This disclosure relates generally to semiconductor processing, and more particularly to an apparatus and method for providing an excited species of a processing gas to a substrate or wafer in a reaction chamber.
Semiconductor fabrication processes are typically conducted with the substrates supported within a chamber under controlled conditions. For many purposes, semiconductor substrates (e.g., wafers) are heated inside the process chamber. For example, substrates can be heated by direct physical contact with an internally heated wafer holder or “chuck.” “Susceptors” are wafer supports used in systems where the wafer and susceptors absorb heat.
Some of the important controlled conditions for processing include, but are not limited to, pressure of the chamber, fluid flow rate into the chamber, temperature of the reaction chamber, temperature of the fluid flowing into the reaction chamber, and wafer position on the susceptor during wafer loading.
Heating within the reaction chamber can occur in a number of ways, including lamp banks or arrays positioned above the substrate surface for directly heating the susceptor or susceptor heaters/pedestal heaters positioned below the susceptor. Traditionally, the pedestal style heater extends into the chamber through a bottom wall and the susceptor is mounted on a top surface of the heater. The heater may include a resistive heating element enclosed within the heater to provide conductive heat and increase the susceptor temperature.
Consistent processing and consistent results generally require careful control and metering of processing gases in the system. One of the last resorts for controlling the processing gas is at the showerhead where the processing gas then contacts the wafer in the reaction chamber. Further, obtaining optimal flow rates and uniformity may be difficult at times due to showerhead holes becoming clogged or parasitic precursor reactions occurring within the showerhead.
Plasma based reactors may use direct plasma integral to the reactor or remote plasma positioned upstream of the reactor. Direct plasma can create a more intense and effective plasma but may also damage the substrate. Conversely, remote plasma reduces the risk of damage to the substrate but may suffer from the excited species being less active and therefore not properly reacting with a film on the substrate.
Various aspects and implementations are disclosed herein that relate to a reaction chamber with plasma capabilities for processing a wafer. In one aspect, a processing chamber includes a reaction chamber having a processing area, a processing gas inlet in communication with the processing area, a first excited species generation zone in communication with the processing gas inlet and a second exited species generation zone in communication with the processing gas inlet.
In one implementation, the first and second excited species generation zones may be in communication with each other. The first and second excited species generation zones may be selectively in communication with each other. A valve may be positioned between the first excited species generation zone and the processing gas inlet. A valve may be positioned between the second excited species generation zone and the processing gas inlet. The first and second excited species generation zones may be non-co-axial.
The first and second excited species generation zones may be co-axially aligned. The first and second excited species generation zones may generate combustibly incompatible excited precursors. The first excited species generation zone may excite a fluorine-based chemistry and the second excited species generation zone may excite a chlorine-based chemistry. The first and second excited species generation zones may each further include an inductively coupled plasma generator. The first and second excited species generation zones inductively coupled plasma generators are each separately controlled. The first and second excited species generation zones may each further include a capacitively coupled plasma generator. The first and second excited species generation zones capacitively coupled plasma generators are each separately controlled.
The processing chamber may further include an inert gas flow positioned between the first and second excited species generation zones. The first and second excited species generation zones may be separated by inert gas valves. The first and second excited species generation zones may be at least partially composed of alumina or quartz. The first and second excited species generation zones may be energized with a single coil.
In another aspect, a method of processing a substrate may include the steps of loading a substrate within a processing area, activating a first excited species generation zone to provide a first excited species precursor to the processing area during a first pulse and, activating a second excited species generation zone to provide a second excited species precursor different from the first excited species precursor to the processing area during a second pulse.
In an implementation, the first and second excited species generation zones are different generation zones.
In another aspect, the method of delivering a plurality of precursors to a processing area may include the steps of providing a first and second excited species generation zones in communication with the processing area, selectively flowing a first precursor through the first excited species generation zone while exciting the first excited species generation zone, and selectively flowing a second precursor through the second excited species generation zone while exciting the second species generation zone.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.
The present aspects and implementations may be described in terms of functional block components and various processing steps. Such functional blocks may be realized by any number of hardware or software components configured to perform the specified functions and achieve the various results. For example, the present aspects may employ various sensors, detectors, flow control devices, heaters, and the like, which may carry out a variety of functions. In addition, the present aspects and implementations may be practiced in conjunction with any number of processing methods, and the apparatus and systems described may employ any number of processing methods, and the apparatus and systems described are merely examples of applications of the invention.
Inlet manifold 32 may include a valve 34 which is commonly known in precursor delivery systems and may be a standard pneumatic valve, a mechanical valve, an inert gas valve, or any other suitable valve mechanism. Upstream of valve 34 may be a separation pipe 36 in some implementations with additional valves 38 and 40 similar to valve 34 which function to selectively isolate the various precursor inlets from each other. While not specifically shown, additional purge or vacuum ports and/or lines may be oriented downstream of valves 38 and 40 to assist with purging the separation pipe 36 and inlet manifold 32. Valves 34, 38, and 40 may be separately controlled with a controller 42 via control lines 44, 46, and 48 respectively or any other suitable controlling system.
Precursor A 50 passes through an outlet pipe 52 upstream of valve 38, while Precursor B 54 passes through outlet pipe 56 upstream of valve 40. Precursor A 50 passes through a first excited species generation zone 58 while Precursor B 54 passes through a second excited species generation zone 60. As can be seen proper valves may be used to isolate the first and second excited species generation zones 58 and 60 so that a reaction between the precursors flowing through each of the respective excited species generation zones can be prevented.
Each of first and second excited species generation zones 58 and 60 may include a Faraday shield 62 on an outer periphery of each zone. First excited species generation zone 58 may include control lines 64 and 66, while second excited species generation zone 60 may include control lines 68 and 70 The various control lines 64, 66, 68, and 70 connect to an excited species generation controller 72 as will be described in greater detail below.
Referring now to controller 72, a powering and matching circuit 84 are shown within controller 72 while a switching circuit 86 may also be incorporated within controller 72 and operated by a processing chamber controller (not shown) in accordance with an appropriate processing recipe or program. Power and matching circuit 84 is designed to provide the proper impedance and power to electrical coils 76 to generate an adequate enough excited species within the appropriate generation zone tubing 78 that the excited species can be moved with an inert gas through the gate valves, the showerhead, and finally the wafer surface. It is also further conceived that each of the first and second exited species generation zones may need different or variable power in which case controller 72 may be regulated to provide this variable current as needed and the power circuit may utilize RF or any other suitable mechanism for power. Referring back to valves 34, 38, and 40, actuators 88 are positioned in each valve and are electrically or pneumatically controlled to open or close depending on the process step being performed. One of skill in the art will immediately appreciate that any suitable mechanism may be incorporated to prevent/permit gas flow through the valves, including actuators 88 or any other device or method known in the art. Preferably, the valves will be capable of high radical conductance to limit and/or prevent the loss of excited species.
In operation, the processes shown in
In the disclosed second implementation 96, Precursor B 54 is flowing through an outer region 100 formed by region walls 102 and 104 which may be formed in the shape of a cylinder formed from a material which is complimentary and compatible with the precursor (alumina or quartz by way of non-limiting example). A gap 106 may be positioned radially inward of region wall 104 while region wall 108 forms a central opening 110. Region wall 108 is also preferably formed from a material which is complimentary and compatible with the precursor used therein and may be, by way of non-limiting example, alumina or quartz.
In operation, a wafer 30 is loaded on susceptor 28 and a first precursor is activated or excited within one of the first or second excited species generation zones before passing through the necessary gate valves and into the reaction chamber through showerhead 26. At the same time, the second precursor may be retained within the other of the excited species generation zones until the gate valves are opened to permit passage there through. Next, the first precursor flow is stopped with gate valves and the second excited precursor or an inert gas may be provided to the reaction chamber. Since multiple implementations of a plasma generator are shown and described, a single CCP or ICP may be operated continuously to maintain an excited species in both excited species generation zones or separate CCPs and ICPs may be utilized and triggered just before the excited species is needed in the reaction chamber. In this manner, the inlet manifold and reaction chamber can selectively receive excited species of any number of precursors without the precursors coming in contact with each other during processing. Thus it is seen that incompatible excited precursors may be utilized to process a wafer or to etch a reaction chamber by selectively flowing excited species activated in separate plasma generating zones.
These and other embodiments for methods and apparatus for a reaction chamber with dual plasma generation regions therein may incorporate concepts, embodiments, and configurations as described with respect to embodiments of apparatus for measuring devices described above. The particular implementations shown and described are illustrative of the invention and its best mode and are not intended to otherwise limit the scope of the aspects and implementations in any way. Indeed, for the sake of brevity, conventional manufacturing, connection, preparation, and other functional aspects of the system may not be described in detail. Furthermore, any connecting lines shown in the various figures are intended to represent exemplary functional relationships and/or physical couplings between the various elements. Many alternative or additional functional relationship or physical connections may be present in the practical system, and/or may be absent in some embodiments. Further, various aspects and implementations of other designs may be incorporated within the scope of the disclosure.
As used herein, the terms “comprises”, “comprising”, or any variation thereof, are intended to reference a non-exclusive inclusion, such that a process, method, article, composition or apparatus that comprises a list of elements does not include only those elements recited, but may also include other elements not expressly listed or inherent to such process, method, article, composition or apparatus. Other combinations and/or modifications of the above-described structures, arrangements, applications, proportions, elements, materials or components used in the practice of the present invention, in addition to those not specifically recited, may be varied or otherwise particularly adapted to specific environments, manufacturing specifications, design parameters or other operating requirements without departing from the general principles of the same.
Number | Name | Date | Kind |
---|---|---|---|
2745640 | Cushman | May 1956 | A |
2990045 | Root | Sep 1959 | A |
3833492 | Bollyky | Sep 1974 | A |
3854443 | Baerg | Dec 1974 | A |
3862397 | Anderson et al. | Jan 1975 | A |
3887790 | Ferguson | Jun 1975 | A |
4058430 | Suntola et al. | Nov 1977 | A |
4176630 | Elmer | Dec 1979 | A |
4194536 | Stine et al. | Mar 1980 | A |
4389973 | Suntola et al. | Jun 1983 | A |
4393013 | McMenamin | Jul 1983 | A |
4436674 | McMenamin | Mar 1984 | A |
4570328 | Price et al. | Feb 1986 | A |
4653541 | Oehlschlaeger et al. | Mar 1987 | A |
4722298 | Rubin et al. | Feb 1988 | A |
4735259 | Vincent | Apr 1988 | A |
4753192 | Goldsmith et al. | Jun 1988 | A |
4789294 | Sato et al. | Dec 1988 | A |
4821674 | deBoer et al. | Apr 1989 | A |
4827430 | Aid et al. | May 1989 | A |
4991614 | Hammel | Feb 1991 | A |
5062386 | Christensen | Nov 1991 | A |
5119760 | McMillan et al. | Jun 1992 | A |
5167716 | Boitnott et al. | Dec 1992 | A |
5199603 | Prescott | Apr 1993 | A |
5221556 | Hawkins et al. | Jun 1993 | A |
5242539 | Kumihashi et al. | Sep 1993 | A |
5243195 | Nishi | Sep 1993 | A |
5326427 | Jerbic | Jul 1994 | A |
5380367 | Bertone | Jan 1995 | A |
5595606 | Fujikawa et al. | Jan 1997 | A |
5632919 | MacCracken et al. | May 1997 | A |
5730801 | Tepman | Mar 1998 | A |
5732744 | Barr et al. | Mar 1998 | A |
5736314 | Hayes et al. | Apr 1998 | A |
5796074 | Edelstein et al. | Aug 1998 | A |
5836483 | Disel | Nov 1998 | A |
5855680 | Soininen et al. | Jan 1999 | A |
5979506 | Aarseth | Nov 1999 | A |
6013553 | Wallace | Jan 2000 | A |
6015465 | Kholodenko et al. | Jan 2000 | A |
6060691 | Minami et al. | May 2000 | A |
6074443 | Venkatesh | Jun 2000 | A |
6083321 | Lei et al. | Jul 2000 | A |
6086677 | Umotoy et al. | Jul 2000 | A |
6122036 | Yamasaki et al. | Sep 2000 | A |
6125789 | Gupta et al. | Oct 2000 | A |
6129044 | Zhao et al. | Oct 2000 | A |
6148761 | Majewski et al. | Nov 2000 | A |
6161500 | Kopacz et al. | Dec 2000 | A |
6201999 | Jevtic | Mar 2001 | B1 |
6274878 | Li et al. | Aug 2001 | B1 |
6287965 | Kang et al. | Sep 2001 | B1 |
6302964 | Umotoy et al. | Oct 2001 | B1 |
6312525 | Bright et al. | Nov 2001 | B1 |
6326597 | Lubomirsky et al. | Dec 2001 | B1 |
6342427 | Choi et al. | Jan 2002 | B1 |
6367410 | Leahey et al. | Apr 2002 | B1 |
6368987 | Kopacz et al. | Apr 2002 | B1 |
6410459 | Blalock et al. | Jun 2002 | B2 |
6420279 | Ono et al. | Jul 2002 | B1 |
6454860 | Metzner et al. | Sep 2002 | B2 |
6478872 | Chae et al. | Nov 2002 | B1 |
6482331 | Lu et al. | Nov 2002 | B2 |
6483989 | Okada et al. | Nov 2002 | B1 |
6511539 | Raaijmakers | Jan 2003 | B1 |
6534395 | Werkhoven et al. | Mar 2003 | B2 |
6569239 | Arai et al. | May 2003 | B2 |
6590251 | Kang et al. | Jul 2003 | B2 |
6594550 | Okrah | Jul 2003 | B1 |
6598559 | Vellore et al. | Jul 2003 | B1 |
6627503 | Ma et al. | Sep 2003 | B2 |
6633364 | Hayashi | Oct 2003 | B2 |
6648974 | Ogliari et al. | Nov 2003 | B1 |
6682973 | Paton et al. | Jan 2004 | B1 |
6709989 | Ramdani et al. | Mar 2004 | B2 |
6710364 | Guldi et al. | Mar 2004 | B2 |
6734090 | Agarwala et al. | May 2004 | B2 |
6820570 | Kilpela et al. | Nov 2004 | B2 |
6821910 | Adomaitis et al. | Nov 2004 | B2 |
6824665 | Shelnut et al. | Nov 2004 | B2 |
6847014 | Benjamin et al. | Jan 2005 | B1 |
6858547 | Metzner | Feb 2005 | B2 |
6863019 | Shamouilian | Mar 2005 | B2 |
6874480 | Ismailov | Apr 2005 | B1 |
6875677 | Conley, Jr. et al. | Apr 2005 | B1 |
6884066 | Nguyen et al. | Apr 2005 | B2 |
6889864 | Lindfors et al. | May 2005 | B2 |
6909839 | Wang et al. | Jun 2005 | B2 |
6930059 | Conley, Jr. et al. | Aug 2005 | B2 |
6935269 | Lee et al. | Aug 2005 | B2 |
6955836 | Kumagai et al. | Oct 2005 | B2 |
7045430 | Ahn et al. | May 2006 | B2 |
7053009 | Conley, Jr. et al. | May 2006 | B2 |
7071051 | Jeon et al. | Jul 2006 | B1 |
7115838 | Kurara et al. | Oct 2006 | B2 |
7122085 | Shero et al. | Oct 2006 | B2 |
7129165 | Basol et al. | Oct 2006 | B2 |
7132360 | Schaeffer et al. | Nov 2006 | B2 |
7135421 | Ahn et al. | Nov 2006 | B2 |
7147766 | Uzoh et al. | Dec 2006 | B2 |
7172497 | Basol et al. | Feb 2007 | B2 |
7192824 | Ahn et al. | Mar 2007 | B2 |
7192892 | Ahn et al. | Mar 2007 | B2 |
7195693 | Cowans | Mar 2007 | B2 |
7204887 | Kawamura et al. | Apr 2007 | B2 |
7205247 | Lee et al. | Apr 2007 | B2 |
7235501 | Ahn et al. | Jun 2007 | B2 |
7312494 | Ahn et al. | Dec 2007 | B2 |
7329947 | Adachi et al. | Feb 2008 | B2 |
7357138 | Ji et al. | Apr 2008 | B2 |
7393736 | Ahn et al. | Jul 2008 | B2 |
7402534 | Mahajani | Jul 2008 | B2 |
7405166 | Liang et al. | Jul 2008 | B2 |
7405454 | Ahn et al. | Jul 2008 | B2 |
7414281 | Fastow | Aug 2008 | B1 |
7437060 | Wang et al. | Oct 2008 | B2 |
7442275 | Cowans | Oct 2008 | B2 |
7489389 | Shibazaki | Feb 2009 | B2 |
7547363 | Tomiyasu et al. | Jun 2009 | B2 |
7601223 | Lindfors et al. | Oct 2009 | B2 |
7601225 | Tuominen et al. | Oct 2009 | B2 |
7640142 | Tachikawa et al. | Dec 2009 | B2 |
7651583 | Kent et al. | Jan 2010 | B2 |
D614153 | Fondurulia et al. | Apr 2010 | S |
7720560 | Menser et al. | May 2010 | B2 |
7723648 | Tsukamoto et al. | May 2010 | B2 |
7740705 | Li | Jun 2010 | B2 |
7780440 | Shibagaki et al. | Aug 2010 | B2 |
7833353 | Furukawahara et al. | Nov 2010 | B2 |
7851019 | Tuominen et al. | Dec 2010 | B2 |
7884918 | Hattori | Feb 2011 | B2 |
8041197 | Kasai et al. | Oct 2011 | B2 |
8055378 | Numakura | Nov 2011 | B2 |
8071451 | Uzoh | Dec 2011 | B2 |
8071452 | Raisanen | Dec 2011 | B2 |
8072578 | Yasuda | Dec 2011 | B2 |
8076230 | Wei | Dec 2011 | B2 |
8076237 | Berry | Dec 2011 | B2 |
8082946 | Laverdiere et al. | Dec 2011 | B2 |
8092604 | Tomiyasu et al. | Jan 2012 | B2 |
8137462 | Fondurulia et al. | Mar 2012 | B2 |
8147242 | Shibagaki et al. | Apr 2012 | B2 |
8216380 | White et al. | Jul 2012 | B2 |
8278176 | Bauer et al. | Oct 2012 | B2 |
8282769 | Iizuka | Oct 2012 | B2 |
8287648 | Reed et al. | Oct 2012 | B2 |
8293016 | Bahng et al. | Oct 2012 | B2 |
8309173 | Tuominen et al. | Nov 2012 | B2 |
8367528 | Bauer et al. | Feb 2013 | B2 |
8444120 | Gregg et al. | May 2013 | B2 |
8608885 | Goto et al. | Dec 2013 | B2 |
8683943 | Onodera et al. | Apr 2014 | B2 |
8711338 | Liu et al. | Apr 2014 | B2 |
8726837 | Patalay et al. | May 2014 | B2 |
8728832 | Raisanen et al. | May 2014 | B2 |
8802201 | Raisanen et al. | Aug 2014 | B2 |
8877655 | Shero et al. | Nov 2014 | B2 |
8883270 | Shero et al. | Nov 2014 | B2 |
20020001974 | Chan | Jan 2002 | A1 |
20020011210 | Satoh et al. | Jan 2002 | A1 |
20020064592 | Datta et al. | May 2002 | A1 |
20020098627 | Pomarede et al. | Jul 2002 | A1 |
20020108670 | Baker et al. | Aug 2002 | A1 |
20020115252 | Haukka et al. | Aug 2002 | A1 |
20020172768 | Endo et al. | Nov 2002 | A1 |
20020187650 | Blalock et al. | Dec 2002 | A1 |
20030019580 | Strang | Jan 2003 | A1 |
20030025146 | Narwankar et al. | Feb 2003 | A1 |
20030042419 | Katsumata et al. | Mar 2003 | A1 |
20030066826 | Lee et al. | Apr 2003 | A1 |
20030075925 | Lindfors et al. | Apr 2003 | A1 |
20030111963 | Tolmachev et al. | Jun 2003 | A1 |
20030141820 | White et al. | Jul 2003 | A1 |
20030228772 | Cowans | Dec 2003 | A1 |
20030232138 | Tuominen et al. | Dec 2003 | A1 |
20040013577 | Ganguli et al. | Jan 2004 | A1 |
20040023516 | Londergan et al. | Feb 2004 | A1 |
20040077182 | Lim et al. | Apr 2004 | A1 |
20040144980 | Ahn et al. | Jul 2004 | A1 |
20040168627 | Conley et al. | Sep 2004 | A1 |
20040169032 | Murayama et al. | Sep 2004 | A1 |
20040198069 | Metzner et al. | Oct 2004 | A1 |
20040200499 | Harvey et al. | Oct 2004 | A1 |
20040219793 | Hishiya et al. | Nov 2004 | A1 |
20040221807 | Verghese et al. | Nov 2004 | A1 |
20040266011 | Lee et al. | Dec 2004 | A1 |
20050008799 | Tomiyasu et al. | Jan 2005 | A1 |
20050019026 | Wang et al. | Jan 2005 | A1 |
20050020071 | Sonobe et al. | Jan 2005 | A1 |
20050023624 | Ahn et al. | Feb 2005 | A1 |
20050054228 | March | Mar 2005 | A1 |
20050066893 | Soininen | Mar 2005 | A1 |
20050070123 | Hirano | Mar 2005 | A1 |
20050072357 | Shero et al. | Apr 2005 | A1 |
20050092249 | Kilpela et al. | May 2005 | A1 |
20050100669 | Kools et al. | May 2005 | A1 |
20050106893 | Wilk | May 2005 | A1 |
20050110069 | Kil et al. | May 2005 | A1 |
20050173003 | Laverdiere et al. | Aug 2005 | A1 |
20050187647 | Wang et al. | Aug 2005 | A1 |
20050212119 | Shero | Sep 2005 | A1 |
20050214457 | Schmitt et al. | Sep 2005 | A1 |
20050214458 | Meiere | Sep 2005 | A1 |
20050218462 | Ahn et al. | Oct 2005 | A1 |
20050229972 | Hoshi et al. | Oct 2005 | A1 |
20050241176 | Shero et al. | Nov 2005 | A1 |
20050263075 | Wang et al. | Dec 2005 | A1 |
20050271813 | Kher et al. | Dec 2005 | A1 |
20050282101 | Adachi | Dec 2005 | A1 |
20060013946 | Park et al. | Jan 2006 | A1 |
20060014384 | Lee et al. | Jan 2006 | A1 |
20060019033 | Muthukrishnan et al. | Jan 2006 | A1 |
20060024439 | Tuominen et al. | Feb 2006 | A2 |
20060046518 | Hill et al. | Mar 2006 | A1 |
20060051925 | Ahn et al. | Mar 2006 | A1 |
20060060930 | Metz et al. | Mar 2006 | A1 |
20060062910 | Meiere | Mar 2006 | A1 |
20060063346 | Lee et al. | Mar 2006 | A1 |
20060110934 | Fukuchi | May 2006 | A1 |
20060113675 | Chang et al. | Jun 2006 | A1 |
20060128168 | Ahn et al. | Jun 2006 | A1 |
20060148180 | Ahn et al. | Jul 2006 | A1 |
20060193979 | Meiere et al. | Aug 2006 | A1 |
20060208215 | Metzner et al. | Sep 2006 | A1 |
20060213439 | Ishizaka | Sep 2006 | A1 |
20060223301 | Vanhaelemeersch et al. | Oct 2006 | A1 |
20060226117 | Bertram et al. | Oct 2006 | A1 |
20060228888 | Lee et al. | Oct 2006 | A1 |
20060240574 | Yoshie | Oct 2006 | A1 |
20060257563 | Doh et al. | Nov 2006 | A1 |
20060258078 | Lee et al. | Nov 2006 | A1 |
20060266289 | Verghese et al. | Nov 2006 | A1 |
20070010072 | Bailey et al. | Jan 2007 | A1 |
20070020953 | Tsai et al. | Jan 2007 | A1 |
20070022954 | Iizuka et al. | Feb 2007 | A1 |
20070028842 | Inagawa et al. | Feb 2007 | A1 |
20070031598 | Okuyama et al. | Feb 2007 | A1 |
20070031599 | Gschwandtner et al. | Feb 2007 | A1 |
20070037412 | Dip et al. | Feb 2007 | A1 |
20070042117 | Kupurao et al. | Feb 2007 | A1 |
20070049053 | Mahajani | Mar 2007 | A1 |
20070054405 | Jacobs et al. | Mar 2007 | A1 |
20070059948 | Metzner et al. | Mar 2007 | A1 |
20070065578 | McDougall | Mar 2007 | A1 |
20070066010 | Ando | Mar 2007 | A1 |
20070077355 | Chacin et al. | Apr 2007 | A1 |
20070084405 | Kim | Apr 2007 | A1 |
20070116873 | Li et al. | May 2007 | A1 |
20070134942 | Ahn et al. | Jun 2007 | A1 |
20070146621 | Yeom | Jun 2007 | A1 |
20070155138 | Tomasini et al. | Jul 2007 | A1 |
20070166457 | Yamoto et al. | Jul 2007 | A1 |
20070175397 | Tomiyasu et al. | Aug 2007 | A1 |
20070209590 | Li | Sep 2007 | A1 |
20070232501 | Tonomura | Oct 2007 | A1 |
20070249131 | Allen et al. | Oct 2007 | A1 |
20070252244 | Srividya et al. | Nov 2007 | A1 |
20070264807 | Leone et al. | Nov 2007 | A1 |
20080006208 | Ueno et al. | Jan 2008 | A1 |
20080029790 | Ahn et al. | Feb 2008 | A1 |
20080054332 | Kim et al. | Mar 2008 | A1 |
20080057659 | Forbes et al. | Mar 2008 | A1 |
20080075881 | Won et al. | Mar 2008 | A1 |
20080085226 | Fondurulia et al. | Apr 2008 | A1 |
20080113096 | Mahajani | May 2008 | A1 |
20080113097 | Mahajani et al. | May 2008 | A1 |
20080124908 | Forbes et al. | May 2008 | A1 |
20080149031 | Chu et al. | Jun 2008 | A1 |
20080176375 | Erben et al. | Jul 2008 | A1 |
20080216077 | Emani et al. | Sep 2008 | A1 |
20080224240 | Ahn et al. | Sep 2008 | A1 |
20080233288 | Clark | Sep 2008 | A1 |
20080261413 | Mahajani | Oct 2008 | A1 |
20080282970 | Heys et al. | Nov 2008 | A1 |
20080315292 | Ji et al. | Dec 2008 | A1 |
20090000550 | Tran et al. | Jan 2009 | A1 |
20090011608 | Nabatame | Jan 2009 | A1 |
20090020072 | Mizunaga et al. | Jan 2009 | A1 |
20090029564 | Yamashita et al. | Jan 2009 | A1 |
20090035947 | Horii | Feb 2009 | A1 |
20090061644 | Chiang et al. | Mar 2009 | A1 |
20090085156 | Dewey et al. | Apr 2009 | A1 |
20090095221 | Tam et al. | Apr 2009 | A1 |
20090107404 | Ogliari et al. | Apr 2009 | A1 |
20090136668 | Gregg et al. | May 2009 | A1 |
20090211523 | Kuppurao et al. | Aug 2009 | A1 |
20090211525 | Sarigiannis et al. | Aug 2009 | A1 |
20090239386 | Suzaki et al. | Sep 2009 | A1 |
20090242957 | Ma et al. | Oct 2009 | A1 |
20090246374 | Vukovic | Oct 2009 | A1 |
20090261331 | Yang et al. | Oct 2009 | A1 |
20090277510 | Shikata | Nov 2009 | A1 |
20090283041 | Tomiyasu et al. | Nov 2009 | A1 |
20100024727 | Kim et al. | Feb 2010 | A1 |
20100025796 | Dabiran | Feb 2010 | A1 |
20100055312 | Kato et al. | Mar 2010 | A1 |
20100075507 | Chang et al. | Mar 2010 | A1 |
20100124610 | Aikawa et al. | May 2010 | A1 |
20100130017 | Luo et al. | May 2010 | A1 |
20100170441 | Won et al. | Jul 2010 | A1 |
20100193501 | Zucker et al. | Aug 2010 | A1 |
20100230051 | Iizuka | Sep 2010 | A1 |
20100255198 | Cleary et al. | Oct 2010 | A1 |
20100275846 | Kitagawa | Nov 2010 | A1 |
20100294199 | Tran et al. | Nov 2010 | A1 |
20100307415 | Shero et al. | Dec 2010 | A1 |
20100322604 | Fondurulia et al. | Dec 2010 | A1 |
20110000619 | Suh | Jan 2011 | A1 |
20110061810 | Ganguly et al. | Mar 2011 | A1 |
20110070380 | Shero et al. | Mar 2011 | A1 |
20110097901 | Banna et al. | Apr 2011 | A1 |
20110108194 | Yoshioka et al. | May 2011 | A1 |
20110236600 | Fox et al. | Sep 2011 | A1 |
20110239936 | Suzaki et al. | Oct 2011 | A1 |
20110256734 | Hausmann et al. | Oct 2011 | A1 |
20110275166 | Shero et al. | Nov 2011 | A1 |
20110308460 | Hong et al. | Dec 2011 | A1 |
20120024479 | Palagashvili et al. | Feb 2012 | A1 |
20120070997 | Larson | Mar 2012 | A1 |
20120090704 | Laverdiere et al. | Apr 2012 | A1 |
20120098107 | Raisanen et al. | Apr 2012 | A1 |
20120114877 | Lee | May 2012 | A1 |
20120156108 | Fondurulia et al. | Jun 2012 | A1 |
20120160172 | Wamura et al. | Jun 2012 | A1 |
20120240858 | Taniyama et al. | Sep 2012 | A1 |
20120289053 | Holland et al. | Nov 2012 | A1 |
20120295427 | Bauer | Nov 2012 | A1 |
20120304935 | Oosterlaken et al. | Dec 2012 | A1 |
20130023129 | Reed | Jan 2013 | A1 |
20130104988 | Yednak et al. | May 2013 | A1 |
20130104992 | Yednak et al. | May 2013 | A1 |
20130126515 | Shero et al. | May 2013 | A1 |
20130129577 | Halpin et al. | May 2013 | A1 |
20130230814 | Dunn et al. | Sep 2013 | A1 |
20130264659 | Jung | Oct 2013 | A1 |
20130292676 | Milligan et al. | Nov 2013 | A1 |
20130292807 | Raisanen et al. | Nov 2013 | A1 |
20140000843 | Dunn et al. | Jan 2014 | A1 |
20140014644 | Akiba et al. | Jan 2014 | A1 |
20140027884 | Tang et al. | Jan 2014 | A1 |
20140036274 | Marquardt et al. | Feb 2014 | A1 |
20140060147 | Sarin et al. | Mar 2014 | A1 |
20140067110 | Lawson et al. | Mar 2014 | A1 |
20140073143 | Alokozai et al. | Mar 2014 | A1 |
20140084341 | Weeks | Mar 2014 | A1 |
20140103145 | White et al. | Apr 2014 | A1 |
20140120487 | Kaneko | May 2014 | A1 |
20140159170 | Raisanen et al. | Jun 2014 | A1 |
20140175054 | Carlson et al. | Jun 2014 | A1 |
20140217065 | Winkler et al. | Aug 2014 | A1 |
20140220247 | Haukka et al. | Aug 2014 | A1 |
20140251953 | Winkler et al. | Sep 2014 | A1 |
20140251954 | Winkler et al. | Sep 2014 | A1 |
20140346650 | Raisanen et al. | Nov 2014 | A1 |
20150024609 | Milligan et al. | Jan 2015 | A1 |
20150048485 | Tolle | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
1563483 | Jan 2005 | CN |
101330015 | Dec 2008 | CN |
101522943 | Sep 2009 | CN |
101423937 | Sep 2011 | CN |
07283149 | Oct 1995 | JP |
08335558 | Dec 1996 | JP |
2001342570 | Dec 2001 | JP |
2004014952 | Jan 2004 | JP |
2004091848 | Mar 2004 | JP |
2004538374 | Dec 2004 | JP |
2005507030 | Mar 2005 | JP |
2006186271 | Jul 2006 | JP |
2008527748 | Jul 2008 | JP |
1226380 | Jan 2005 | TW |
200701301 | Jan 2007 | TW |
2006056091 | Jun 2006 | WO |
2006078666 | Jul 2006 | WO |
Entry |
---|
USPTO; Final Office Action dated Jul. 14, 2014 in U.S. Appl. No. 12/754,223. |
USPTO; Notice of Allowance dated Jul. 3, 2014 in U.S. Appl. No. 13/102,980. |
USPTO; Office Action dated Jun. 3, 2014 in U.S. Appl. No. 12/854,818. |
USPTO; Non-Final Office Action dated Jul. 2, 2014 in U.S. Appl. No. 13/283,408. |
USPTO; Non-Final Office Action dated Jul. 30, 2014 in U.S. Appl. No. 13/284,642. |
USPTO; Office Action dated Jul. 31, 2014 in U.S. Appl. No. 13/411,271. |
USPTO Final Office Action dated Jul. 8, 2014 in U.S. Appl. No. 13/439,528. |
USPTO; Final Office Action dated Jun. 18, 2014 in U.S. Appl. No. 13/535,214. |
USPTO; Non-Final Office Action dated Aug. 8, 2014 in U.S. Appl. No. 13/563,066. |
USPTO; Non-Final Office Action dated Jul. 10, 2014 in U.S. Appl. No. 13/612,538. |
USPTO; Non-Final Office Action dated Jun. 2, 2014 in U.S. Appl. No. 13/677,151. |
USPTO; Notice of Allowance dated Aug. 13, 2014 in U.S. Appl. No. 13/784,362. |
USPTO; Restriction Requirement dated Jun. 26, 2014 in U.S. Appl. No. 13/874,708. |
USPTO; Non-Final Office Action dated May 29, 2014 in U.S. Appl. No. 14/183,187. |
Chinese Patent Office; Notice on the Third Office Action dated Jul. 1, 2014 in Application No. 201080036764.6. |
Taiwan Patent Office; Office Action dated Jul. 4, 2014 in Application No. 099110511. |
USPTO; Office Action dated Aug. 27, 2010 in U.S. Appl. No. 12/118,596. |
USPTO; Office Action dated Feb. 15, 2011 in U.S. Appl. No. 12/118,596. |
USPTO; Notice of Allowance dated Aug. 4, 2011 in U.S. Appl. No. 12/118,596. |
USPTO; Notice of Allowance dated Jun. 16, 2011 in U.S. Appl. No. 12/430,751. |
USPTO; Notice of Allowance dated Jul. 27, 2011 in U.S. Appl. No. 12/430,751. |
USPTO; Restriction Requirement dated Jan. 15, 2013 in U.S. Appl. No. 12/754,223. |
USPTO; Office Action dated Feb. 26, 2013 in U.S. Appl. No. 12/754,223. |
USPTO; Final Office Action dated Jun. 28, 2013 in U.S. Appl. No. 12/754,223. |
USPTO; Office Action dated Feb. 25, 2014 in U.S. Appl. No. 12/754,223. |
USPTO; Office Action dated Apr. 23, 2013 in U.S. Appl. No. 12/763,037. |
USPTO; Final Office Action dated Oct. 21, 2013 in U.S. Appl. No. 12/763,037. |
USPTO; Restriction Requirement dated Sep. 25, 2012 in U.S. Appl. No. 12/854,818. |
USPTO; Office Action dated Dec. 6, 2012 in U.S. Appl. No. 12/854,818. |
USPTO; Final Office Action dated Mar. 13, 2013 in U.S. Appl. No. 12/854,818. |
USPTO; Office Action dated Aug. 30, 2013 in U.S. Appl. No. 12/854,818. |
USPTO; Final Office Action dated Mar. 26, 2014 in U.S. Appl. No. 12/854,818. |
USPTO; Restriction Requirement dated May 8, 2013 in U.S. Appl. No. 13/102,980. |
USPTO; Office Action dated Oct. 7, 2013 in U.S. Appl. No. 13/102,980. |
USPTO; Final Office Action dated Mar. 25, 2014 in U.S. Appl. No. 13/102,980. |
USPTO; Restriction Requirement dated Dec. 16, 2013 in U.S. Appl. No. 13/284,642. |
USPTO; Restriction Requirement dated Apr. 21, 2014 in U.S. Appl. No. 13/284,642. |
USPTO; Office Action dated Jan. 28, 2014 in U.S. Appl. No. 13/312,591. |
USPTO; Final Office Action dated May 14, 2014 in U.S. Appl. No. 13/312,591. |
USPTO; Office Action dated Jan. 10, 2013 in U.S. Appl. No. 13/339,609. |
USPTO; Office Action dated Feb. 11, 2013 in U.S. Appl. No. 13/339,609. |
USPTO; Final Office Action dated May 17, 2013 in U.S. Appl. No. 13/339,609. |
USPTO; Office Action dated Aug. 29, 2013 in U.S. Appl. No. 13/339,609. |
USPTO; Final Office Action dated Dec. 18, 2013 in U.S. Appl. No. 13/339,609. |
USPTO; Notice of Allowance dated Apr. 7, 2014 in U.S. Appl. No. 13/339,609. |
USPTO; Office Action dated Feb. 13, 2014 in U.S. Appl. No. 13/411,271. |
USPTO; Restriction Requirement dated Oct. 29, 2013 in U.S. Appl. No. 13/439,258. |
USPTO; Office Action dated Mar. 24, 2014 in U.S. Appl. No. 13/439,258. |
USPTO; Office Action dated May 23, 2013 in U.S. Appl. No. 13/465,340. |
USPTO; Final Office Action dated Oct. 30, 2013 in U.S. Appl. No. 13/465,340. |
USPTO; Notice of Allowance dated Feb. 12, 2014 in U.S. Appl. No. 13/465,340. |
USPTO; Office Action dated Dec. 20, 2013 in U.S. Appl. No. 13/535,214. |
USPTO; Office Action dated Nov. 15, 2013 in U.S. Appl. No. 13/612,538. |
USPTO; Office Action dated Apr. 24, 2014 in U.S. Appl. No. 13/784,362. |
USPTO; Restriction Requirement dated May 8, 2014 in U.S. Appl. No. 13/791,246. |
PCT; International Search report and Written Opinion dated Nov. 12, 2010 in Application No. PCT/US2010/030126. |
PCT; International Search report and Written Opinion dated Jan. 12, 2011 in Application No. PCT/US2010/045368. |
PCT; International Search report and Written Opinion dated Feb. 6, 2013 in Application No. PCT/US2012/065343. |
PCT; International Search report and Written Opinion dated Feb. 13, 2013 in Application No. PCT/US2012/065347. |
Chinese Patent Office; Office Action dated Jan. 10, 2013 in U.S. Appl. No. 201080015699.9. |
Chinese Patent Office; Notice on the First Office Action dated May 24, 2013 in Serial No. 201080036764.6. |
Chinese Patent Office; Notice on the Second Office Action dated Jan. 2, 2014 in Serial No. 201080036764.6. |
Japanese Patent Office; Office Action dated Jan. 25, 2014 in Serial No. 2012-504786. |
Chang et al. Small-Subthreshold-Swing and Low-Voltage Flexible Organic Thin-Film Transistors Which Use HfLaO as the Gate Dielectric; IEEE Electron Device Letters; Feb. 2009; 133-135; vol. 30, No. 2; IEEE Electron Device Society. |
Maeng et al. Electrical properties of atomic layer disposition Hf02 and Hf0xNy on Si substrates with various crystal orientations, Journal of the Electrochemical Society, Apr. 2008, p. H267-H271, vol. 155, No. 4, Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Korea. |
Novaro et al. Theoretical Study on a Reaction Pathway of Ziegler-Natta-Type Catalysis, J. Chem. Phys. 68(5), Mar. 1, 1978 p. 2337-2351. |
USPTO; Notice of Allowance dated Jan. 27, 2015 in U.S. Appl. No. 12/763,037. |
USPTO; Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 13/411,271. |
USPTO; Notice of Allowance dated Jan. 20, 2015 in U.S. Appl. No. 13/941,134. |
USPTO; Non-Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 14/563,044. |
Chinese Patent Office; Office Action dated Jan. 12, 2015 in Application No. 201080015699.9. |
Japanese Patent Office; Office Action dated Dec. 1, 2014 in Application No. 2012-504786. |
USPTO; Office Action dated Oct. 8, 2014 in U.S. Appl. No. 12/763,037. |
USPTO; Non-Final Office Action dated Sep. 17, 2014 in U.S. Appl. No. 13/187,300. |
USPTO; Non-Final Office Action dated Nov. 26, 2014 in U.S. Appl. No. 13/312,591. |
UPPTO; Notice of Allowance dated Oct. 21, 2014 in U.S. Appl. No. 13/439,528. |
USPTO; Notice of Allowance dated Oct. 23, 2014 in U.S. Appl. No. 13/535,214. |
USPTO; Non-Final Office Action dated Oct. 15, 2014 in U.S. Appl. No. 13/597,043. |
USPTO; Final Office Action dated Nov. 14, 2014 in U.S. Appl. No. 13/677,151. |
USPTO; Non-Final Office Action dated Oct. 9, 2014 in U.S. Appl. No. 13/874,708. |
USPTO; Non-Final Office Action dated Sep. 19, 2014 in U.S. Appl. No. 13/791,246. |
USPTO; Non-Final Office Action dated Sep. 12, 2014 in U.S. Appl. No. 13/941,134. |
USPTO; Final Office Action dated Nov. 7, 2014 in U.S. Appl. No. 14/183,187. |
Chinese Patent Office; Notice on the Second Office Action dated Sep. 16, 2014 in Application No. 201110155056. |
Koutsokeras et al. Texture and Microstructure Evolution in Single-Phase TixTal-xN Alloys of Rocksalt Structure. Journal of Applied Physics, 110, pp. 043535-1-043535-6, (2011). |
USPTO; Final Office Action dated Jan. 29, 2015 in U.S. Appl. No. 13/283,408. |
UPSTO; Notice of Allowance dated Feb. 11, 2015 in U.S. Appl. No. 13/284,642. |
USPTO; Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/563,066. |
USPTO; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/597,108. |
USPTO; Notice of Allowance dated Feb. 26, 2015 in U.S. Appl. No. 13/677,151. |
USPTO; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 14/457,058. |
Chinese Patent Office; Notice on the Third Office Action dated Feb. 9, 2015 in Application No. 201110155056. |
Taiwan Patent Office; Office Action dated Dec. 30, 2014 in Application No. 099114330. |
Taiwan Patent Office; Office Action dated Dec. 19, 2014 in Application No. 099127063. |
Number | Date | Country | |
---|---|---|---|
20150024609 A1 | Jan 2015 | US |