The present disclosure relates generally to the field of magnetic memory devices and specifically to a spin-transfer torque (STT) magnetoresistive random access memory (MRAM) device with a negative magnetic anisotropy assist layer and methods of operating the same.
Spin-transfer torque (STT) refers to an effect in which the orientation of a magnetic layer in a magnetic tunnel junction or spin valve is modified by a spin-polarized current. Generally, electric current is unpolarized with electrons having random spin orientations. A spin polarized current is one in which electrons have a net non-zero spin due to a preferential spin orientation distribution. A spin-polarized current can be generated by passing electrical current through a magnetic polarizer layer. When the spin-polarized current flows through a free layer of a magnetic tunnel junction or a spin valve, the electrons in the spin-polarized current can transfer at least some of their angular momentum to the free layer, thereby producing torque to magnetize the free layer. When a sufficient amount of spin-polarized current passes through the free layer, spin-transfer torque can be employed to flip the orientation of the spin (e.g., change the magnetization) in the free layer. A resistance differential of a magnetic tunnel junction between different magnetization states of the free layer can be employed to store data within the magnetoresistive random access memory (MRAM) cell depending if the magnetization of the free layer is parallel or antiparallel to the magnetization of a reference layer.
According to an aspect of the present disclosure, a MRAM device includes a magnetic tunnel junction containing a reference layer having a fixed magnetization direction, a free layer, and a nonmagnetic tunnel barrier layer located between the reference layer and the free layer, a negative-magnetic-anisotropy assist layer having negative magnetic anisotropy that provides an in-plane magnetization within a plane that is perpendicular to the fixed magnetization direction, and a first nonmagnetic spacer layer located between the free layer and the negative-magnetic-anisotropy assist layer.
As discussed above, the present disclosure is directed to a spin-transfer torque (STT) MRAM device with a negative magnetic anisotropy assist layer and methods of operating the same, the various aspects of which are described below.
The drawings are not drawn to scale. Multiple instances of an element may be duplicated where a single instance of the element is illustrated, unless absence of duplication of elements is expressly described or clearly indicated otherwise. Same reference numerals refer to the same element or to a similar element. Elements having the same reference numerals are presumed to have the same material composition unless expressly stated otherwise. Ordinals such as “first,” “second,” and “third” are employed merely to identify similar elements, and different ordinals may be employed across the specification and the claims of the instant disclosure. As used herein, a first element located “on” a second element can be located on the exterior side of a surface of the second element or on the interior side of the second element. As used herein, a first element is located “directly on” a second element if there exist a physical contact between a surface of the first element and a surface of the second element. As used herein, an “in-process” structure or a “transient” structure refers to a structure that is subsequently modified.
As used herein, a “layer” refers to a material portion including a region having a thickness. A layer may extend over the entirety of an underlying or overlying structure, or may have an extent less than the extent of an underlying or overlying structure. Further, a layer may be a region of a homogeneous or inhomogeneous continuous structure that has a thickness less than the thickness of the continuous structure. For example, a layer may be located between any pair of horizontal planes between, or at, a top surface and a bottom surface of the continuous structure. A layer may extend horizontally, vertically, and/or along a tapered surface. A substrate may be a layer, may include one or more layers therein, and/or may have one or more layer thereupon, thereabove, and/or therebelow.
As used herein, a “layer stack” refers to a stack of layers. As used herein, a “line” or a “line structure” refers to a layer that has a predominant direction of extension, i.e., having a direction along which the layer extends the most.
Referring to
The MRAM device 500 of an embodiment of the present disclosure includes a memory array region 550 containing an array of the respective MRAM cells 180 located at the intersection of the respective word lines (which may comprise electrically conductive lines 30 as illustrated or as second electrically conductive lines 90 in an alternate configuration) and bit lines (which may comprise second electrically conductive lines 90 as illustrated or as first electrically conductive lines 30 in an alternate configuration). The MRAM device 500 may also contain a row decoder 560 connected to the word lines, a sense circuitry 570 (e.g., a sense amplifier and other bit line control circuitry) connected to the bit lines, a column decoder 580 connected to the bit lines, and a data buffer 590 connected to the sense circuitry. Multiple instances of the MRAM cells 180 are provided in an array configuration that forms the MRAM device 500. As such, each of the MRAM cells 180 can be a two-terminal device including a respective first electrode and a respective second electrode. It should be noted that the location and interconnection of elements are schematic and the elements may be arranged in a different configuration. Further, a MRAM cell 180 may be manufactured as a discrete device, i.e., a single isolated device.
Each MRAM cell 180 includes a magnetic tunnel junction or a spin valve having at least two different resistive states depending on the alignment of magnetizations of different magnetic material layers. The magnetic tunnel junction or the spin valve is provided between a first electrode and a second electrode within each MRAM cell 180. Configurations of the MRAM cells 180 are described in detail in subsequent sections.
Referring to
Generally, a magnetic thin film has magnetic energy per unit volume that depends on the orientation of the magnetization of the magnetic material of the magnetic thin film. The magnetic energy per unit volume can be approximated by a polynomial of the angle θ (or of sin2θ) between the direction of the magnetization and the vertical axis that is perpendicular to the plane of the magnetic thin film (such as a top surface or a bottom surface of the magnetic thin film) and the azimuthal angle ϕ between the direction of magnetization and a fixed vertical plane that is perpendicular to the plane of the magnetic thin film. The first and second order terms for the magnetic energy per unit volume as a function of sin2θ includes K1 sin2θ+K2 sin4θ. When K1 is negative and K2 is less than −K1/2, the function K1 sin2θ+K2 sin4θ has a minimum when θ is at π/2. If the magnetic anisotropy energy as a function of θ has a minimum only when θ is at π/2, the magnetization of the magnetic film prefers to stay entirely within the plane of the film, and the film is said to have “negative magnetic anisotropy.” If the magnetic anisotropy energy as a function of θ has a minimum only when θ is at 0 or π, the magnetization of the magnetic film is perpendicular to the plane of the film, and the film is said to have “positive magnetic anisotropy.” A thin crystalline magnetic film having positive magnetic anisotropy has a tendency for magnetization to stay perpendicular to the plane of the thin crystalline magnetic film, i.e., perpendicular to the two directions along which the thin crystalline magnetic film laterally extends. A thin crystalline magnetic film having negative magnetic anisotropy has a magnetization within the plane of the thin crystalline magnetic film, although within the film plane magnetization doesn't have a preferred orientation.
The configuration in which the reference layer 132 and the free layer 136 have respective positive uniaxial magnetic anisotropy provides bistable magnetization states for the free layer 136. The bistable magnetization states include a parallel state in which the free layer 136 has a magnetization (e.g., magnetization direction) that is parallel to the fixed vertical magnetization (e.g., magnetization direction) of the reference layer 132, and an antiparallel state in which the free layer 136 has a magnetization (e.g., magnetization direction) that is antiparallel to the fixed vertical magnetization (e.g., magnetization direction) of the reference layer 132.
The reference layer 132 can include either a Co/Ni or Co/Pt multilayer structure. The reference layer 132 can additionally include a thin non-magnetic layer comprised of tantalum having a thickness of 0.2 nm˜0.5 nm and a thin CoFeB layer (having a thickness in a range from 0.5 nm to 3 nm). The nonmagnetic tunnel barrier layer 134 can include any tunneling barrier material such as an electrically insulating material, for example magnesium oxide. The thickness of the nonmagnetic tunnel barrier layer 134 can be 0.7 nm to 1.3 nm, such as about 1 nm. The free layer 136 can includes alloys of one or more of Fe, Co, and/or Ni, such as CoFeB, at a composition that provides positive uniaxial magnetic anisotropy.
In one embodiment, the reference layer 132 may be provided as a component within a synthetic antiferromagnetic structure (SAF structure) 120. The SAF structure 120 can include the reference layer 132, a fixed ferromagnetic layer 112 having a magnetization that is antiparallel to the fixed vertical magnetization, and an antiferromagnetic coupling layer 114 located between the reference layer 132 and the fixed ferromagnetic layer 112 facing the first side of the reference layer 132 opposite to the second side of the reference layer 132 which faces the nonmagnetic tunnel barrier layer 134. The antiferromagnetic coupling layer 114 has a thickness that induces an antiferromagnetic coupling between the reference layer 132 and the fixed ferromagnetic layer 112. In other words, the antiferromagnetic coupling layer 114 can lock in the antiferromagnetic alignment between the magnetization of the reference layer 132 and the magnetization of the fixed ferromagnetic layer 112 to lock in place the magnetizations of the reference layer 132 and the magnetization of the fixed ferromagnetic layer 112. In one embodiment, the antiferromagnetic coupling layer can include ruthenium and can have a thickness in a range from 0.3 nm to 1 nm.
A first nonmagnetic spacer layer 150 is provided over the second side of the free layer 136 opposite to the first side of the free layer 136 which faces the nonmagnetic tunnel barrier layer 134. The first nonmagnetic spacer layer 150 includes a nonmagnetic material such as tantalum, ruthenium, tantalum nitride, copper, copper nitride, or magnesium oxide. In one embodiment, the first nonmagnetic spacer layer 150 can include an electrically conductive metallic material. Alternatively, the first nonmagnetic spacer layer 150 can include a tunneling dielectric material such as magnesium oxide. The thickness of the first nonmagnetic spacer layer 150 can be in a range from 0.2 nm to 2 nm, although lesser and greater thicknesses can also be employed.
A negative-magnetic-anisotropy assist layer 160 can be provided over the first nonmagnetic spacer layer 150 and over the second side of the free layer 136. The negative-magnetic-anisotropy assist layer 160 can have negative magnetic anisotropy with a sufficiently negative K1 value to provide an in-plane magnetization for the negative-magnetic-anisotropy assist layer 160. The in-plane magnetization is a magnetization located within a horizontal plane in
In one embodiment, the hard magnetization axis is parallel to the direction normal to a major surface of the negative-magnetic-anisotropy assist layer 160 (i.e., the axis is perpendicular to the plane of the layer 160 and parallel to fixed vertical magnetization of the reference layer 132), whereas the easy magnetization plane is parallel to the plane of the negative-magnetic-anisotropy assist layer 160 (i.e., the easy magnetization plane is perpendicular to the fixed vertical magnetization of the reference layer 132 in
In one embodiment, the azimuthally-dependent component of the magnetic anisotropy of the negative-magnetic-anisotropy assist layer 160 may be zero or insignificant compared to the thermal energy at room temperature, i.e., kBT in which kB is the Boltzmann constant and T is 297.15 Kelvin (which is the room temperature). For example, the maximum variation of the magnetic anisotropy per unit volume around a vertical axis that is parallel to the fixed vertical magnetization of the reference layer 132 can be less than ½ times the thermal energy at room temperature. In such cases, the magnetization of the negative-magnetic-anisotropy assist layer 160 is free to precess within the horizontal plane that is parallel to the interface between the first nonmagnetic spacer layer 150 and the negative-magnetic-anisotropy assist layer 160 upon application of electrical current through the negative-magnetic-anisotropy assist layer 160. In one embodiment, the magnetic energy of the negative-magnetic-anisotropy assist layer 160 may be invariant under rotation of the magnetization of the negative-magnetic-anisotropy assist layer 160 within the horizontal plane.
In one embodiment, the negative-magnetic-anisotropy assist layer 160 comprises a homogeneous negative magnetic anisotropy material. As used herein, a “homogeneous” material refers to a material having a uniform material composition throughout. In one embodiment, the negative-magnetic-anisotropy assist layer 160 comprises, and/or consists essentially of, a cobalt-iridium alloy. The material composition of the cobalt-iridium alloy can be selected to provide negative magnetic anisotropy. In one embodiment, the cobalt-iridium alloy can include cobalt atoms at an atomic concentration in a range from 60% to 98%, such as from 70% to 90%, for example 80%, and iridium atoms at the atomic concentration in a range from 40% to 2%, such as from 30% to 10%, for example 20%. In one embodiment, the cobalt-iridium alloy contains only cobalt, iridium and unavoidable impurities. In another embodiment, up to 5 atomic percent of elements other than cobalt and iridium may be added to the alloy. In an illustrative example, a cobalt-iridium alloy having a composition of Co0.8Ir0.2 has a K1 value of about −0.6×106 J/m3. In another embodiment, the negative-magnetic-anisotropy assist layer 160 comprises, and/or consists essentially of, a cobalt-iron alloy. The material composition of the cobalt-iron alloy can be selected to provide negative magnetic anisotropy. In one embodiment, the cobalt-iron alloy can include cobalt atoms at an atomic concentration in a range from 80% to 99.8%, such as from 90% to 99.5%, such as 99%, and iron atoms at the atomic concentration in a range from 20% to 0.2%, such as from 10% to 0.5%, for example 1%. In an illustrative example, a cobalt-iron alloy having a composition of Co0.9Fe0.1 has a K1 value of about −0.99×106 J/m3. The thickness of the negative-magnetic-anisotropy assist layer 160 can be in a range from 1 nm to 10 nm, such as from 1.5 nm to 6 nm, although lesser and greater thicknesses can also be employed.
In one embodiment, a nonmagnetic capping layer 170 can be located over the negative-magnetic-anisotropy assist layer 160. The nonmagnetic capping layer 170 can include a non-magnetic, electrically conductive material, such as W, Ti, Ta, WN, TiN, TaN, Ru, and Cu. The thickness of the nonmagnetic capping layer 170 can be in a range from 1 nm to 20 nm, although lesser and greater thicknesses can also be employed.
The layer stack including the material layers from the SAF structure 120 to the nonmagnetic capping layer 170 can be deposited upward or downward, i.e., from the SAF structure 120 toward the nonmagnetic capping layer 170 or from the nonmagnetic capping layer 170 toward the SAF structure 120. The layer stack can be formed as a stack of continuous layers, and can be subsequently patterned into discrete patterned layer stacks for each MRAM cell 180.
MRAM cell 180 can include a first terminal 92 that is electrically connected to or comprises a portion of a bit line 90 (shown in
Optionally, each MRAM cell 180 can include a dedicated steering device, such an access transistor or diode configured to activate a respective discrete patterned layer stack (120, 140, 150, 160, 170) upon application of a suitable voltage to the steering device. The steering device may be electrically connected between the patterned layer stack and one of the respective word lines 30 or bit lines 90 of the respective MRAM cell 180.
In one embodiment, the polarity of the voltage applied to the first terminal 92 can be changed depending on the polarity of the magnetization state to be programmed in the free layer 136. For example, a voltage of a first polarity can be applied to the first terminal 92 (with respect to the second terminal 32) during a transition from an antiparallel state to a parallel state, and a voltage of a second polarity (which is the opposite of the first polarity) can be applied to the first terminal 92 during a transition from a parallel state to an antiparallel state. Further, variations in the circuitry for activating the discrete patterned layer stack (120, 140, 150, 160, 170) are also contemplated herein.
The magnetization direction of the free layer 136 can be flipped (i.e., from upward to downward or vice versa) by flowing electrical current through the discrete patterned layer stack (120, 140, 150, 160, 170). The magnetization of the free layer 136 can precess around the vertical direction (i.e., the direction of the flow of the electrical current) during the programming process until the direction of the magnetization flips by 180 degrees, at which point the flow of the electrical current stops. In one embodiment, the magnetization of the negative-magnetic-anisotropy assist layer 160 can rotate freely around a vertical axis that is parallel to the fixed magnetization direction of the reference layer 132 while electrical current flows through the discrete patterned layer stack (120, 140, 150, 160, 170). This configuration allows the negative-magnetic-anisotropy assist layer 160 to provide an initial non-vertical torque to the magnetization of the free layer 136 during an initial phase of precession of the magnetization of the free layer 136 around the vertical axis that is parallel to the fixed vertical magnetization of the reference layer 132 upon initiation of flow of electrical current through the MRAM cell 180.
In one embodiment, the MRAM cell 180 can be configured to provide coupling between the in-plane magnetization of the negative-magnetic-anisotropy assist layer 160 and the magnetization of the free layer 136 during precession of the magnetization of the free layer 136 around a vertical axis that is parallel to the fixed vertical magnetization of the reference layer 132, and to provide synchronized precession of the in-plane magnetization of the negative-magnetic-anisotropy assist layer 160 and the magnetization of the free layer 136 while electrical current flows through the MRAM cell 180.
Due to the negative magnetic anisotropy of the negative-magnetic-anisotropy assist layer 160, in one embodiment, the in-plane magnetization of the negative-magnetic-anisotropy assist layer 160 can provide an initial torque to the free layer to facilitate the initiation of switching of the free layer 136. Once the free layer 136 precession starts, the free layer 136 can provide a spin torque to the negative-magnetic-anisotropy assist layer 160 to cause the negative-magnetic-anisotropy assist layer 160 magnetization to precess as well. This negative-magnetic-anisotropy assist layer 160 precession can in turn further assist the switching of the free layer 136. The embodiment negative-magnetic-anisotropy assist layer 160 which has an in-plane easy magnetization plane but which lacks a fixed easy axis direction, is more efficient than a prior art assist layer where the assist layer's magnetization direction (e.g., easy axis) is fixed.
Referring to
The composition and the thickness of each first magnetic material layer 262 and the composition and the thickness of each second magnetic material layer 264 can be selected such that the multilayer stack (262, 264) provides an in-plane magnetization, i.e., a magnetization that is perpendicular to the fixed magnetization direction of the reference layer 132 (i.e., an easy magnetization plane that is perpendicular to the fixed magnetization direction of the reference layer 132 without an easy magnetization axis). The negative-magnetic-anisotropy assist layer 260 can have negative magnetic anisotropy with a sufficiently negative K1 value to provide the in-plane magnetization for the negative-magnetic-anisotropy assist layer 260.
In one embodiment, the azimuthally-dependent component of the magnetic anisotropy of the negative-magnetic-anisotropy assist layer 260 may be zero or insignificant compared to the thermal energy at room temperature. For example, the maximum variation of the magnetic anisotropy per unit volume around a vertical axis that is parallel to the fixed vertical magnetization of the reference layer 132 can be less than ½ times the thermal energy at room temperature. In such cases, the magnetization of the negative-magnetic-anisotropy assist layer 260 is free to precess within the plane that is parallel to the interface between the first nonmagnetic spacer layer 150 and the negative-magnetic-anisotropy assist layer 260 upon application of electrical current through the negative-magnetic-anisotropy assist layer 260. In one embodiment, the magnetic energy of the negative-magnetic-anisotropy assist layer 260 may be invariant under rotation of the magnetization of the negative-magnetic-anisotropy assist layer 260 within the horizontal plane.
In one embodiment, the first magnetic material layers 262 comprise cobalt, and the second magnetic material layers 264 comprise iron. In one embodiment, the first magnetic material layers 262 consist essentially of cobalt, and the second magnetic material layers 264 consist essentially of iron. The thickness of each first magnetic material layer 262 can be in a range from 0.3 nm to 1 nm, and the thickness of each second magnetic material layer 264 can be in a range from 0.3 nm to 1 nm. The total number of repetitions (i.e., the total number of pairs of a first magnetic material layer 262 and a second magnetic material layer 264) within the negative-magnetic-anisotropy assist layer 260 can be in a range from 2 to 20, such as from 4 to 10. In one embodiment, the multilayer stack (262, 264) comprises a periodic repetition of a unit layer stack that includes a first magnetic material layer 262 and a second magnetic material layer 264. In an illustrative example, a cobalt-iron multilayer stack including repetitions of a unit layer stack consisting of a cobalt layer and an iron layer having the same thickness can have a K1 value of about −1.1×106 J/m3.
Referring to
The second nonmagnetic spacer layer 190 can be located on the negative-magnetic-anisotropy assist layer 160 on the opposite side from the first nonmagnetic spacer layer 150. The second nonmagnetic spacer layer 190 includes a nonmagnetic material such as tantalum, ruthenium, tantalum nitride, copper, copper nitride, or magnesium oxide. In one embodiment, the second nonmagnetic spacer layer 190 can include an electrically conductive material. Alternatively, the second nonmagnetic spacer layer 190 can include a dielectric material such as magnesium oxide. The thickness of the second nonmagnetic spacer layer 190 can be in a range from 0.2 nm to 2 nm, although lesser and greater thicknesses can also be employed. The second nonmagnetic spacer layer 190 can include the same material as, or can include a material different from, the material of the first nonmagnetic spacer layer 150.
The pinned magnetization layer 192 is a magnetic layer which has a positive uniaxial magnetic anisotropy. In other words, the value of K1 is positive and the term K1 sin2θ dominates all other higher order terms and terms depending on sin(nϕ) (or cos(nϕ)) in the magnetic anisotropy energy per volume for the material of the pinned magnetization layer 192. The positive uniaxial magnetic anisotropy of the pinned magnetization layer 192 provides a magnetization that is parallel or antiparallel to the fixed vertical magnetization of the reference layer 132. In one embodiment, the value of K1 for the pinned magnetization layer 192 can be greater than the value of K1 for the free layer 136 such that the magnetization of the pinned magnetization layer 192 stays pinned along the vertical direction, i.e., perpendicular to the interfaces among the various layers of the discrete patterned layer stack (120, 140, 150, 160, 190, 192, 170), during programming of the MRAM cell 180. The magnetization of the pinned magnetization layer 192 may remain parallel to, or antiparallel to, the magnetization of the reference layer 132.
In one embodiment, the pinned magnetization layer 192 can include either a Co/Ni or Co/Pt multilayer structure. The pinned magnetization layer 192 can additionally include a thin non-magnetic layer comprised of tantalum having a thickness of 0.2 nm˜0.5 nm and a thin CoFeB layer (having a thickness in a range from 0.5 nm to 3 nm). The pinned magnetization layer 192 can cause the in-plane magnetization of the negative-magnetic-anisotropy assist layer 160 to oscillate. The oscillation of the in-plane magnetization of the negative-magnetic-anisotropy assist layer 160 can produce a rotating spin torque on the magnetization of the free layer 136 during programming, and thus, can help the switching of the magnetization of the free layer 136 with a lower electrical current through the discrete patterned layer stack (120, 140, 150, 160, 190, 192, 170). In one embodiment, the combination of the magnetization of the pinned magnetization layer 192 and the negative-magnetic-anisotropy assist layer 160 applies a non-horizontal and non-vertical magnetic field (i.e., a field which is neither parallel to nor perpendicular to the direction of the magnetization of the reference layer 132) on the magnetization of the free layer 136 to reduce the magnitude of the required electrical current through the discrete patterned layer stack (120, 140, 150, 160, 190, 192, 170) during switching of the magnetization of the free layer 136.
Referring to
Referring to all configurations of the exemplary spin-transfer torque MRAM cell 180 illustrated in
Programming of the exemplary spin-transfer torque MRAM cell 180 to the opposite magnetization state for the free layer 136 can be performed by flowing electrical current through the selected discrete patterned layer stack {120, 140, 150, (160 or 260), 170} or {120, 140, 150, (160 or 260), (190, 192), 170} and by inducing the flipping, i.e., the switching, of the direction of the magnetization of the free layer 136. Specifically, electrical current can be flowed through a selected discrete patterned layer stack which includes a magnetic tunnel junction 140, a first nonmagnetic spacer layer 150, and a negative-magnetic-anisotropy assist layer (160 or 260). The in-plane magnetization of the negative-magnetic-anisotropy assist layer (160 or 260) provides an initial non-vertical torque to the magnetization of the free layer 136 during an initial phase of precession of the magnetization of the free layer 136 around a vertical axis that is parallel to the fixed vertical magnetization of the reference layer 132 upon initiation of flow of the electrical current through the magnetic tunnel junction 140, the first nonmagnetic spacer layer 150, and the negative-magnetic-anisotropy assist layer (160 or 260).
In one embodiment, the in-plane magnetization of the negative-magnetic-anisotropy assist layer (160 or 260) couples with a magnetization of the free layer 136 during precession of the magnetization of the free layer 136 around the vertical axis (VA) that is parallel to the fixed vertical magnetization of the reference layer 132 to provide synchronized precession of the in-plane magnetization M2 of the negative-magnetic-anisotropy assist layer (160 or 260) and the magnetization M1 of the free layer 136 while electrical current flows through the MRAM cell 180 as illustrated in
Although the foregoing refers to particular preferred embodiments, it will be understood that the disclosure is not so limited. It will occur to those of ordinary skill in the art that various modifications may be made to the disclosed embodiments and that such modifications are intended to be within the scope of the disclosure. Where an embodiment employing a particular structure and/or configuration is illustrated in the present disclosure, it is understood that the present disclosure may be practiced with any other compatible structures and/or configurations that are functionally equivalent provided that such substitutions are not explicitly forbidden or otherwise known to be impossible to one of ordinary skill in the art. All of the publications, patent applications and patents cited herein are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
7813202 | Rodmacq et al. | Oct 2010 | B2 |
7826258 | Zhu et al. | Nov 2010 | B2 |
8085582 | Nakamura et al. | Dec 2011 | B2 |
8357982 | Kajiyama | Jan 2013 | B2 |
8569852 | Morise et al. | Oct 2013 | B2 |
8716817 | Saida et al. | May 2014 | B2 |
8860156 | Beach et al. | Oct 2014 | B2 |
8917543 | Ranjan et al. | Dec 2014 | B2 |
9019758 | Huai et al. | Apr 2015 | B2 |
9025368 | Saida et al. | May 2015 | B2 |
9025371 | Huai et al. | May 2015 | B1 |
9166150 | Doyle et al. | Oct 2015 | B2 |
9281040 | Soree et al. | Mar 2016 | B2 |
9318179 | Huai et al. | Apr 2016 | B2 |
9419210 | Huai et al. | Aug 2016 | B2 |
9437808 | Doyle et al. | Sep 2016 | B2 |
9444039 | Huai et al. | Sep 2016 | B2 |
9460397 | Apalkov et al. | Oct 2016 | B2 |
9461243 | Guo | Oct 2016 | B2 |
9478729 | Lee et al. | Oct 2016 | B2 |
9537090 | Hu | Jan 2017 | B1 |
9620706 | Lee et al. | Apr 2017 | B2 |
9741929 | Guo | Aug 2017 | B2 |
9852782 | Braganca et al. | Dec 2017 | B2 |
9853206 | Pinarbasi et al. | Dec 2017 | B2 |
9978935 | Hu | May 2018 | B2 |
10229723 | Choi et al. | Mar 2019 | B1 |
10270027 | Gajek et al. | Apr 2019 | B1 |
10354710 | Petti et al. | Jul 2019 | B2 |
10381551 | Lille | Aug 2019 | B1 |
10726892 | Le | Jul 2020 | B2 |
10862022 | Le | Dec 2020 | B2 |
20020105823 | Redon et al. | Aug 2002 | A1 |
20070133263 | Haratani | Jun 2007 | A1 |
20090015958 | Nakamura et al. | Jan 2009 | A1 |
20090218645 | Ranjan et al. | Sep 2009 | A1 |
20090237987 | Zhu et al. | Sep 2009 | A1 |
20110007560 | Dieny et al. | Jan 2011 | A1 |
20110233697 | Kajiyama | Sep 2011 | A1 |
20110241139 | Yen et al. | Oct 2011 | A1 |
20120063218 | Huai et al. | Mar 2012 | A1 |
20120242438 | Morise et al. | Sep 2012 | A1 |
20120314490 | Okhi et al. | Dec 2012 | A1 |
20130069185 | Saida et al. | Mar 2013 | A1 |
20130181305 | Nakayama et al. | Jul 2013 | A1 |
20130258764 | Ranjan et al. | Oct 2013 | A1 |
20140070341 | Beach et al. | Mar 2014 | A1 |
20140110804 | Han et al. | Apr 2014 | A1 |
20140159175 | Lee et al. | Jun 2014 | A1 |
20140160835 | Soree et al. | Jun 2014 | A1 |
20140177326 | Doyle et al. | Jun 2014 | A1 |
20140217487 | Guo | Aug 2014 | A1 |
20140269037 | Saida et al. | Sep 2014 | A1 |
20150001656 | Beach et al. | Jan 2015 | A1 |
20150097159 | Apalkov et al. | Apr 2015 | A1 |
20150137293 | Huai et al. | May 2015 | A1 |
20150188035 | Huai et al. | Jul 2015 | A1 |
20150188036 | Huai et al. | Jul 2015 | A1 |
20150214275 | Hsueh et al. | Jul 2015 | A1 |
20150340595 | Lee et al. | Nov 2015 | A1 |
20160043302 | Doyle et al. | Feb 2016 | A1 |
20160155931 | Lee et al. | Jun 2016 | A1 |
20160197269 | Huai et al. | Jul 2016 | A1 |
20160315249 | Kardasz et al. | Oct 2016 | A1 |
20160336508 | Guo | Nov 2016 | A1 |
20160372656 | Pinarbasi et al. | Dec 2016 | A1 |
20160379698 | Saida et al. | Dec 2016 | A1 |
20160380188 | Hu | Dec 2016 | A1 |
20170062700 | Braganca et al. | Mar 2017 | A1 |
20170084830 | Hu | Mar 2017 | A1 |
20170294573 | Hu et al. | Oct 2017 | A1 |
20170372763 | Braganca et al. | Dec 2017 | A1 |
20180033954 | Aradhya et al. | Feb 2018 | A1 |
20180108391 | Braganca et al. | Apr 2018 | A1 |
20190027201 | Petti et al. | Jan 2019 | A1 |
20190080738 | Choi et al. | Mar 2019 | A1 |
20190103552 | Shiokawa et al. | Apr 2019 | A1 |
20190131517 | Shiokawa et al. | May 2019 | A1 |
20190165253 | Sun et al. | May 2019 | A1 |
20190207089 | Kardasz et al. | Jul 2019 | A1 |
20200006633 | Lille | Jan 2020 | A1 |
20200011943 | Zimmer et al. | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
2209123 | Jul 2010 | EP |
2005150482 | Jun 2005 | JP |
2015176926 | Oct 2015 | JP |
20120027390 | Mar 2012 | KR |
20180018779 | Feb 2018 | KR |
Entry |
---|
Non-Final Office Action for U.S. Appl. No. 16/902,641, dated Jul. 9, 2020, 14 pages. |
Le, Q. et al., “Spin Transfer Torque MRAM With a Spin Torque Oscillator Stack and Methods of Making the Same,” U.S. Appl. No. 16/880,497, filed May 21, 2020. |
Sbiaa, R., et al., “Spin transfer switching enhancement in perpendicular anisotropy magnetic tunnel junctions with a canted in-plane spin polarizer”, Journal of Applied Physics, vol. 105, No. 1, 013910, pp. 1-6, (Jan. 6, 2009). |
Liu, T. et al., “Large Enhanced Perpendicular Magnetic Anisotropy in CoFeb/MgO System with the Typical Ta Buffer Replaced by an Hf Layer,” AIP Advances, vol. 2, No. 032151, pp. 032151-1 to 032151-7, (2012). |
Ma, Z. et al., “Effect of 90 degree Domain Movement on the Piezoelectric Response of Patterned PbZr0.2Ti0.8O3/SrTiO3/Si Heterostructures,” Appl. Phys. Lett., vol. 87, No. 7, (Abstract Only), (2005), https://doi.org/10.1063/1.2012527. |
Hunter, D. et al., “Giant magnetostriction in annealed Co1−xFex thin-films,” Nature Communications, Received May 25, 2011, Accepted Oct. 4, 2011, Published Nov. 1, 2011, DOI: 10.1038/ncomms1529, pp. 1-7, (2011). |
Parkin, et al., “Systematic Variation of the Strength and Oscillation Period of Indirect Magnetic Exchange Coupling Through the 3d, 4d and 5d Transition Metals,” Phys. Rev. Lett., vol. 67, No. 3598, (Abstract Only) (1991), https://doi.org/10.1103/PhysRevLett.67.3598. |
Sambri, A. et al., “Epitaxial Piezoelectric Pb(Zr0.2Ti0.8)O3 Thin Films on Silicon for Energy Harvesting Devices,” Smart Materials Research, vol. 2012, Article ID 426048, pp. 1-7, (2012). |
USPTO Office Communication, Non-Final Office Action for U.S. Appl. No. 16/212,132, dated Nov. 29, 2019, 12 pages. |
Notification of Transmittal of the International Search Report and Written Opinion of the International Search Authority for International Patent Application No. PCT/US2019/046783, dated Dec. 3, 2019, 10 pages. |
USPTO Office Communication, Non-Final Office Action for U.S. Appl. No. 16/212,257, dated Dec. 13, 2019, 16 pages. |
Notification of Transmittal of the International Search Report and Written Opinion of the International Search Authority for International Patent Application No. PCT/US2019/049189, dated Dec. 19, 2019, 16 pages. |
USPTO Office Communication, Non-Final Office Action for U.S. Appl. No. 16/212,420, dated Nov. 27, 2019, 10 pages. |
USPTO Office Communication, Non-Final Office Action for U.S. Appl. No. 16/212,342, dated May 21, 2020, 35 pages. |
U.S. Appl. No. 16/212,132, filed Dec. 6, 2018, SanDisk Technologies LLC. |
U.S. Appl. No. 16/212,257, filed Dec. 6, 2018, SanDisk Technologies LLC. |
U.S. Appl. No. 16/212,342, filed Dec. 6, 2018, SanDisk Technologies LLC. |
Number | Date | Country | |
---|---|---|---|
20200279991 A1 | Sep 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16212257 | Dec 2018 | US |
Child | 16880393 | US |