scale. For improved clarity of presentation, in the FIGS. illustrating embodiments of the invention, elements corresponding to elements shown in other drawings are not all particularly renumbered, although they are all readily identifiable in all the FIGS.
Turning now to
As
The lands 23, which in the example shown are arranged more centrally (typically in an array) in the substrate, and typically opposite the die attach region, can be employed as sites for testing the land grid array package prior to combining it with other devices. Further, the openings 3 of the substrate dielectric layer 4 can expose the sites for testing on the metal layer 2. More specifically, the sites for testing can be arranged in a staggered array. For example, where the package is to be stacked over another package in a multi-package module, the package can be tested prior to assembly; packages not tested as “good” can be discarded and only “good” packages used in the assembly. This improves overall yield.
Various materials and dimensions may be specified for the single metal layer tape substrate land grid array package according to the invention, such as in the following illustrative example. The dielectric layer 4 can be a sheet of polyimide, patterned, for example by punching, to lay out the openings. The patterned polyimide film can have a thickness in the range, for example, about 25 um to about 75 um. The metal layer 2 can be a copper foil, laminated onto the polyimide film and then masked and etched to form the circuit traces. The patterned copper layer can have a thickness in the range, for example, about 12 um to about 25 um. At least the exposed portions of the metal layer can be plated, for example with nickel and gold, to provide superior electrical interconnection with wire bonds or with solder; the plating may have thicknesses, for example, about 5 um nickel and about 0.5 um gold. The planarizing layer may be, for example, a photoresist or other dielectric. A suitable planarizing material may be, for example, a dry film, which flows to some extent (plastic flow, that is, without melting) at raised temperature under pressure. The planarizing layer has a thickness at least about the same as the thickness of the metal layer, and the thickness may be in the range, for example, about 12 um to about 40 um. If the substrate is suitably planarized, a film adhesive may be used to attach the die; otherwise, a die attach epoxy should be employed. The die attach can have a thickness in the range, for example, about 20 um to about 75 um. The die thickness will depend upon the type of die; some die can have a thickness in the range, for example, about 75 um to about 150 um. The encapsulation or molding should have a thickness sufficient to cover the wires (allowing for variation in the loop height).
According to this aspect of the invention, the bond fingers may have a very fine pitch, as fine as the substrate manufacturing technology allows, and may be in some examples about 40 um or greater (as compared with about 80 um or greater for a multiple metal layer laminate substrate), and in the range, for example, about 40 um to about 400 um, as may be specified for a particular package. An stackable land grid array package according to the invention can have a very high interconnect density, so that chips, such as ASICs, having a high I/O count, can be packaged according to the invention and stacked over a lower package, which may be, for example, a processing unit. The lands may have a pitch in the range, for example, about 0.3 mm to 0.8 mm.
As noted above, the package according to the invention can be particularly useful in multi-package modules, such as so-called “package-in-package” (PIP) modules. In some such PIP modules, an upper package is inverted and stacked over a lower package, and the inverted upper package is electrically interconnected to the lower package by wire bonds connecting bond sites on bond fingers in the upward-facing side (the “land” side) of the upper package with bond sites on bond fingers on the upward-facing side of the lower package substrate. In some applications, such as hand held wireless devices (cellular phones having wireless internet communications capability, with imaging and sound capture capability, the device requires a signal processor, typically a digital signal processor, and an ASIC which may include graphics processing capability, in addition to memory. The ASIC typically has high I/O (for example 400); according to the invention, an ASIC can be packaged as single metal layer tape substrate land grid array with high I/O having a footprint smaller than the digital signal processor, and the ASIC package can be inverted and stacked over the digital signal processor package and interconnected with it by wire bonds. Memory can be provided as an additional memory package, included in the package stack (for example, stacked over the ASIC package); or memory can be included as stacked die in one or more of the stacked packages (for example, stacked with the ASIC die in the ASIC package).
A further stage in the process is shown in
A further stage in the process is shown in
In the stage of the process shown in
The description above refers by way of example to a land grid array package. As shown in
Other embodiments are within the scope of the invention.
This is a continuation of U.S. patent application Ser. No. 11/396,954, filed Apr. 3, 2006 now U.S. Pat. No. 7,589,407, which claims priority from U.S. Provisional Patent Application Ser. No. 60/669,975 filed Apr. 11, 2005 and the subject matter thereof is incorporated herein by reference thereto. The present application contains subject matter related to co-pending U.S. patent application Ser. No. 12/059,077, now U.S. Pat. No. 8,410,596, which claims priority from U.S. Provisional Patent Application Ser. No. 60/669,975. The related application is assigned to STATS ChipPAC Ltd. and the subject matter thereof is incorporated herein by reference thereto.
Number | Name | Date | Kind |
---|---|---|---|
5243320 | Clouser et al. | Sep 1993 | A |
6002178 | Lin | Dec 1999 | A |
6204564 | Miyata et al. | Mar 2001 | B1 |
6229711 | Yoneda | May 2001 | B1 |
6236108 | Sota et al. | May 2001 | B1 |
6372549 | Urushima | Apr 2002 | B2 |
6512176 | Yaguchi et al. | Jan 2003 | B2 |
6727581 | Abe et al. | Apr 2004 | B2 |
6731013 | Juso et al. | May 2004 | B2 |
6746897 | Fukutomi et al. | Jun 2004 | B2 |
6762488 | Maeda et al. | Jul 2004 | B2 |
6770961 | Lee | Aug 2004 | B2 |
6774467 | Horiuchi et al. | Aug 2004 | B2 |
6779783 | Kung et al. | Aug 2004 | B2 |
6794741 | Lin et al. | Sep 2004 | B1 |
6818998 | Kwon et al. | Nov 2004 | B2 |
6864565 | Hool et al. | Mar 2005 | B1 |
6909171 | Eldridge et al. | Jun 2005 | B2 |
6977439 | Kang et al. | Dec 2005 | B2 |
7138296 | Sakamoto et al. | Nov 2006 | B2 |
7205647 | Karnezos | Apr 2007 | B2 |
7235412 | Mardi et al. | Jun 2007 | B1 |
7307352 | Choi | Dec 2007 | B2 |
7589407 | Karnezos | Sep 2009 | B2 |
20010002066 | Mita et al. | May 2001 | A1 |
20010030122 | Hara et al. | Oct 2001 | A1 |
20020105095 | Lee et al. | Aug 2002 | A1 |
20020192875 | Igarashi et al. | Dec 2002 | A1 |
20030006494 | Lee et al. | Jan 2003 | A1 |
20030133115 | Chen et al. | Jul 2003 | A1 |
20030134450 | Lee | Jul 2003 | A1 |
20030230804 | Kouno et al. | Dec 2003 | A1 |
20040040856 | Hamano | Mar 2004 | A1 |
20040063242 | Karnezos | Apr 2004 | A1 |
20040119152 | Karnezos et al. | Jun 2004 | A1 |
20040124516 | Nakamura et al. | Jul 2004 | A1 |
20040175861 | Eldridge et al. | Sep 2004 | A1 |
20050023682 | Nakao | Feb 2005 | A1 |
20050139979 | Tao et al. | Jun 2005 | A1 |
20060049524 | Lin et al. | Mar 2006 | A1 |
20060138631 | Tao et al. | Jun 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20090283890 A1 | Nov 2009 | US |
Number | Date | Country | |
---|---|---|---|
60669975 | Apr 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11396954 | Apr 2006 | US |
Child | 12511012 | US |