Semiconductor reaction chamber with plasma capabilities

Abstract
A processing chamber including a reaction chamber having a processing area, a processing gas inlet in communication with the processing area, a first excited species generation zone in communication with the processing gas inlet and a second exited species generation zone in communication with the processing gas inlet. A method of processing a substrate including the steps of loading a substrate within a processing area, activating a first excited species generation zone to provide a first excited species precursor to the processing area during a first pulse and, activating a second excited species generation zone to provide a second excited species precursor different from the first excited species precursor to the processing area during a second pulse.
Description
FIELD OF THE DISCLOSURE

This disclosure relates generally to semiconductor processing, and more particularly to an apparatus and method for providing an excited species of a processing gas to a substrate or wafer in a reaction chamber.


BACKGROUND

Semiconductor fabrication processes are typically conducted with the substrates supported within a chamber under controlled conditions. For many purposes, semiconductor substrates (e.g., wafers) are heated inside the process chamber. For example, substrates can be heated by direct physical contact with an internally heated wafer holder or “chuck.” “Susceptors” are wafer supports used in systems where the wafer and susceptors absorb heat.


Some of the important controlled conditions for processing include, but are not limited to, pressure of the chamber, fluid flow rate into the chamber, temperature of the reaction chamber, temperature of the fluid flowing into the reaction chamber, and wafer position on the susceptor during wafer loading.


Heating within the reaction chamber can occur in a number of ways, including lamp banks or arrays positioned above the substrate surface for directly heating the susceptor or susceptor heaters/pedestal heaters positioned below the susceptor. Traditionally, the pedestal style heater extends into the chamber through a bottom wall and the susceptor is mounted on a top surface of the heater. The heater may include a resistive heating element enclosed within the heater to provide conductive heat and increase the susceptor temperature.


Consistent processing and consistent results generally require careful control and metering of processing gases in the system. One of the last resorts for controlling the processing gas is at the showerhead where the processing gas then contacts the wafer in the reaction chamber. Further, obtaining optimal flow rates and uniformity may be difficult at times due to showerhead holes becoming clogged or parasitic precursor reactions occurring within the showerhead.


Plasma based reactors may use direct plasma integral to the reactor or remote plasma positioned upstream of the reactor. Direct plasma can create a more intense and effective plasma but may also damage the substrate. Conversely, remote plasma reduces the risk of damage to the substrate but may suffer from the excited species being less active and therefore not properly reacting with a film on the substrate.


SUMMARY

Various aspects and implementations are disclosed herein that relate to a reaction chamber with plasma capabilities for processing a wafer. In one aspect, a processing chamber includes a reaction chamber having a processing area, a processing gas inlet in communication with the processing area, a first excited species generation zone in communication with the processing gas inlet and a second exited species generation zone in communication with the processing gas inlet.


In one implementation, the first and second excited species generation zones may be in communication with each other. The first and second excited species generation zones may be selectively in communication with each other. A valve may be positioned between the first excited species generation zone and the processing gas inlet. A valve may be positioned between the second excited species generation zone and the processing gas inlet. The first and second excited species generation zones may be non-co-axial.


The first and second excited species generation zones may be co-axially aligned. The first and second excited species generation zones may generate combustibly incompatible excited precursors. The first excited species generation zone may excite a fluorine-based chemistry and the second excited species generation zone may excite a chlorine-based chemistry. The first and second excited species generation zones may each further include an inductively coupled plasma generator. The first and second excited species generation zones inductively coupled plasma generators are each separately controlled. The first and second excited species generation zones may each further include a capacitively coupled plasma generator. The first and second excited species generation zones capacitively coupled plasma generators are each separately controlled.


The processing chamber may further include an inert gas flow positioned between the first and second excited species generation zones. The first and second excited species generation zones may be separated by inert gas valves. The first and second excited species generation zones may be at least partially composed of alumina or quartz. The first and second excited species generation zones may be energized with a single coil.


In another aspect, a method of processing a substrate may include the steps of loading a substrate within a processing area, activating a first excited species generation zone to provide a first excited species precursor to the processing area during a first pulse and, activating a second excited species generation zone to provide a second excited species precursor different from the first excited species precursor to the processing area during a second pulse.


In an implementation, the first and second excited species generation zones are different generation zones.


In another aspect, the method of delivering a plurality of precursors to a processing area may include the steps of providing a first and second excited species generation zones in communication with the processing area, selectively flowing a first precursor through the first excited species generation zone while exciting the first excited species generation zone, and selectively flowing a second precursor through the second excited species generation zone while exciting the second species generation zone.


This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a schematic sectional view of a reaction chamber with dual plasma generation regions.



FIG. 2 illustrates a schematic sectional view of the dual plasma generation regions.



FIG. 3 illustrates a schematic sectional view of the dual plasma generation regions.



FIG. 4 illustrates a schematic sectional view of the dual plasma generation regions



FIG. 5 illustrates a schematic sectional view of a second aspect dual plasma generation regions.



FIG. 6 illustrates a top schematic sectional view of the second aspect dual plasma generation regions taken generally about line 6-6 in FIG. 5.



FIG. 7 illustrates a schematic sectional view of the second aspect dual plasma generation regions.



FIG. 8 illustrates a schematic sectional view of the second aspect dual plasma generation regions.



FIG. 9 illustrates a schematic sectional view of a third aspect dual plasma generation regions.



FIG. 10 illustrates a top schematic sectional view of a third aspect dual plasma generation regions.



FIG. 11 illustrates an enlarged schematic sectional view of a fourth aspect dual plasma generation regions.





DETAILED DESCRIPTION

The present aspects and implementations may be described in terms of functional block components and various processing steps. Such functional blocks may be realized by any number of hardware or software components configured to perform the specified functions and achieve the various results. For example, the present aspects may employ various sensors, detectors, flow control devices, heaters, and the like, which may carry out a variety of functions. In addition, the present aspects and implementations may be practiced in conjunction with any number of processing methods, and the apparatus and systems described may employ any number of processing methods, and the apparatus and systems described are merely examples of applications of the invention.



FIG. 1 illustrates a processing chamber 18 with a reaction chamber 20 having an upper chamber 22 and a lower chamber 24. Upper chamber 22 includes a showerhead 26, while lower chamber 24 generally includes a susceptor assembly 28 as may be commonly known in the art to receive wafer 30 for loading, unloading, and processing. While the present disclosure illustrates and describes a showerhead 26 in a split chamber with upper and lower sections, it is within the spirit and scope of the present disclosure to incorporate showerhead 26 in a non-split chamber reactor or a cross-flow reactor without a showerhead. As is also commonly known, showerhead 26 is fed with an inlet manifold 32 (or manifold port injectors or other suitable injecting means in a cross-flow reactor) so that gas flow within the reactor is represented by arrows 33.


Inlet manifold 32 may include a valve 34 which is commonly known in precursor delivery systems and may be a standard pneumatic valve, a mechanical valve, an inert gas valve, or any other suitable valve mechanism. Upstream of valve 34 may be a separation pipe 36 in some implementations with additional valves 38 and 40 similar to valve 34 which function to selectively isolate the various precursor inlets from each other. While not specifically shown, additional purge or vacuum ports and/or lines may be oriented downstream of valves 38 and 40 to assist with purging the separation pipe 36 and inlet manifold 32. Valves 34, 38, and 40 may be separately controlled with a controller 42 via control lines 44, 46, and 48 respectively or any other suitable controlling system.


Precursor A 50 passes through an outlet pipe 52 upstream of valve 38, while Precursor B 54 passes through outlet pipe 56 upstream of valve 40. Precursor A 50 passes through a first excited species generation zone 58 while Precursor B 54 passes through a second excited species generation zone 60. As can be seen proper valves may be used to isolate the first and second excited species generation zones 58 and 60 so that a reaction between the precursors flowing through each of the respective excited species generation zones can be prevented.


Each of first and second excited species generation zones 58 and 60 may include a Faraday shield 62 on an outer periphery of each zone. First excited species generation zone 58 may include control lines 64 and 66, while second excited species generation zone 60 may include control lines 68 and 70 The various control lines 64, 66, 68, and 70 connect to an excited species generation controller 72 as will be described in greater detail below.



FIG. 2 illustrates sectional views of first and second excited species generation zones 58, 60. Both first and second excited species generation zones 58 and 60 include the faraday shield 62, a safety sheath 74, an electrical coil 76, and a generation zone tubing 78. A cooling region 80 is formed between safety sheath 74 and generation zone tubing 78 to provide a cooled inert gas flow to contact and maintain a proper operating temperature of the electrical coil 76 position therein. Generation zone tubing 78 includes an opening 82 therein for receiving Precursor A 50 or Precursor B depending on which excited species generation zone the tubing is positioned in. Advantageously, opening 82 is in fluid communication with appropriate precursor bottles to supply the processing gas and outlet pipe 52 or 56 before passing though gate valves 38 or 40 and ultimately gate valve 34 before reaching the reactor chamber. Generation zone tubing 78 may be composed of any suitable material for the precursors that will be utilized within opening 82. For example, when precursors that incorporate fluorine, oxygen, or hydrogen are utilized the generation zone tubing may be alumina, while when the precursors that incorporate chlorine, oxygen, or silicon chloride are utilized the generation zone tubing may be quartz. The key is that the etch or deposition chemistries are compatible with the generation zone tubing material without unwanted reactions or particle generation. Electrical coil 76 is connected to control lines 64, 66 or 68, 70 (as appropriate) to provide electrical current at the excited species generation zones to form a magnetic field and form an excited species within the appropriate opening 82 for Precursor A 50 or Precursor B 54.


Referring now to controller 72, a powering and matching circuit 84 are shown within controller 72 while a switching circuit 86 may also be incorporated within controller 72 and operated by a processing chamber controller (not shown) in accordance with an appropriate processing recipe or program. Power and matching circuit 84 is designed to provide the proper impedance and power to electrical coils 76 to generate an adequate enough excited species within the appropriate generation zone tubing 78 that the excited species can be moved with an inert gas through the gate valves, the showerhead, and finally the wafer surface. It is also further conceived that each of the first and second exited species generation zones may need different or variable power in which case controller 72 may be regulated to provide this variable current as needed and the power circuit may utilize RF or any other suitable mechanism for power. Referring back to valves 34, 38, and 40, actuators 88 are positioned in each valve and are electrically or pneumatically controlled to open or close depending on the process step being performed. One of skill in the art will immediately appreciate that any suitable mechanism may be incorporated to prevent/permit gas flow through the valves, including actuators 88 or any other device or method known in the art. Preferably, the valves will be capable of high radical conductance to limit and/or prevent the loss of excited species.



FIG. 3 illustrates Precursor A 50 being directed through generation zone tubing 78 as indicated by arrows 90, while FIG. 4 illustrates Precursor B 54 being directed through generation zone tubing 78 as indicated by arrows 92. In FIG. 3, when Precursor A 50 is necessary for wafer processing, gate valve 40 remains in the closed position while gate valve 38 and gate valve 34 open in the directions associated with arrows 94 after an appropriate amount of energy has been transferred to the precursor through coil 76. Similarly, when Precursor B 54 is necessary for wafer processing, gate valve 38 remains in the closed position while gate valve 40 and gate valve 34 open in the direction associated with arrows 94 after an appropriate amount of energy has been transferred to the precursor through coil 76.


In operation, the processes shown in FIGS. 3 and 4 are performed separately so that the precursors, whether excited or not, do not meet. In some instances if the precursors were to mix severe damage would result. Further, the excited species generation zones may be separated from one another so that even though both excited species generation zones are being provided with activated species, only one of the activated species, or neither during a chamber purging step, reach the reaction chamber. In another implementation, the switching circuit 86 may be used to selectively activate only one appropriate excited species generation zone at a time to reduce power consumption. Finally, as can be seen in FIG. 4, the first and second excited species generation zones may be offset from one another and non-coaxial in one implementation.



FIGS. 5 through 8 illustrate a second embodiment of first and second excited species generation regions 96 within a single faraday shield 62. In this second implementation, Precursor A 50 and Precursor B 54 are positioned co-axial with each other and share the same excited species generation source or electrical coil 76 and safety sheath 74. Again, similar to the previous implementation, cooling inert gas may flow over electrical coil 76 through cooling region 80. The second implementation 96 may also directly incorporate inert gas flow 98 through both the first and second excited species generation zones to direct the respective excited species precursor to the reaction chamber.


In the disclosed second implementation 96, Precursor B 54 is flowing through an outer region 100 formed by region walls 102 and 104 which may be formed in the shape of a cylinder formed from a material which is complimentary and compatible with the precursor (alumina or quartz by way of non-limiting example). A gap 106 may be positioned radially inward of region wall 104 while region wall 108 forms a central opening 110. Region wall 108 is also preferably formed from a material which is complimentary and compatible with the precursor used therein and may be, by way of non-limiting example, alumina or quartz.



FIG. 7 illustrates Precursor A 50 being activated and moving through central opening 110 as indicated by arrows 112. Precursor A 50 may be moved through the first excited species generation zone with inert gas 98 and may leave the first excited species generation zone because a gate valve is opened to permit communication between the central opening 110 and reaction chamber 20. Arrows 114 indicate the flow path of Precursor B 54 and a gate valve blocking the flow so that Precursor B 54 within the second exited species generation zone cannot leave outer region 100. Thus, a selectively excited precursor can be provided to the reaction chamber on a selective basis with non-compatible precursors.



FIG. 8 illustrates Precursor B 54 being activated and moving through outer region 100 as indicated by arrows 116. Precursor B 54 may be moved through the second excited species generation zone with inert gas 98 and may leave the second excited species generation zone because a gate valve is opened to permit communication between the outer region 100 and reaction chamber 20. Arrows 118 indicate the flow path of Precursor A 50 and a gate valve blocking the flow so that Precursor A 50 within the first excited species generation zone cannot leave central opening 110. In operation, Precursor A 50 will be provided to the reaction chamber 20 without Precursor B 54 and then Precursor B54 will be provided to the reaction chamber 20 without Precursor A 50 in a cyclical process during an etching or deposition process. In this manner, incompatible precursors may be utilized within the reaction chamber without damage or danger.



FIGS. 9 and 10 illustrate views of a third implementation excited species generation zone 120 with a capacitively coupled plasma generator instead of an inductively coupled plasma generator as shown and described above. Once again, region walls 102 and 104 may be cylindrical in shape and define an outer region 100 where Precursor A 50 may be excited and then selectively provided to reaction chamber 20. The plasma generator may include an inner electrode 122 and an outer electrode 124 which are connected to control lines 64 and 66 respectively. In operation, the capacitively coupled plasma inner electrode 122 and outer electrode 124 are activated by controller 72 and may selectively excite Precursor A 50 before flowing the precursor into the reaction chamber 20 for a deposition or etching process. Functionally, the third implementation excited species generation zone 120 is similar to the previously described embodiments with the exception of incorporating a capacitively coupled generator instead of an inductively coupled generator. Further, the third implementation excited species generation zone 120 may utilize non-coaxially arranged generation zones similar to the first aspect and a second excited species generation zone 120 may be positioned in selective communication with the reaction chamber in a similar manner to those previously described without departing from the spirit and scope of the present disclosure.



FIG. 11 illustrates a fourth implementation of an excited species generation zone 126 with faraday shield 62 and safety sheath 74. Similar to previous capacitively coupled plasma generators, inner electrode 122 and outer electrode 124 are positioned inside and outside, respectively, of the precursor regions. An outer region 128 is formed by a first wall 130 and a second wall 132 with a precursor flowing between the two walls. An inner region 134 is formed by a third wall 136 and a four wall 138. Walls 130, 132, 136, and 138 may be formed of any suitable material (alumina, quartz, etc.) depending on the precursor in contact with those particular walls. In operation, a single capacitively coupled plasma generator can excite precursor in both inner region 134 and outer region 128 and the flow of those excited species is controlled by gate valves. Alternatively, separate capacitively coupled plasma generators may be utilized for each separate precursor and the flow of excited species of each precursor can be independently controlled through gate valves or based on plasma operation.


In operation, a wafer 30 is loaded on susceptor 28 and a first precursor is activated or excited within one of the first or second excited species generation zones before passing through the necessary gate valves and into the reaction chamber through showerhead 26. At the same time, the second precursor may be retained within the other of the excited species generation zones until the gate valves are opened to permit passage there through. Next, the first precursor flow is stopped with gate valves and the second excited precursor or an inert gas may be provided to the reaction chamber. Since multiple implementations of a plasma generator are shown and described, a single CCP or ICP may be operated continuously to maintain an excited species in both excited species generation zones or separate CCPs and ICPs may be utilized and triggered just before the excited species is needed in the reaction chamber. In this manner, the inlet manifold and reaction chamber can selectively receive excited species of any number of precursors without the precursors coming in contact with each other during processing. Thus it is seen that incompatible excited precursors may be utilized to process a wafer or to etch a reaction chamber by selectively flowing excited species activated in separate plasma generating zones.


These and other embodiments for methods and apparatus for a reaction chamber with dual plasma generation regions therein may incorporate concepts, embodiments, and configurations as described with respect to embodiments of apparatus for measuring devices described above. The particular implementations shown and described are illustrative of the invention and its best mode and are not intended to otherwise limit the scope of the aspects and implementations in any way. Indeed, for the sake of brevity, conventional manufacturing, connection, preparation, and other functional aspects of the system may not be described in detail. Furthermore, any connecting lines shown in the various figures are intended to represent exemplary functional relationships and/or physical couplings between the various elements. Many alternative or additional functional relationship or physical connections may be present in the practical system, and/or may be absent in some embodiments. Further, various aspects and implementations of other designs may be incorporated within the scope of the disclosure.


As used herein, the terms “comprises”, “comprising”, or any variation thereof, are intended to reference a non-exclusive inclusion, such that a process, method, article, composition or apparatus that comprises a list of elements does not include only those elements recited, but may also include other elements not expressly listed or inherent to such process, method, article, composition or apparatus. Other combinations and/or modifications of the above-described structures, arrangements, applications, proportions, elements, materials or components used in the practice of the present invention, in addition to those not specifically recited, may be varied or otherwise particularly adapted to specific environments, manufacturing specifications, design parameters or other operating requirements without departing from the general principles of the same.

Claims
  • 1. A processing chamber comprising: a reaction chamber having a processing area;a processing gas inlet in communication with the processing area;a first excited species generation zone in communication with the processing gas inlet; and,a second excited species generation zone in communication with the processing gas inlet,wherein the first and second excited species generation zones are selectively in communication with each other.
  • 2. The processing chamber of claim 1 wherein the first and second excited species generation zones are in communication with each other.
  • 3. The processing chamber of claim 1 wherein a valve is positioned between the first excited species generation zone and the processing gas inlet.
  • 4. The processing chamber of claim 1 wherein a valve is positioned between the second excited species generation zone and the processing gas inlet.
  • 5. The processing chamber of claim 1 wherein the first and second excited species generation zones are non-co-axial.
  • 6. The processing chamber of claim 1 wherein the first and second excited species generation zones are co-axially aligned.
  • 7. The processing chamber of claim 1 wherein the first and second excited species generation zones generate combustibly incompatible precursors.
  • 8. The processing chamber of claim 1 wherein the first excited species generation zone excites a fluorine-based chemistry and the second excited species generation zone excites a chlorine-based chemistry.
  • 9. The processing chamber of claim 1 wherein the first and second excited species generation zones each further comprise an inductively coupled plasma generator.
  • 10. The processing chamber of claim 9 wherein the first and second excited species generation zones inductively coupled plasma generators are each separately controlled.
  • 11. The processing chamber of claim 1 wherein the first and second excited species generation zones each further comprise a capacitively coupled plasma generator.
  • 12. The processing chamber of claim 11 wherein the first and second excited species generation zones capacitively coupled plasma generators are each separately controlled.
  • 13. The processing chamber of claim 1 further comprising an inert gas flow positioned between the first and second excited species generation zones.
  • 14. The processing chamber of claim 1 wherein the first and second excited species generation zones are separated by inert gas valves.
  • 15. The processing chamber of claim 1 wherein the first and second excited species generation zones are at least partially composed of alumina or quartz.
  • 16. The processing chamber of claim 1 wherein the first and second excited species generation zones are energized with a single coil.
  • 17. A processing chamber comprising: a reaction chamber having a processing area;a processing gas inlet in communication with the processing area;a first excited species generation zone in communication with the processing gas inlet; and,a second excited species generation zone in communication with the processing gas inlet,wherein the first and second excited species generation zones each further comprise an inductively coupled plasma generator or a capactively coupled plasma generator,wherein the first and second excited species generation zones inductively coupled plasma generators are each separately controlled, orwherein the first and second excited species generation zones capacitively coupled plasma generators are each separately controlled.
  • 18. The processing chamber of claim 17 wherein the first and second excited species generation zones are co-axially aligned.
  • 19. The processing chamber of claim 17 wherein the first and second excited species generation zones are non-co-axial.
  • 20. A processing chamber comprising: a reaction chamber having a processing area;a processing gas inlet in communication with the processing area;a first excited species generation zone in communication with the processing gas inlet; and,a second excited species generation zone in communication with the processing gas inlet,wherein the first and second excited species generation zones are co-axially aligned.
  • 21. The processing chamber of claim 20, wherein the first excited species zone and the second excited species zone share an excited species generation source.
  • 22. The processing chamber of claim 20, further comprising an inlet gas flow through the first excited species generation zone and the second excited species generation zone.
US Referenced Citations (357)
Number Name Date Kind
2745640 Cushman May 1956 A
2990045 Root Sep 1959 A
3833492 Bollyky Sep 1974 A
3854443 Baerg Dec 1974 A
3862397 Anderson et al. Jan 1975 A
3887790 Ferguson Jun 1975 A
4058430 Suntola et al. Nov 1977 A
4176630 Elmer Dec 1979 A
4194536 Stine et al. Mar 1980 A
4389973 Suntola et al. Jun 1983 A
4393013 McMenamin Jul 1983 A
4436674 McMenamin Mar 1984 A
4570328 Price et al. Feb 1986 A
4653541 Oehlschlaeger et al. Mar 1987 A
4722298 Rubin et al. Feb 1988 A
4735259 Vincent Apr 1988 A
4753192 Goldsmith et al. Jun 1988 A
4789294 Sato et al. Dec 1988 A
4821674 deBoer et al. Apr 1989 A
4827430 Aid et al. May 1989 A
4991614 Hammel Feb 1991 A
5062386 Christensen Nov 1991 A
5119760 McMillan et al. Jun 1992 A
5167716 Boitnott et al. Dec 1992 A
5199603 Prescott Apr 1993 A
5221556 Hawkins et al. Jun 1993 A
5242539 Kumihashi et al. Sep 1993 A
5243195 Nishi Sep 1993 A
5326427 Jerbic Jul 1994 A
5380367 Bertone Jan 1995 A
5595606 Fujikawa et al. Jan 1997 A
5632919 MacCracken et al. May 1997 A
5730801 Tepman Mar 1998 A
5732744 Barr et al. Mar 1998 A
5736314 Hayes et al. Apr 1998 A
5796074 Edelstein et al. Aug 1998 A
5836483 Disel Nov 1998 A
5855680 Soininen et al. Jan 1999 A
5979506 Aarseth Nov 1999 A
6013553 Wallace Jan 2000 A
6015465 Kholodenko et al. Jan 2000 A
6060691 Minami et al. May 2000 A
6074443 Venkatesh Jun 2000 A
6083321 Lei et al. Jul 2000 A
6086677 Umotoy et al. Jul 2000 A
6122036 Yamasaki et al. Sep 2000 A
6125789 Gupta et al. Oct 2000 A
6129044 Zhao et al. Oct 2000 A
6148761 Majewski et al. Nov 2000 A
6161500 Kopacz et al. Dec 2000 A
6201999 Jevtic Mar 2001 B1
6274878 Li et al. Aug 2001 B1
6287965 Kang et al. Sep 2001 B1
6302964 Umotoy et al. Oct 2001 B1
6312525 Bright et al. Nov 2001 B1
6326597 Lubomirsky et al. Dec 2001 B1
6342427 Choi et al. Jan 2002 B1
6367410 Leahey et al. Apr 2002 B1
6368987 Kopacz et al. Apr 2002 B1
6410459 Blalock et al. Jun 2002 B2
6420279 Ono et al. Jul 2002 B1
6454860 Metzner et al. Sep 2002 B2
6478872 Chae et al. Nov 2002 B1
6482331 Lu et al. Nov 2002 B2
6483989 Okada et al. Nov 2002 B1
6511539 Raaijmakers Jan 2003 B1
6534395 Werkhoven et al. Mar 2003 B2
6569239 Arai et al. May 2003 B2
6590251 Kang et al. Jul 2003 B2
6594550 Okrah Jul 2003 B1
6598559 Vellore et al. Jul 2003 B1
6627503 Ma et al. Sep 2003 B2
6633364 Hayashi Oct 2003 B2
6648974 Ogliari et al. Nov 2003 B1
6682973 Paton et al. Jan 2004 B1
6709989 Ramdani et al. Mar 2004 B2
6710364 Guldi et al. Mar 2004 B2
6734090 Agarwala et al. May 2004 B2
6820570 Kilpela et al. Nov 2004 B2
6821910 Adomaitis et al. Nov 2004 B2
6824665 Shelnut et al. Nov 2004 B2
6847014 Benjamin et al. Jan 2005 B1
6858547 Metzner Feb 2005 B2
6863019 Shamouilian Mar 2005 B2
6874480 Ismailov Apr 2005 B1
6875677 Conley, Jr. et al. Apr 2005 B1
6884066 Nguyen et al. Apr 2005 B2
6889864 Lindfors et al. May 2005 B2
6909839 Wang et al. Jun 2005 B2
6930059 Conley, Jr. et al. Aug 2005 B2
6935269 Lee et al. Aug 2005 B2
6955836 Kumagai et al. Oct 2005 B2
7045430 Ahn et al. May 2006 B2
7053009 Conley, Jr. et al. May 2006 B2
7071051 Jeon et al. Jul 2006 B1
7115838 Kurara et al. Oct 2006 B2
7122085 Shero et al. Oct 2006 B2
7129165 Basol et al. Oct 2006 B2
7132360 Schaeffer et al. Nov 2006 B2
7135421 Ahn et al. Nov 2006 B2
7147766 Uzoh et al. Dec 2006 B2
7172497 Basol et al. Feb 2007 B2
7192824 Ahn et al. Mar 2007 B2
7192892 Ahn et al. Mar 2007 B2
7195693 Cowans Mar 2007 B2
7204887 Kawamura et al. Apr 2007 B2
7205247 Lee et al. Apr 2007 B2
7235501 Ahn et al. Jun 2007 B2
7312494 Ahn et al. Dec 2007 B2
7329947 Adachi et al. Feb 2008 B2
7357138 Ji et al. Apr 2008 B2
7393736 Ahn et al. Jul 2008 B2
7402534 Mahajani Jul 2008 B2
7405166 Liang et al. Jul 2008 B2
7405454 Ahn et al. Jul 2008 B2
7414281 Fastow Aug 2008 B1
7437060 Wang et al. Oct 2008 B2
7442275 Cowans Oct 2008 B2
7489389 Shibazaki Feb 2009 B2
7547363 Tomiyasu et al. Jun 2009 B2
7601223 Lindfors et al. Oct 2009 B2
7601225 Tuominen et al. Oct 2009 B2
7640142 Tachikawa et al. Dec 2009 B2
7651583 Kent et al. Jan 2010 B2
D614153 Fondurulia et al. Apr 2010 S
7720560 Menser et al. May 2010 B2
7723648 Tsukamoto et al. May 2010 B2
7740705 Li Jun 2010 B2
7780440 Shibagaki et al. Aug 2010 B2
7833353 Furukawahara et al. Nov 2010 B2
7851019 Tuominen et al. Dec 2010 B2
7884918 Hattori Feb 2011 B2
8041197 Kasai et al. Oct 2011 B2
8055378 Numakura Nov 2011 B2
8071451 Uzoh Dec 2011 B2
8071452 Raisanen Dec 2011 B2
8072578 Yasuda Dec 2011 B2
8076230 Wei Dec 2011 B2
8076237 Berry Dec 2011 B2
8082946 Laverdiere et al. Dec 2011 B2
8092604 Tomiyasu et al. Jan 2012 B2
8137462 Fondurulia et al. Mar 2012 B2
8147242 Shibagaki et al. Apr 2012 B2
8216380 White et al. Jul 2012 B2
8278176 Bauer et al. Oct 2012 B2
8282769 Iizuka Oct 2012 B2
8287648 Reed et al. Oct 2012 B2
8293016 Bahng et al. Oct 2012 B2
8309173 Tuominen et al. Nov 2012 B2
8367528 Bauer et al. Feb 2013 B2
8444120 Gregg et al. May 2013 B2
8608885 Goto et al. Dec 2013 B2
8683943 Onodera et al. Apr 2014 B2
8711338 Liu et al. Apr 2014 B2
8726837 Patalay et al. May 2014 B2
8728832 Raisanen et al. May 2014 B2
8802201 Raisanen et al. Aug 2014 B2
8877655 Shero et al. Nov 2014 B2
8883270 Shero et al. Nov 2014 B2
20020001974 Chan Jan 2002 A1
20020011210 Satoh et al. Jan 2002 A1
20020064592 Datta et al. May 2002 A1
20020098627 Pomarede et al. Jul 2002 A1
20020108670 Baker et al. Aug 2002 A1
20020115252 Haukka et al. Aug 2002 A1
20020172768 Endo et al. Nov 2002 A1
20020187650 Blalock et al. Dec 2002 A1
20030019580 Strang Jan 2003 A1
20030025146 Narwankar et al. Feb 2003 A1
20030042419 Katsumata et al. Mar 2003 A1
20030066826 Lee et al. Apr 2003 A1
20030075925 Lindfors et al. Apr 2003 A1
20030111963 Tolmachev et al. Jun 2003 A1
20030141820 White et al. Jul 2003 A1
20030228772 Cowans Dec 2003 A1
20030232138 Tuominen et al. Dec 2003 A1
20040013577 Ganguli et al. Jan 2004 A1
20040023516 Londergan et al. Feb 2004 A1
20040077182 Lim et al. Apr 2004 A1
20040144980 Ahn et al. Jul 2004 A1
20040168627 Conley et al. Sep 2004 A1
20040169032 Murayama et al. Sep 2004 A1
20040198069 Metzner et al. Oct 2004 A1
20040200499 Harvey et al. Oct 2004 A1
20040219793 Hishiya et al. Nov 2004 A1
20040221807 Verghese et al. Nov 2004 A1
20040266011 Lee et al. Dec 2004 A1
20050008799 Tomiyasu et al. Jan 2005 A1
20050019026 Wang et al. Jan 2005 A1
20050020071 Sonobe et al. Jan 2005 A1
20050023624 Ahn et al. Feb 2005 A1
20050054228 March Mar 2005 A1
20050066893 Soininen Mar 2005 A1
20050070123 Hirano Mar 2005 A1
20050072357 Shero et al. Apr 2005 A1
20050092249 Kilpela et al. May 2005 A1
20050100669 Kools et al. May 2005 A1
20050106893 Wilk May 2005 A1
20050110069 Kil et al. May 2005 A1
20050173003 Laverdiere et al. Aug 2005 A1
20050187647 Wang et al. Aug 2005 A1
20050212119 Shero Sep 2005 A1
20050214457 Schmitt et al. Sep 2005 A1
20050214458 Meiere Sep 2005 A1
20050218462 Ahn et al. Oct 2005 A1
20050229972 Hoshi et al. Oct 2005 A1
20050241176 Shero et al. Nov 2005 A1
20050263075 Wang et al. Dec 2005 A1
20050271813 Kher et al. Dec 2005 A1
20050282101 Adachi Dec 2005 A1
20060013946 Park et al. Jan 2006 A1
20060014384 Lee et al. Jan 2006 A1
20060019033 Muthukrishnan et al. Jan 2006 A1
20060024439 Tuominen et al. Feb 2006 A2
20060046518 Hill et al. Mar 2006 A1
20060051925 Ahn et al. Mar 2006 A1
20060060930 Metz et al. Mar 2006 A1
20060062910 Meiere Mar 2006 A1
20060063346 Lee et al. Mar 2006 A1
20060110934 Fukuchi May 2006 A1
20060113675 Chang et al. Jun 2006 A1
20060128168 Ahn et al. Jun 2006 A1
20060148180 Ahn et al. Jul 2006 A1
20060193979 Meiere et al. Aug 2006 A1
20060208215 Metzner et al. Sep 2006 A1
20060213439 Ishizaka Sep 2006 A1
20060223301 Vanhaelemeersch et al. Oct 2006 A1
20060226117 Bertram et al. Oct 2006 A1
20060228888 Lee et al. Oct 2006 A1
20060240574 Yoshie Oct 2006 A1
20060257563 Doh et al. Nov 2006 A1
20060258078 Lee et al. Nov 2006 A1
20060266289 Verghese et al. Nov 2006 A1
20070010072 Bailey et al. Jan 2007 A1
20070020953 Tsai et al. Jan 2007 A1
20070022954 Iizuka et al. Feb 2007 A1
20070028842 Inagawa et al. Feb 2007 A1
20070031598 Okuyama et al. Feb 2007 A1
20070031599 Gschwandtner et al. Feb 2007 A1
20070037412 Dip et al. Feb 2007 A1
20070042117 Kupurao et al. Feb 2007 A1
20070049053 Mahajani Mar 2007 A1
20070054405 Jacobs et al. Mar 2007 A1
20070059948 Metzner et al. Mar 2007 A1
20070065578 McDougall Mar 2007 A1
20070066010 Ando Mar 2007 A1
20070077355 Chacin et al. Apr 2007 A1
20070084405 Kim Apr 2007 A1
20070116873 Li et al. May 2007 A1
20070134942 Ahn et al. Jun 2007 A1
20070146621 Yeom Jun 2007 A1
20070155138 Tomasini et al. Jul 2007 A1
20070166457 Yamoto et al. Jul 2007 A1
20070175397 Tomiyasu et al. Aug 2007 A1
20070209590 Li Sep 2007 A1
20070232501 Tonomura Oct 2007 A1
20070249131 Allen et al. Oct 2007 A1
20070252244 Srividya et al. Nov 2007 A1
20070264807 Leone et al. Nov 2007 A1
20080006208 Ueno et al. Jan 2008 A1
20080029790 Ahn et al. Feb 2008 A1
20080054332 Kim et al. Mar 2008 A1
20080057659 Forbes et al. Mar 2008 A1
20080075881 Won et al. Mar 2008 A1
20080085226 Fondurulia et al. Apr 2008 A1
20080113096 Mahajani May 2008 A1
20080113097 Mahajani et al. May 2008 A1
20080124908 Forbes et al. May 2008 A1
20080149031 Chu et al. Jun 2008 A1
20080176375 Erben et al. Jul 2008 A1
20080216077 Emani et al. Sep 2008 A1
20080224240 Ahn et al. Sep 2008 A1
20080233288 Clark Sep 2008 A1
20080261413 Mahajani Oct 2008 A1
20080282970 Heys et al. Nov 2008 A1
20080315292 Ji et al. Dec 2008 A1
20090000550 Tran et al. Jan 2009 A1
20090011608 Nabatame Jan 2009 A1
20090020072 Mizunaga et al. Jan 2009 A1
20090029564 Yamashita et al. Jan 2009 A1
20090035947 Horii Feb 2009 A1
20090061644 Chiang et al. Mar 2009 A1
20090085156 Dewey et al. Apr 2009 A1
20090095221 Tam et al. Apr 2009 A1
20090107404 Ogliari et al. Apr 2009 A1
20090136668 Gregg et al. May 2009 A1
20090211523 Kuppurao et al. Aug 2009 A1
20090211525 Sarigiannis et al. Aug 2009 A1
20090239386 Suzaki et al. Sep 2009 A1
20090242957 Ma et al. Oct 2009 A1
20090246374 Vukovic Oct 2009 A1
20090261331 Yang et al. Oct 2009 A1
20090277510 Shikata Nov 2009 A1
20090283041 Tomiyasu et al. Nov 2009 A1
20100024727 Kim et al. Feb 2010 A1
20100025796 Dabiran Feb 2010 A1
20100055312 Kato et al. Mar 2010 A1
20100075507 Chang et al. Mar 2010 A1
20100124610 Aikawa et al. May 2010 A1
20100130017 Luo et al. May 2010 A1
20100170441 Won et al. Jul 2010 A1
20100193501 Zucker et al. Aug 2010 A1
20100230051 Iizuka Sep 2010 A1
20100255198 Cleary et al. Oct 2010 A1
20100275846 Kitagawa Nov 2010 A1
20100294199 Tran et al. Nov 2010 A1
20100307415 Shero et al. Dec 2010 A1
20100322604 Fondurulia et al. Dec 2010 A1
20110000619 Suh Jan 2011 A1
20110061810 Ganguly et al. Mar 2011 A1
20110070380 Shero et al. Mar 2011 A1
20110097901 Banna et al. Apr 2011 A1
20110108194 Yoshioka et al. May 2011 A1
20110236600 Fox et al. Sep 2011 A1
20110239936 Suzaki et al. Oct 2011 A1
20110256734 Hausmann et al. Oct 2011 A1
20110275166 Shero et al. Nov 2011 A1
20110308460 Hong et al. Dec 2011 A1
20120024479 Palagashvili et al. Feb 2012 A1
20120070997 Larson Mar 2012 A1
20120090704 Laverdiere et al. Apr 2012 A1
20120098107 Raisanen et al. Apr 2012 A1
20120114877 Lee May 2012 A1
20120156108 Fondurulia et al. Jun 2012 A1
20120160172 Wamura et al. Jun 2012 A1
20120240858 Taniyama et al. Sep 2012 A1
20120289053 Holland et al. Nov 2012 A1
20120295427 Bauer Nov 2012 A1
20120304935 Oosterlaken et al. Dec 2012 A1
20130023129 Reed Jan 2013 A1
20130104988 Yednak et al. May 2013 A1
20130104992 Yednak et al. May 2013 A1
20130126515 Shero et al. May 2013 A1
20130129577 Halpin et al. May 2013 A1
20130230814 Dunn et al. Sep 2013 A1
20130264659 Jung Oct 2013 A1
20130292676 Milligan et al. Nov 2013 A1
20130292807 Raisanen et al. Nov 2013 A1
20140000843 Dunn et al. Jan 2014 A1
20140014644 Akiba et al. Jan 2014 A1
20140027884 Tang et al. Jan 2014 A1
20140036274 Marquardt et al. Feb 2014 A1
20140060147 Sarin et al. Mar 2014 A1
20140067110 Lawson et al. Mar 2014 A1
20140073143 Alokozai et al. Mar 2014 A1
20140084341 Weeks Mar 2014 A1
20140103145 White et al. Apr 2014 A1
20140120487 Kaneko May 2014 A1
20140159170 Raisanen et al. Jun 2014 A1
20140175054 Carlson et al. Jun 2014 A1
20140217065 Winkler et al. Aug 2014 A1
20140220247 Haukka et al. Aug 2014 A1
20140251953 Winkler et al. Sep 2014 A1
20140251954 Winkler et al. Sep 2014 A1
20140346650 Raisanen et al. Nov 2014 A1
20150024609 Milligan et al. Jan 2015 A1
20150048485 Tolle Feb 2015 A1
Foreign Referenced Citations (17)
Number Date Country
1563483 Jan 2005 CN
101330015 Dec 2008 CN
101522943 Sep 2009 CN
101423937 Sep 2011 CN
07283149 Oct 1995 JP
08335558 Dec 1996 JP
2001342570 Dec 2001 JP
2004014952 Jan 2004 JP
2004091848 Mar 2004 JP
2004538374 Dec 2004 JP
2005507030 Mar 2005 JP
2006186271 Jul 2006 JP
2008527748 Jul 2008 JP
1226380 Jan 2005 TW
200701301 Jan 2007 TW
2006056091 Jun 2006 WO
2006078666 Jul 2006 WO
Non-Patent Literature Citations (94)
Entry
USPTO; Final Office Action dated Jul. 14, 2014 in U.S. Appl. No. 12/754,223.
USPTO; Notice of Allowance dated Jul. 3, 2014 in U.S. Appl. No. 13/102,980.
USPTO; Office Action dated Jun. 3, 2014 in U.S. Appl. No. 12/854,818.
USPTO; Non-Final Office Action dated Jul. 2, 2014 in U.S. Appl. No. 13/283,408.
USPTO; Non-Final Office Action dated Jul. 30, 2014 in U.S. Appl. No. 13/284,642.
USPTO; Office Action dated Jul. 31, 2014 in U.S. Appl. No. 13/411,271.
USPTO Final Office Action dated Jul. 8, 2014 in U.S. Appl. No. 13/439,528.
USPTO; Final Office Action dated Jun. 18, 2014 in U.S. Appl. No. 13/535,214.
USPTO; Non-Final Office Action dated Aug. 8, 2014 in U.S. Appl. No. 13/563,066.
USPTO; Non-Final Office Action dated Jul. 10, 2014 in U.S. Appl. No. 13/612,538.
USPTO; Non-Final Office Action dated Jun. 2, 2014 in U.S. Appl. No. 13/677,151.
USPTO; Notice of Allowance dated Aug. 13, 2014 in U.S. Appl. No. 13/784,362.
USPTO; Restriction Requirement dated Jun. 26, 2014 in U.S. Appl. No. 13/874,708.
USPTO; Non-Final Office Action dated May 29, 2014 in U.S. Appl. No. 14/183,187.
Chinese Patent Office; Notice on the Third Office Action dated Jul. 1, 2014 in Application No. 201080036764.6.
Taiwan Patent Office; Office Action dated Jul. 4, 2014 in Application No. 099110511.
USPTO; Office Action dated Aug. 27, 2010 in U.S. Appl. No. 12/118,596.
USPTO; Office Action dated Feb. 15, 2011 in U.S. Appl. No. 12/118,596.
USPTO; Notice of Allowance dated Aug. 4, 2011 in U.S. Appl. No. 12/118,596.
USPTO; Notice of Allowance dated Jun. 16, 2011 in U.S. Appl. No. 12/430,751.
USPTO; Notice of Allowance dated Jul. 27, 2011 in U.S. Appl. No. 12/430,751.
USPTO; Restriction Requirement dated Jan. 15, 2013 in U.S. Appl. No. 12/754,223.
USPTO; Office Action dated Feb. 26, 2013 in U.S. Appl. No. 12/754,223.
USPTO; Final Office Action dated Jun. 28, 2013 in U.S. Appl. No. 12/754,223.
USPTO; Office Action dated Feb. 25, 2014 in U.S. Appl. No. 12/754,223.
USPTO; Office Action dated Apr. 23, 2013 in U.S. Appl. No. 12/763,037.
USPTO; Final Office Action dated Oct. 21, 2013 in U.S. Appl. No. 12/763,037.
USPTO; Restriction Requirement dated Sep. 25, 2012 in U.S. Appl. No. 12/854,818.
USPTO; Office Action dated Dec. 6, 2012 in U.S. Appl. No. 12/854,818.
USPTO; Final Office Action dated Mar. 13, 2013 in U.S. Appl. No. 12/854,818.
USPTO; Office Action dated Aug. 30, 2013 in U.S. Appl. No. 12/854,818.
USPTO; Final Office Action dated Mar. 26, 2014 in U.S. Appl. No. 12/854,818.
USPTO; Restriction Requirement dated May 8, 2013 in U.S. Appl. No. 13/102,980.
USPTO; Office Action dated Oct. 7, 2013 in U.S. Appl. No. 13/102,980.
USPTO; Final Office Action dated Mar. 25, 2014 in U.S. Appl. No. 13/102,980.
USPTO; Restriction Requirement dated Dec. 16, 2013 in U.S. Appl. No. 13/284,642.
USPTO; Restriction Requirement dated Apr. 21, 2014 in U.S. Appl. No. 13/284,642.
USPTO; Office Action dated Jan. 28, 2014 in U.S. Appl. No. 13/312,591.
USPTO; Final Office Action dated May 14, 2014 in U.S. Appl. No. 13/312,591.
USPTO; Office Action dated Jan. 10, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Office Action dated Feb. 11, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Final Office Action dated May 17, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Office Action dated Aug. 29, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Final Office Action dated Dec. 18, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Notice of Allowance dated Apr. 7, 2014 in U.S. Appl. No. 13/339,609.
USPTO; Office Action dated Feb. 13, 2014 in U.S. Appl. No. 13/411,271.
USPTO; Restriction Requirement dated Oct. 29, 2013 in U.S. Appl. No. 13/439,258.
USPTO; Office Action dated Mar. 24, 2014 in U.S. Appl. No. 13/439,258.
USPTO; Office Action dated May 23, 2013 in U.S. Appl. No. 13/465,340.
USPTO; Final Office Action dated Oct. 30, 2013 in U.S. Appl. No. 13/465,340.
USPTO; Notice of Allowance dated Feb. 12, 2014 in U.S. Appl. No. 13/465,340.
USPTO; Office Action dated Dec. 20, 2013 in U.S. Appl. No. 13/535,214.
USPTO; Office Action dated Nov. 15, 2013 in U.S. Appl. No. 13/612,538.
USPTO; Office Action dated Apr. 24, 2014 in U.S. Appl. No. 13/784,362.
USPTO; Restriction Requirement dated May 8, 2014 in U.S. Appl. No. 13/791,246.
PCT; International Search report and Written Opinion dated Nov. 12, 2010 in Application No. PCT/US2010/030126.
PCT; International Search report and Written Opinion dated Jan. 12, 2011 in Application No. PCT/US2010/045368.
PCT; International Search report and Written Opinion dated Feb. 6, 2013 in Application No. PCT/US2012/065343.
PCT; International Search report and Written Opinion dated Feb. 13, 2013 in Application No. PCT/US2012/065347.
Chinese Patent Office; Office Action dated Jan. 10, 2013 in U.S. Appl. No. 201080015699.9.
Chinese Patent Office; Notice on the First Office Action dated May 24, 2013 in Serial No. 201080036764.6.
Chinese Patent Office; Notice on the Second Office Action dated Jan. 2, 2014 in Serial No. 201080036764.6.
Japanese Patent Office; Office Action dated Jan. 25, 2014 in Serial No. 2012-504786.
Chang et al. Small-Subthreshold-Swing and Low-Voltage Flexible Organic Thin-Film Transistors Which Use HfLaO as the Gate Dielectric; IEEE Electron Device Letters; Feb. 2009; 133-135; vol. 30, No. 2; IEEE Electron Device Society.
Maeng et al. Electrical properties of atomic layer disposition Hf02 and Hf0xNy on Si substrates with various crystal orientations, Journal of the Electrochemical Society, Apr. 2008, p. H267-H271, vol. 155, No. 4, Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Korea.
Novaro et al. Theoretical Study on a Reaction Pathway of Ziegler-Natta-Type Catalysis, J. Chem. Phys. 68(5), Mar. 1, 1978 p. 2337-2351.
USPTO; Notice of Allowance dated Jan. 27, 2015 in U.S. Appl. No. 12/763,037.
USPTO; Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 13/411,271.
USPTO; Notice of Allowance dated Jan. 20, 2015 in U.S. Appl. No. 13/941,134.
USPTO; Non-Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 14/563,044.
Chinese Patent Office; Office Action dated Jan. 12, 2015 in Application No. 201080015699.9.
Japanese Patent Office; Office Action dated Dec. 1, 2014 in Application No. 2012-504786.
USPTO; Office Action dated Oct. 8, 2014 in U.S. Appl. No. 12/763,037.
USPTO; Non-Final Office Action dated Sep. 17, 2014 in U.S. Appl. No. 13/187,300.
USPTO; Non-Final Office Action dated Nov. 26, 2014 in U.S. Appl. No. 13/312,591.
UPPTO; Notice of Allowance dated Oct. 21, 2014 in U.S. Appl. No. 13/439,528.
USPTO; Notice of Allowance dated Oct. 23, 2014 in U.S. Appl. No. 13/535,214.
USPTO; Non-Final Office Action dated Oct. 15, 2014 in U.S. Appl. No. 13/597,043.
USPTO; Final Office Action dated Nov. 14, 2014 in U.S. Appl. No. 13/677,151.
USPTO; Non-Final Office Action dated Oct. 9, 2014 in U.S. Appl. No. 13/874,708.
USPTO; Non-Final Office Action dated Sep. 19, 2014 in U.S. Appl. No. 13/791,246.
USPTO; Non-Final Office Action dated Sep. 12, 2014 in U.S. Appl. No. 13/941,134.
USPTO; Final Office Action dated Nov. 7, 2014 in U.S. Appl. No. 14/183,187.
Chinese Patent Office; Notice on the Second Office Action dated Sep. 16, 2014 in Application No. 201110155056.
Koutsokeras et al. Texture and Microstructure Evolution in Single-Phase TixTal-xN Alloys of Rocksalt Structure. Journal of Applied Physics, 110, pp. 043535-1-043535-6, (2011).
USPTO; Final Office Action dated Jan. 29, 2015 in U.S. Appl. No. 13/283,408.
UPSTO; Notice of Allowance dated Feb. 11, 2015 in U.S. Appl. No. 13/284,642.
USPTO; Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/563,066.
USPTO; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/597,108.
USPTO; Notice of Allowance dated Feb. 26, 2015 in U.S. Appl. No. 13/677,151.
USPTO; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 14/457,058.
Chinese Patent Office; Notice on the Third Office Action dated Feb. 9, 2015 in Application No. 201110155056.
Taiwan Patent Office; Office Action dated Dec. 30, 2014 in Application No. 099114330.
Taiwan Patent Office; Office Action dated Dec. 19, 2014 in Application No. 099127063.
Related Publications (1)
Number Date Country
20150024609 A1 Jan 2015 US