The subject matter of the present application relates to microelectronic packages, or assemblies, comprised of stacked microelectronic elements and to methods of fabricating them, for example, by processing applied simultaneously to a plurality of microelectronic elements arranged in an array.
Microelectronic elements, such as semiconductor chips, are flat bodies with contacts disposed on the front surface that are connected to the internal electrical circuitry of the element itself. Microelectronic elements are typically packaged with substrates to form microelectronic packages, or assemblies, having terminals that are electrically connected to the element's contacts. The package or assembly may then be connected to test equipment to determine whether the packaged device conforms to a desired performance standard. Once tested, the package may be connected to a larger circuit, e.g., a circuit in an electronic product such as a computer or a cell phone.
Microelectronic packages or assemblies also include wafer level packages, which can be formed by wafer level processing applied simultaneously to a plurality of microelectronic elements, e.g., semiconductor die while the die are still attached together in form of a wafer or portion of a wafer. After subjecting the wafer to a number of process steps to form package structure thereon, the wafer and the package structure are then diced to free the individual die. Wafer level processing may provide a cost savings advantage. Furthermore, the package footprint can be identical to the die size, resulting in very efficient utilization of area on a printed circuit board (PCB) to which the die will eventually be attached. As a result of these features, die packaged in this manner are commonly referred to as wafer-level chip scale packages (WLCSP).
In order to save space certain conventional designs have stacked multiple microelectronic chips or elements within a package or assembly. This allows the package to occupy a surface area on a substrate that is less than the total surface area of all the chips in the stack added together. Development efforts in this technology focus on producing wafer-level assemblies that are reliable, or thin, or testable, or which are economical to manufacture, or have a combination of such characteristics.
In accordance with an aspect of the invention, a method is provided for fabricating a stacked microelectronic assembly. In accordance with such method, a first subassembly is formed which includes a plurality of spaced apart first microelectronic elements having front faces and contacts exposed at the front faces and rear faces remote from the front faces and edges extending between the front and rear faces. The first microelectronic elements can be joined to a carrier layer. A plurality of traces can extend from the contacts to beyond edges of the first microelectronic elements. A plurality of spaced apart second microelectronic elements can then be attached to the first subassembly, the second microelectronic elements having front faces and contacts exposed at the front faces, rear faces remote from the front faces, and edges extending between the front and rear faces. The rear faces of the second microelectronic elements can overlie and be adjacent to the front faces of respective ones of the first microelectronic elements. A plurality of traces can then be formed which extend from the contacts of the second microelectronic elements to beyond the edges of the second microelectronic elements. Leads may be formed in at least one opening extending between confronting edges of adjacent ones of the first microelectronic elements and between confronting edges of adjacent ones of the second microelectronic elements. The leads can be connected to the traces of the first and second microelectronic elements.
In accordance with an aspect of the invention, each of the first and second microelectronic elements can have a thickness of less than about 50 microns between the front face and the rear face. In one embodiment, at least one of the microelectronic elements includes a flash memory.
In accordance with an aspect of the invention, the stacked microelectronic assembly can be severed between edges of adjacent ones of the first and second microelectronic elements into a plurality of stacked microelectronic units, each unit including at least one first microelectronic element and at least one second microelectronic element.
In accordance with one aspect of the invention, the at least one opening can include channels which extend between the confronting edges of adjacent ones of the first and second microelectronic elements.
In accordance with one aspect of the invention, the at least one opening can include a plurality of spaced apart openings aligned with edges of the first and second microelectronic elements. The leads may extend within respective individual ones of the spaced apart openings, each lead being conductively connected with a single one of the traces.
In accordance with an aspect of the invention, a method is provided for fabricating a stacked microelectronic assembly. In accordance with such method, first and second subassemblies can be provided, each subassembly having a front surface and a rear surface remote from the front surface. Each subassembly can include a plurality of spaced apart microelectronic elements having front faces and contacts adjacent to the front surface, rear faces adjacent to the rear surface, and edges extending between the front and rear faces. A plurality of traces can be formed at the front surface of the first subassembly, the traces extending from the contacts of the first subassembly to beyond the edges of the microelectronic elements of the first subassembly. The first and second subassemblies can be joined such that the rear surface of the second subassembly confronts the front surface of the first subassembly. A plurality of traces can be formed at the front surface of the second subassembly. The traces may extend from the contacts of the second subassembly to beyond the edges of the microelectronic elements of the second subassembly. Leads can be formed in at least one opening extending between edges of adjacent microelectronic elements of the first and second subassemblies. The leads can be connected to the traces of the microelectronic elements of the first and second subassemblies.
In accordance with an aspect of the invention, each of the microelectronic elements of the first and second subassemblies has a thickness of less than about 50 microns between the front face and the rear face.
In accordance with an aspect of the invention, at least one of the microelectronic elements includes flash memory.
In accordance with an aspect of the invention, the stacked microelectronic assembly can be severed between edges of adjacent microelectronic elements into a plurality of stacked microelectronic units, each unit including microelectronic elements from each of the first and second subassemblies and leads connected to traces of the microelectronic elements.
In accordance with an aspect of the invention, the at least one opening can include channels extending between confronting edges of adjacent microelectronic elements.
In accordance with an aspect of the invention, the at least one opening includes a plurality of spaced apart openings aligned with edges of the microelectronic element. Leads of each stacked microelectronic unit may extend within respective individual ones of the spaced apart openings, each lead being conductively connected with a single one of the traces.
In accordance with an aspect of the invention, the front face of a given microelectronic element of the second subassembly can have at least one dimension different from a corresponding dimension of the front face of a microelectronic element of the first subassembly that the front face of the given microelectronic element overlies.
In accordance with an aspect of the invention, a front face of a given microelectronic element of the first subassembly can have at least one dimension different from a corresponding dimension of a front face of another microelectronic element of the first subassembly.
In accordance with an aspect of the invention, a front face of a given microelectronic element within the stacked assembly can have at least substantially the same dimensions as a front face of another microelectronic element that the given microelectronic element overlies within the stacked assembly.
In accordance with an aspect of the invention, each subassembly can further include alignment features adjacent to the front surface. The alignment features and the traces can be elements of the same metal layer exposed at the front surface.
In accordance with an aspect of the invention, the second subassembly can be joined to the first subassembly such that edges of microelectronic elements of the second subassembly are displaced in a lateral direction relative to edges of microelectronic elements of the first subassembly in vertical alignment therewith. The at least one opening can have a sloped wall exposing the traces adjacent to the laterally displaced edges of the vertically stacked microelectronic elements.
In accordance with such aspect of the invention, the lateral direction can be a first lateral direction and the edges of each microelectronic element can include first edges and second edges transverse to the first edges. In accordance with such aspect, the second subassembly can be joined to the first subassembly such that second edges of microelectronic elements of the second subassembly are further displaced in a second lateral direction relative to second edges of microelectronic elements of the first subassembly in vertical alignment therewith. The second lateral direction can be transverse to the first lateral direction. A second opening having a sloped wall can be formed which exposes second traces adjacent to the second edges. Leads can be formed which are connected to the second traces.
In accordance with an aspect of the invention, a stacked microelectronic unit can be provided which has a top surface and a bottom surface remote from the top surface and a plurality of vertically stacked microelectronic elements therein. At least one microelectronic element may have a front face adjacent to the top surface and a rear face oriented towards the bottom surface. Each of the microelectronic elements can have traces extending from contacts at the front face beyond edges of the microelectronic element. A dielectric layer may contact edges of the microelectronic elements and may underlie the rear face of the at least one microelectronic element. Leads can be connected to the traces extending along the dielectric layer. Unit contacts, exposed at the top surface, can be connected to the leads.
In accordance with such aspect of the invention, at least some bottom unit contacts can be exposed at the bottom surface, the bottom unit contacts being connected to the contacts of at least one of the microelectronic elements.
In accordance with an aspect of the invention, a stacked microelectronic unit can be provided which includes a first microelectronic element having a front face bounded by a first edge and a second edge remote from the first edge. A second microelectronic element can have a front face bounded by a first edge and a second edge remote from the first edge, and the first edge of the second microelectronic element can overlie the front face of the first microelectronic element, such that the first edge of the first microelectronic element extends beyond the first edge of the second microelectronic element. A dielectric layer may overlie the first edges of the first and second microelectronic elements. The dielectric layer may define an edge of the stacked unit. Leads can be connected to traces at the front faces of the first and second microelectronic elements. The leads can extend along the edge of the stacked unit.
In accordance with an aspect of the invention, the first and second microelectronic elements can include third edges oriented in a direction transverse to the first edges. The third edge of the second microelectronic element can overlie the front face of the first microelectronic element and the third edge of the first microelectronic element can extend beyond the third edge of the second microelectronic element. The dielectric layer may define a second edge of the stacked unit overlying the third edges of the microelectronic elements. The stacked unit may further include second leads extending along the second edge of the stacked unit.
In accordance with an aspect of the invention, a stacked microelectronic unit can be provided which includes a first microelectronic element having a front face bounded by a first edge and a second edge remote from the first edge. A second microelectronic element may have a front face bounded by a first edge and a second edge remote from the first edge. The front face of the second microelectronic element can overlie the front face of the first microelectronic element. The front faces of the first and second microelectronic elements may differ in at least one of length along the front faces in a longitudinal direction or in width along the front faces in a lateral direction transverse to the longitudinal direction. A dielectric layer can overlie the first edges of the first and second microelectronic elements. The dielectric layer may define an edge of the stacked unit. Leads can be connected to traces at front faces of the microelectronic elements and the leads may extend along the edge of the stacked unit.
Wafer 10 in
In
Portions of wafer 10 where adjacent microelectronic elements contact one another form saw lanes or strips 23 and 25 where the wafer can be cut without damaging the individual microelectronic elements. For instance, as shown in
With reference to microelectronic element 12″ of
In one stacked assembly fabrication embodiment, an assembly including a plurality of stacked microelectronic elements is fabricated by simultaneously processing a plurality of microelectronic elements en masse. Moreover, processing can be carried out simultaneously as to microelectronic elements which are arranged in form of an array, similar to the processing of an original wafer containing such microelectronic elements.
Referring to
From the individual microelectronic elements obtained during this stage (
Selected ones of the individual microelectronic elements then are attached in form of an array to a carrier layer 160 (
An advantage of processing a reconstituted wafer rather than the original wafer 10 is that the microelectronic elements that make up each reconstituted wafer can be individually selected. When some of the microelectronic elements of the original wafer are of known or suspected marginal or failing quality, they need not be processed into reconstituted wafers. Rather, those microelectronic elements can be left out of the reconstituted wafer such that the reconstituted wafer contains better quality microelectronic elements. Selection of the microelectronic elements to go into the reconstituted wafer can be based on various criteria of quality or expected quality. Microelectronic elements can be selected based of visual, mechanical or electrical inspection, for example. Alternatively, or in addition thereto, individual microelectronic elements can be selected based on the location of the microelectronic element within the original wafer 10, such as when the location of the microelectronic element on the wafer correlates to the quality of the microelectronic element. In a particular embodiment, microelectronic elements may in fact be tested electrically before placing each one into position on the reconstituted wafer. Whether the microelectronic elements are selected based on visual, mechanical or electrical criteria or other criteria, the microelectronic elements which are selected for inclusion in the reconstituted wafer can be referred to as “known good” microelectronic elements or “known good die”.
The microelectronic elements are attached to a carrier 160 as illustrated in
After attaching the microelectronic elements 12 to the carrier 160, a fill layer 116 (
Thereafter, traces 24 (
Subsequently, as illustrated in
Subsequently, a plurality of channels 46 are cut into the stacked assembly. The channels 46 can be formed using a mechanical cutting instrument not shown in the figures. Examples of such a mechanical cutting instrument can be found in U.S. Pat. Nos. 6,646,289 and 6,972,480, the disclosures of which are hereby incorporated by reference herein. Alternatively, a laser cutting technique can be used to form the channels.
As seen in
As seen in
Alternatively, in a variation of that shown in
As further illustrated in
Once the various channels 46, 46′ have been created in the stacked assembly 30, leads 66 (
In the embodiment illustrated in
As shown in
In a variation of the above-described embodiment, the adhesive layer 162A between microelectronic elements 12, 12A of adjacent reconstituted wafers need not be continuous. Instead, openings can be provided in such adhesive layer before attaching the microelectronic elements 12A thereto. Since the traces 24 of the microelectronic elements 12 of the first reconstituted wafer extend beyond edges 118, 119 of the microelectronic elements 12, traces 24 can be accessible from above through the openings in the adhesive layer 162. In one embodiment, the adhesive layer can include a partially cured, tacky adhesive having openings in axial alignment with the spaces between confronting edges 118 of the microelectronic elements 12A. The openings may be pre-punched prior to attaching the microelectronic elements 12A thereto. Alternatively, the openings may be formed after the adhesive layer 162 is attached to microelectronic elements 12 or after the adhesive layer 162 is attached to microelectronic elements 12A but before the adhesive layer with the microelectronic elements 12A thereon are attached to the initial layer of microelectronic elements 12.
In one variation of the above-described embodiment, a stacked assembly 180 (
As in the above-described embodiment, each bottom unit contact 176, 176′ may be connected to only one trace 24, 24′, respectively of one microelectronic element. Alternatively, each bottom unit contact 176 may be connected to two traces 24, 24A which are aligned together within the plane in the section illustrated in
In a variation (
Thus, as seen in plan in
An individual stacked microelectronic unit 80 or package (
To form leads and external unit contacts connected to individual ones of the traces 224 all openings 228 in the stacked assembly can be simultaneously filled with a conductive material to form conductive vias connected to single traces of each microelectronic element. For example, the openings can be filled with a metal to form conductive vias by depositing a primary metal, e.g., by sputtering or electroless deposition, and then electroplating the resulting structure. Some of the metal deposited by the electroplating step may form a layer overlying the packaging layer 71 (
In a particular embodiment, the process of forming the leads can be additive; the leads can be formed by printing the metal composite through a screen or stencil onto the stacked assembly. For example, a metal composite can be deposited through a stencil or by screen-printing to fill the openings 228 in the stacked assembly and form the leads 66. Subsequently, the stacked assembly can be heated to cure the metal composite. The openings can be filled at the same time by the same deposition process as that which forms the leads or the openings can be filled at a different time or different process than that which forms the leads. The metal composite can include, for example, a metal-filled paste such as an epoxy-solder composition, silver-filled paste, or other flowable composition having a dielectric, e.g., polymeric component loaded with metal particles.
In a variation of the embodiment described above (
An advantage of forming the stacked assembly in this manner is that process tolerances can improve for forming leads 366 (
It is apparent that edges 342, 342A, 342B, 342C of microelectronic elements which are adjacent to wall 372 of the channel 346 are also laterally offset. Again, these edges are displaced in direction 320 from each adjacent microelectronic element immediately below it. However, in this case, edges 342 are displaced in a direction which is opposite from the direction in which the wall 372 is sloped. Accordingly, there are no traces connected to leads at such edges 342.
In a particular variation of the above-described embodiments, alignment features 560, 562 (
When the alignment features are formed by different processing, they may include a material which is not included in the traces 524. Likewise, traces 524 may include a material, e.g., a metal which is not included in the alignment features. Optionally, the alignment features may be formed to include a material which is particularly reflective of a wavelength of a source, e.g., an infrared source used to illuminate the alignment features.
The alignment features may include two or more types of features, e.g., closed features 560 and open features 562 to permit edges of each microelectronic element 512 to be distinguished and to facilitate alignment of each microelectronic subassembly within two dimensions. The alignment features 560, 562 may be aligned with the area of each underlying microelectronic element 512 such that the alignment features do not extend beyond the edges of each microelectronic element 512. Alternatively, some or all alignment features, e.g., feature 560′ may be only partially aligned with the area of the microelectronic element 512, such that the alignment feature extends beyond an edge of the microelectronic element 512. In another variation, as shown with respect to microelectronic element 512′, alignment features 560″ and 562″ are disposed at locations which lie beyond the edges 518′, 519′ of the microelectronic element 512′. Such alignment features 560″, 562″ may be aligned entirely or partially with the area that the later formed channels 46 (
The alignment features 560, 562 at the front face 517 of an initial level 130 (
Subsequently, as illustrated in
Subsequently, as illustrated in
Referring to
In the stage of processing illustrated in
A third reconstituted wafer 630B, fabricated in accordance with the above-described process (
Additional layers of reconstituted wafers can be aligned and joined with the stacked assembly 600′ by the above-described processing to form a stacked assembly having a greater number of layers. For example,
In variations of the embodiments illustrated in
Features of the various embodiments described herein can be combined to form microelectronic units having some or all of the features of one described embodiment and one or more features of another described embodiment. Applicants intend by this disclosure to permit all such combination of features, even though such combinations may not be expressly described.
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
The present application is a national phase entry under 35U.S.C. §371 of International Application No. PCT/US2008/009353 filed Aug. 1, 2008, designating the United States. Said international application claims the benefit of U.S. Provisional Application No. 60/963,209 filed Aug. 3, 2007, the disclosure of which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2008/009353 | 8/1/2008 | WO | 00 | 7/16/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/020572 | 2/12/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4074342 | Honn et al. | Feb 1978 | A |
4500905 | Shibata | Feb 1985 | A |
4765864 | Holland et al. | Aug 1988 | A |
4842699 | Hua et al. | Jun 1989 | A |
4897708 | Clements | Jan 1990 | A |
4954875 | Clements | Sep 1990 | A |
5322816 | Pinter | Jun 1994 | A |
5343071 | Kazior et al. | Aug 1994 | A |
5412539 | Elwell et al. | May 1995 | A |
5424245 | Gurtler et al. | Jun 1995 | A |
5426072 | Finnila | Jun 1995 | A |
5466634 | Beilstein, Jr. et al. | Nov 1995 | A |
5563084 | Ramm et al. | Oct 1996 | A |
5571754 | Bertin et al. | Nov 1996 | A |
5604673 | Washburn et al. | Feb 1997 | A |
5608264 | Gaul | Mar 1997 | A |
5614766 | Takasu et al. | Mar 1997 | A |
5618752 | Gaul | Apr 1997 | A |
5646067 | Gaul | Jul 1997 | A |
5656553 | Leas et al. | Aug 1997 | A |
5661087 | Pedersen et al. | Aug 1997 | A |
5682062 | Gaul | Oct 1997 | A |
5716759 | Badehi | Feb 1998 | A |
5766984 | Ramm et al. | Jun 1998 | A |
5767001 | Bertagnolli et al. | Jun 1998 | A |
5804004 | Tuckerman et al. | Sep 1998 | A |
5814889 | Gaul | Sep 1998 | A |
5817530 | Ball | Oct 1998 | A |
5880010 | Davidson | Mar 1999 | A |
5915167 | Leedy | Jun 1999 | A |
5946545 | Bertin et al. | Aug 1999 | A |
5973386 | Horikawa | Oct 1999 | A |
6002167 | Hatano et al. | Dec 1999 | A |
6022758 | Badehi | Feb 2000 | A |
6031274 | Muramatsu et al. | Feb 2000 | A |
6040235 | Badehi | Mar 2000 | A |
6103552 | Lin | Aug 2000 | A |
6130823 | Lauder et al. | Oct 2000 | A |
6133640 | Leedy | Oct 2000 | A |
6177707 | Dekker et al. | Jan 2001 | B1 |
6177721 | Suh et al. | Jan 2001 | B1 |
6188129 | Paik et al. | Feb 2001 | B1 |
6204562 | Ho et al. | Mar 2001 | B1 |
6208545 | Leedy | Mar 2001 | B1 |
6228686 | Smith et al. | May 2001 | B1 |
6252305 | Lin et al. | Jun 2001 | B1 |
6261865 | Akram | Jul 2001 | B1 |
6277669 | Kung et al. | Aug 2001 | B1 |
6340845 | Oda | Jan 2002 | B1 |
6344401 | Lam | Feb 2002 | B1 |
6396710 | Iwami et al. | May 2002 | B1 |
6472247 | Andoh et al. | Oct 2002 | B1 |
6472293 | Suga | Oct 2002 | B1 |
6486546 | Moden et al. | Nov 2002 | B2 |
6492201 | Haba | Dec 2002 | B1 |
6498381 | Halahan et al. | Dec 2002 | B2 |
6498387 | Yang | Dec 2002 | B1 |
6548391 | Ramm et al. | Apr 2003 | B1 |
6551857 | Leedy | Apr 2003 | B2 |
6562653 | Ma et al. | May 2003 | B1 |
6563224 | Leedy | May 2003 | B2 |
6582991 | Maeda et al. | Jun 2003 | B1 |
6607938 | Kwon et al. | Aug 2003 | B2 |
6607941 | Prabhu et al. | Aug 2003 | B2 |
6608377 | Chang et al. | Aug 2003 | B2 |
6611052 | Poo et al. | Aug 2003 | B2 |
6621155 | Perino et al. | Sep 2003 | B1 |
6624505 | Badehi | Sep 2003 | B2 |
6632706 | Leedy | Oct 2003 | B1 |
6646289 | Badehi | Nov 2003 | B1 |
6656827 | Tsao et al. | Dec 2003 | B1 |
6693358 | Yamada et al. | Feb 2004 | B2 |
6717254 | Siniaguine | Apr 2004 | B2 |
6727576 | Hedler et al. | Apr 2004 | B2 |
6730997 | Beyne et al. | May 2004 | B2 |
6737300 | Ding et al. | May 2004 | B2 |
6743660 | Lee et al. | Jun 2004 | B2 |
6753205 | Halahan | Jun 2004 | B2 |
6753208 | MacIntyre | Jun 2004 | B1 |
6777767 | Badehi | Aug 2004 | B2 |
6784023 | Ball | Aug 2004 | B2 |
6806559 | Gann et al. | Oct 2004 | B2 |
6828175 | Wood et al. | Dec 2004 | B2 |
6844241 | Halahan et al. | Jan 2005 | B2 |
6844619 | Tago | Jan 2005 | B2 |
6864172 | Noma et al. | Mar 2005 | B2 |
6867123 | Katagiri et al. | Mar 2005 | B2 |
6870249 | Egawa | Mar 2005 | B2 |
6878608 | Brofman et al. | Apr 2005 | B2 |
6897148 | Halahan et al. | May 2005 | B2 |
6958285 | Siniaguine | Oct 2005 | B2 |
6972480 | Zilber et al. | Dec 2005 | B2 |
6972483 | Song | Dec 2005 | B1 |
6982475 | MacIntyre | Jan 2006 | B1 |
6984545 | Grigg et al. | Jan 2006 | B2 |
6984885 | Harada et al. | Jan 2006 | B1 |
7001825 | Halahan et al. | Feb 2006 | B2 |
7005324 | Imai | Feb 2006 | B2 |
7034401 | Savastiouk et al. | Apr 2006 | B2 |
7049170 | Savastiouk et al. | May 2006 | B2 |
7060601 | Savastiouk et al. | Jun 2006 | B2 |
7087459 | Koh | Aug 2006 | B2 |
7115986 | Moon et al. | Oct 2006 | B2 |
7138295 | Leedy | Nov 2006 | B2 |
7160753 | Williams, Jr. | Jan 2007 | B2 |
7186586 | Savastiouk et al. | Mar 2007 | B2 |
7192796 | Zilber et al. | Mar 2007 | B2 |
7193239 | Leedy | Mar 2007 | B2 |
7208343 | Song et al. | Apr 2007 | B2 |
7208345 | Meyer et al. | Apr 2007 | B2 |
7215018 | Vindasius et al. | May 2007 | B2 |
7241641 | Savastiouk et al. | Jul 2007 | B2 |
7241675 | Savastiouk et al. | Jul 2007 | B2 |
7285865 | Kwon et al. | Oct 2007 | B2 |
7312521 | Noma et al. | Dec 2007 | B2 |
7394152 | Yu et al. | Jul 2008 | B2 |
7408249 | Badihi | Aug 2008 | B2 |
7474004 | Leedy | Jan 2009 | B2 |
7495316 | Kirby et al. | Feb 2009 | B2 |
7498661 | Matsuo | Mar 2009 | B2 |
7504732 | Leedy | Mar 2009 | B2 |
7510928 | Savastiouk et al. | Mar 2009 | B2 |
7521360 | Halahan et al. | Apr 2009 | B2 |
7622810 | Takao | Nov 2009 | B2 |
7662670 | Noma et al. | Feb 2010 | B2 |
7662710 | Shiv | Feb 2010 | B2 |
7663213 | Yu et al. | Feb 2010 | B2 |
7705466 | Leedy | Apr 2010 | B2 |
7759166 | Haba et al. | Jul 2010 | B2 |
7829438 | Haba et al. | Nov 2010 | B2 |
7859115 | Kim et al. | Dec 2010 | B2 |
7884459 | Yoshida et al. | Feb 2011 | B2 |
7901989 | Haba et al. | Mar 2011 | B2 |
7944015 | Kitagawa et al. | May 2011 | B2 |
7952195 | Haba | May 2011 | B2 |
7973416 | Chauhan | Jul 2011 | B2 |
8022527 | Haba et al. | Sep 2011 | B2 |
8043895 | Haba et al. | Oct 2011 | B2 |
8076788 | Haba et al. | Dec 2011 | B2 |
8357999 | Robinson et al. | Jan 2013 | B2 |
20010024839 | Lin | Sep 2001 | A1 |
20010048151 | Chun | Dec 2001 | A1 |
20020047199 | Ohuchi et al. | Apr 2002 | A1 |
20020074637 | McFarland | Jun 2002 | A1 |
20020109236 | Kim et al. | Aug 2002 | A1 |
20020113303 | Murayama | Aug 2002 | A1 |
20020127775 | Haba et al. | Sep 2002 | A1 |
20020132465 | Leedy | Sep 2002 | A1 |
20020171145 | Higuchi et al. | Nov 2002 | A1 |
20030006494 | Lee et al. | Jan 2003 | A1 |
20030060034 | Beyne et al. | Mar 2003 | A1 |
20030094683 | Poo et al. | May 2003 | A1 |
20030096454 | Poo et al. | May 2003 | A1 |
20030173608 | Leedy | Sep 2003 | A1 |
20030209772 | Prabhu | Nov 2003 | A1 |
20030233704 | Castellote | Dec 2003 | A1 |
20040014255 | Grigg et al. | Jan 2004 | A1 |
20040016942 | Miyazawa et al. | Jan 2004 | A1 |
20040070063 | Leedy | Apr 2004 | A1 |
20040082114 | Horng | Apr 2004 | A1 |
20040104454 | Takaoka et al. | Jun 2004 | A1 |
20040142509 | Imai | Jul 2004 | A1 |
20040155326 | Kanbayashi | Aug 2004 | A1 |
20040155354 | Hanaoka et al. | Aug 2004 | A1 |
20040169278 | Kinsman | Sep 2004 | A1 |
20040221451 | Chia et al. | Nov 2004 | A1 |
20040222508 | Aoyagi | Nov 2004 | A1 |
20040245614 | Jobetto | Dec 2004 | A1 |
20040251525 | Zilber et al. | Dec 2004 | A1 |
20050003649 | Takao | Jan 2005 | A1 |
20050012225 | Choi et al. | Jan 2005 | A1 |
20050046002 | Lee et al. | Mar 2005 | A1 |
20050051883 | Fukazawa | Mar 2005 | A1 |
20050056903 | Yamamoto et al. | Mar 2005 | A1 |
20050067680 | Boon et al. | Mar 2005 | A1 |
20050073035 | Moxham | Apr 2005 | A1 |
20050095835 | Humpston et al. | May 2005 | A1 |
20050104179 | Zilber et al. | May 2005 | A1 |
20050156330 | Harris | Jul 2005 | A1 |
20050260794 | Lo et al. | Nov 2005 | A1 |
20050263866 | Wan | Dec 2005 | A1 |
20050287783 | Kirby et al. | Dec 2005 | A1 |
20060006488 | Kanbe | Jan 2006 | A1 |
20060017161 | Chung et al. | Jan 2006 | A1 |
20060043556 | Su et al. | Mar 2006 | A1 |
20060043598 | Kirby et al. | Mar 2006 | A1 |
20060043601 | Pahl | Mar 2006 | A1 |
20060046348 | Kang | Mar 2006 | A1 |
20060046471 | Kirby et al. | Mar 2006 | A1 |
20060055050 | Numata et al. | Mar 2006 | A1 |
20060055061 | Hosokawa et al. | Mar 2006 | A1 |
20060068580 | Dotta | Mar 2006 | A1 |
20060076670 | Lim et al. | Apr 2006 | A1 |
20060079019 | Kim | Apr 2006 | A1 |
20060094165 | Hedler et al. | May 2006 | A1 |
20060115932 | Farnworth et al. | Jun 2006 | A1 |
20060121645 | Ball | Jun 2006 | A1 |
20060138626 | Liew et al. | Jun 2006 | A1 |
20060175697 | Kurosawa et al. | Aug 2006 | A1 |
20060220234 | Honer et al. | Oct 2006 | A1 |
20060220262 | Meyer et al. | Oct 2006 | A1 |
20060249829 | Katagiri et al. | Nov 2006 | A1 |
20060258044 | Meyer et al. | Nov 2006 | A1 |
20060292866 | Borwick et al. | Dec 2006 | A1 |
20070007556 | Shibayama | Jan 2007 | A1 |
20070035001 | Kuhmann et al. | Feb 2007 | A1 |
20070037379 | Enquist et al. | Feb 2007 | A1 |
20070045803 | Ye et al. | Mar 2007 | A1 |
20070045862 | Corisis et al. | Mar 2007 | A1 |
20070052050 | Dierickx | Mar 2007 | A1 |
20070102802 | Kang et al. | May 2007 | A1 |
20070126085 | Kawano et al. | Jun 2007 | A1 |
20070132082 | Tang et al. | Jun 2007 | A1 |
20070148941 | Haba et al. | Jun 2007 | A1 |
20070158807 | Lu et al. | Jul 2007 | A1 |
20070181989 | Corisis et al. | Aug 2007 | A1 |
20070190747 | Humpston et al. | Aug 2007 | A1 |
20070249095 | Song et al. | Oct 2007 | A1 |
20070257350 | Lee et al. | Nov 2007 | A1 |
20080083976 | Haba et al. | Apr 2008 | A1 |
20080083977 | Haba et al. | Apr 2008 | A1 |
20080090333 | Haba et al. | Apr 2008 | A1 |
20080099900 | Oganesian et al. | May 2008 | A1 |
20080099907 | Oganesian et al. | May 2008 | A1 |
20080116544 | Grinman et al. | May 2008 | A1 |
20080116545 | Grinman et al. | May 2008 | A1 |
20080122113 | Corisis et al. | May 2008 | A1 |
20080157324 | Tang et al. | Jul 2008 | A1 |
20080157327 | Yang | Jul 2008 | A1 |
20080166836 | Jobetto | Jul 2008 | A1 |
20080246136 | Haba et al. | Oct 2008 | A1 |
20080284041 | Jang et al. | Nov 2008 | A1 |
20080308921 | Kim | Dec 2008 | A1 |
20080315407 | Andrews, Jr. et al. | Dec 2008 | A1 |
20090009491 | Grivna | Jan 2009 | A1 |
20090032966 | Lee et al. | Feb 2009 | A1 |
20090039528 | Haba et al. | Feb 2009 | A1 |
20090065907 | Haba et al. | Mar 2009 | A1 |
20090067135 | Hirai | Mar 2009 | A1 |
20090067210 | Leedy | Mar 2009 | A1 |
20090121323 | Kwon et al. | May 2009 | A1 |
20090160065 | Haba et al. | Jun 2009 | A1 |
20090166840 | Kang et al. | Jul 2009 | A1 |
20090166846 | Pratt et al. | Jul 2009 | A1 |
20090174082 | Leedy | Jul 2009 | A1 |
20090175104 | Leedy | Jul 2009 | A1 |
20090212381 | Crisp et al. | Aug 2009 | A1 |
20090218700 | Leedy | Sep 2009 | A1 |
20090219742 | Leedy | Sep 2009 | A1 |
20090219743 | Leedy | Sep 2009 | A1 |
20090219744 | Leedy | Sep 2009 | A1 |
20090219772 | Leedy | Sep 2009 | A1 |
20090230501 | Leedy | Sep 2009 | A1 |
20090309235 | Suthiwongsunthorn et al. | Dec 2009 | A1 |
20090316378 | Haba et al. | Dec 2009 | A1 |
20100053407 | Crisp et al. | Mar 2010 | A1 |
20100065949 | Thies et al. | Mar 2010 | A1 |
20100164086 | Noma et al. | Jul 2010 | A1 |
20100200966 | Karnezos | Aug 2010 | A1 |
20100219523 | Chow et al. | Sep 2010 | A1 |
20100225006 | Haba et al. | Sep 2010 | A1 |
20100230795 | Kriman et al. | Sep 2010 | A1 |
20110006432 | Haba et al. | Jan 2011 | A1 |
20110024890 | Yang et al. | Feb 2011 | A1 |
20110039370 | Gomyo et al. | Feb 2011 | A1 |
20110198722 | Suh | Aug 2011 | A1 |
20110248410 | Avsian et al. | Oct 2011 | A1 |
20120025364 | Hoshino et al. | Feb 2012 | A1 |
Number | Date | Country |
---|---|---|
1723556 | Jan 2006 | CN |
1913149 | Feb 2007 | CN |
19516487 | Jul 1996 | DE |
102004039906 | Aug 2005 | DE |
0926723 | Jun 1999 | EP |
1041624 | Oct 2000 | EP |
1482553 | Dec 2004 | EP |
1519410 | Mar 2005 | EP |
1619722 | Jan 2006 | EP |
1653510 | May 2006 | EP |
1686627 | Aug 2006 | EP |
1 741 668 | Jan 2007 | EP |
1801866 | Jun 2007 | EP |
2704690 | Nov 1994 | FR |
2879347 | Jun 2006 | FR |
60160645 | Aug 1985 | JP |
07-509104 | Oct 1995 | JP |
08306724 | Nov 1996 | JP |
09045848 | Feb 1997 | JP |
2001015683 | Jan 2001 | JP |
2001035995 | Feb 2001 | JP |
2001-217386 | Aug 2001 | JP |
2001210782 | Aug 2001 | JP |
2002093944 | Mar 2002 | JP |
2003-037758 | Feb 2003 | JP |
2003163324 | Jun 2003 | JP |
2004063569 | Feb 2004 | JP |
2004119473 | Apr 2004 | JP |
2004153130 | May 2004 | JP |
2004158536 | Jun 2004 | JP |
2005101067 | Apr 2005 | JP |
2005303031 | Oct 2005 | JP |
2007523482 | Aug 2007 | JP |
100201672 | Jun 1999 | KR |
2006-0020822 | Mar 2006 | KR |
20070048952 | May 2007 | KR |
20090013417 | Feb 2009 | KR |
20090047776 | May 2009 | KR |
20090070420 | Jul 2009 | KR |
20090079924 | Jul 2009 | KR |
20100057025 | May 2010 | KR |
I289936 | Apr 2004 | TW |
9425987 | Nov 1994 | WO |
9845130 | Oct 1998 | WO |
9940624 | Aug 1999 | WO |
2004025727 | Mar 2004 | WO |
2004114397 | Dec 2004 | WO |
2005081315 | Sep 2005 | WO |
2006027981 | Mar 2006 | WO |
20070066409 | Jun 2007 | WO |
20090017758 | Feb 2009 | WO |
20090017835 | Feb 2009 | WO |
20090023462 | Feb 2009 | WO |
Entry |
---|
International Search Report and Written Opnion, PCT/US2007/021552 dated May 29, 2008. |
International Search Report and Written Opinion, PCT/US2008/009353 dated Feb. 10, 2009. |
International Search Report and Written Opinion, PCT/US08/09207, dated Jan. 16, 2009. |
Bang, U.S. Appl. No. 60/030,463, filed Sep. 6, 2002. |
International Search Report, PCT/US2009/003643, dated Aug. 28, 2009. |
Partial International Search Report, PCT/US2008/002659. |
International Search Report, PCT/US2008/002659 dated Oct. 17, 2008. |
International Search Report and Written Opinion, PCT/US2008/009356, dated Feb. 19, 2009. |
International Search Report and Written Opinion, PCT/US2008/010746, date May 27, 2009. |
Communication from PCT/US2010/000777, dated Aug. 5, 2010. |
International Search Report, PCT/US07/26095, dated Jul. 7, 2008. |
International Search Report from PCT/US2010/000777, dated Nov. 19, 2010. |
Office Action from U.S. Appl. No. 12/908,227 mailed Apr. 9, 2012. |
Response to Office Action from U.S. Appl. No. 12/908,227 mailed Mar. 20, 2012. |
Office Action from U.S. Appl. No. 11/704,713 mailed Apr. 10, 2012. |
Response to Office Action from U.S. Appl. No. 11/704,713 mailed Mar. 19, 2012. |
Japanese Office Action for JP2011-554055 dated Mar. 27, 2012. |
Chinese Office Action for Application No. 200880109094.9 dated Jun. 30, 2011. |
Chinese Office Action and Search Report for Application 200980122523 dated Aug. 20, 2012. |
Japanese Office Action for Application No. 2010-519235 dated Nov. 13, 2012. |
Korean Office Action for Application No. 10-2011-7024111 dated Nov. 15, 2011. |
Chinese Office Action for Application No. 200880110215.1 dated Apr. 19, 2013. |
Number | Date | Country | |
---|---|---|---|
20110248410 A1 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
60963209 | Aug 2007 | US |