The invention relates to an integrated circuit package, and more particularly, to incorporating passive components on a back side of a substrate having a fabricated integrated circuit device.
As electronic packages increase in both required functionality and the number of functions an electronic package is expected to perform, passive components are frequently needed to accomplish specific circuit tuning. Circuit tuning either adds tunable characteristics to the package or enables the package to perform properly. Enabling proper performance is especially required in many radio-frequency (RF) applications. For example, high-Q inductors are frequently needed in RF applications.
Adding discrete passive components to electronic packages typically results in an increase in both the size and weight of the package. These increases counter contemporary goals of increased portability and miniaturization. Adding discrete passive components in electronic packages also requires a dedicated production line, frequently including surface mounting equipment and added process setups. The added equipment and processes increase both capital investment and assembly lead-time, resulting in higher product costs.
Currently, these problems are being addressed by fabricating passive components, (e.g., inductors, capacitors, and resistors) over the active circuitry of an integrated circuit device. Integrating passive components requires various fabrication methods such as thin-film, photolithographic, and plating processes. Vias are formed over a top passivation layer of an integrated circuit device thus allowing integrated passive components to connect to the underlying integrated circuitry elements.
Consequently, current solutions for adding passive components to an integrated circuit device require custom-designed contact via openings to be at the top passivation layer for each product device. If a product is not initially designed to accept passive components, they cannot be simply added to the device. Therefore, what is need is a simple, inexpensive, and reliable means to add passive components to any integrated circuit without requiring, for example, custom designed contact vias or precise photolithography.
In an exemplary embodiment, the present invention is an integrated circuit device with a first substrate and a second substrate. The first substrate has a front side having one or more integrated circuit devices and a plurality of bond pads fabricated on its surface. The second substrate has a smaller area than the first substrate. The front side of the second substrate has one or more integrated circuit devices fabricated on its surface. At least one passive component is fabricated onto a back side of the second substrate. An electrical conductor allows electrical communications between the at least one passive component of the second substrate and at least one of the one or more integrated circuit devices of the first substrate.
In another exemplary embodiment, the present invention is an integrated circuit device with a first substrate and a second substrate. The first substrate has a front side with one or more integrated circuit devices and a plurality of bond pads fabricated on its surface. The second substrate has a smaller area than the first substrate. A front side of the second substrate has one or more integrated circuit devices fabricated on its surface. A first portion of at least one passive component is fabricated onto a back side of the second substrate. A second portion of at least one passive component is fabricated onto the front side of the first substrate, the second portion of the at least one passive component is formed so as to mirror the first portion. An electrical conductor allows electrical communications between the two portions of the at least one passive component.
In another exemplary embodiment, the present invention is a method of forming one or more passive components on a plurality of substrates. The method includes selecting a first substrate and a second substrate such that an area of the second substrate is less than an area of the first substrate, forming at least one integrated circuit on a front side of each of the first and second substrates, forming a plurality of bond pads on the front side of the first substrate, and forming a photoresist layer over a back side of the second substrate. The photoresist layer is then patterned and etched to form one or more passive component structures on the back side of the second substrate. The etched areas are filled with a metal and the one or more passive component structures are electrically bonded to selected ones of the plurality of bond pads.
In another exemplary embodiment, the present invention is a method of forming one or more passive components on a plurality of substrates where the method includes selecting a first substrate and a second substrate such that an area of the second substrate is less than an area of the first substrate, forming at least one integrated circuit on a front side of each of the first and second substrates, and forming a plurality of bond pads on the front side of the first substrate. A first portion of at least one passive component structure is formed on a back side of the second substrate. A second portion of at least one passive component structure is formed over the at least one integrated circuit on the front side of the first substrate where the second portion being a mirror image of the first portion. The first and second portions of the at least one passive component structure are then electrically bonded.
In
On the back side 105 of the substrate 101, one or more passive components are formed. In this exemplary embodiment, a large single inductor 107 is formed. The inductor 107 terminates with a bond pad 109 on either end. Techniques disclosed herein apply readily to various types of passive components (e.g., inductors, resistors, capacitors, etc.). The passive components may be fabricated individually or in various combinations and with varying sizes.
With reference to
A second integrated circuit die 209 fabricated in accordance with an exemplary embodiment of the present invention is mounted on top of the first integrated circuit die 207. The first integrated circuit die is mounted to the BGA substrate with a first adhesive 202. The second integrated circuit die 209 is mounted to the front side of the first integrated circuit die with a second adhesive 204. The first and second adhesives 202, 204 may be, for example, various types of electrically or non-electrically-conductive tape or epoxy.
One or more passive components 213 are fabricated on the back side of the second integrated circuit die 209. Each of the one or more passive components 213 has an associated plurality of passive component bond pads 215. The plurality of passive component bond pads 215 is also fabricated on the back side of the second integrated circuit die 209. In a specific exemplary embodiment, the one or more passive components 213 is an inductor. Each inductor will therefore have at least two associated bond pads. If an electrically-conductive tape or epoxy is used for the second adhesive 204, it must be insulated from the one or more passive components 213 and the associated plurality of passive component bond pads 215 so as to not electrically short either the components or pads.
Electrical connections are made from the one or more passive components 213 through the plurality of passive component bond pads 215 to the plurality of contact vias 211. Electrical communication occurs between the one or more passive components 213 on the second integrated circuit die 209 and the plurality of contact vias 211 on the first integrated circuit die 211 through, for example, conductive epoxy, solder, conductive polymers, metal-to-metal bonding, etc.
Integrated circuit devices (not shown) are fabricated on the front side of each the first and second integrated circuit dice 207, 209. A plurality of bond wires 215 connect the front side integrated circuit devices to the BGA substrate 201. The BGA substrate 201 and the integrated circuit dice 207, 209 are protected with an encapsulant 219.
In
Mounting the first and second integrated circuit dice 301, 303 brings the two inductor portions 305, 307 in proximity to each other. An interconnecting material 309 forms an electrical connection between the two portions 305, 307 of the inductor. Thus, a complete inductor is formed. The interconnecting material may be comprised of, for example, solder, metal-to-metal bonding, electrically-conductive polymer, or various other bonding techniques known in the art.
With reference to
Exemplary fabrication steps for producing integrated circuit dice according to various embodiments of the present invention are presented graphically with reference to
In
In
With reference to
In
In
All fabrication operations disclosed herein may be carried out at the substrate (e.g., wafer) level prior to singulation of individual dice formed before package assembly. Electrical connections can be achieved by joining appropriate areas with, for example, solder, conductive polymer, or metal-to-metal bonding processes. An optional polymer material, such as epoxy or acrylic, can be used to fill any gaps between the individual die and the substrate of the packaging device to assist in further anchoring the integrated circuit device to the package substrate. The integrated circuit device will then undergo a standard wire bonding process to connect bond pads on the individual die to the package substrate.
In the foregoing specification, the present invention has been described with reference to specific embodiments thereof. It will, however, be evident to a skilled artisan that various modifications and changes can be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims. For example, skilled artisans will appreciate that embodiments of the present invention may be readily used in various types of semiconductor packaging such as Quad Flat-Pack No-Lead (QFN), Dual Flat-Pack No-Lead (DFN), QTAPP® (thin array plastic package), ULGA® (ultra-thin land grid array), BCC® (bumped chip carrier), or other package types. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
This application is a divisional of and claims priority to U.S. application Ser. No. 11/457,409, entitled “A Stacked-Die Electronics Package with Planar and Three-Dimensional Inductor Elements,” filed Jul. 13, 2006, to issue as U.S. Pat. No. 7,932,590 on Apr. 26, 2011, the entire contents of which are hereby incorporated by reference. The following U.S. patent application is relied upon and is incorporated by reference in its entirety in this application: U.S. patent application Ser. No. 11/456,685 filed Jul. 11, 2006.
Number | Name | Date | Kind |
---|---|---|---|
5478773 | Dow et al. | Dec 1995 | A |
5541135 | Pfeifer et al. | Jul 1996 | A |
6008102 | Alford et al. | Dec 1999 | A |
6075712 | McMahon | Jun 2000 | A |
6091144 | Harada | Jul 2000 | A |
6407456 | Ball | Jun 2002 | B1 |
6444517 | Hsu et al. | Sep 2002 | B1 |
6486530 | Sasagawa et al. | Nov 2002 | B1 |
6538313 | Smith | Mar 2003 | B1 |
6744114 | Dentry et al. | Jun 2004 | B2 |
6780677 | Imasu et al. | Aug 2004 | B2 |
6798057 | Bolkin et al. | Sep 2004 | B2 |
6884658 | Akram | Apr 2005 | B2 |
6890829 | Cheng et al. | May 2005 | B2 |
7142000 | Eldridge et al. | Nov 2006 | B2 |
7239025 | Farrar | Jul 2007 | B2 |
7335994 | Klein et al. | Feb 2008 | B2 |
7497005 | Forbes et al. | Mar 2009 | B2 |
7932590 | Lam | Apr 2011 | B2 |
20020086533 | Jang et al. | Jul 2002 | A1 |
20030020171 | Dutta et al. | Jan 2003 | A1 |
20030045044 | Dentry et al. | Mar 2003 | A1 |
20030077871 | Cheng et al. | Apr 2003 | A1 |
20040036569 | Tsai et al. | Feb 2004 | A1 |
20040041270 | Shimizu et al. | Mar 2004 | A1 |
20040178473 | Dentry et al. | Sep 2004 | A1 |
20050002167 | Hsuan et al. | Jan 2005 | A1 |
20050046041 | Tsai | Mar 2005 | A1 |
20050127397 | Borges et al. | Jun 2005 | A1 |
20050133916 | Karnezos | Jun 2005 | A1 |
20050253257 | Chiu et al. | Nov 2005 | A1 |
20060011702 | Funaya et al. | Jan 2006 | A1 |
20060027841 | Tamaki | Feb 2006 | A1 |
20060245308 | Macropoulos et al. | Nov 2006 | A1 |
20060286716 | Takayama | Dec 2006 | A1 |
20070138572 | Lam | Jun 2007 | A1 |
20070138628 | Lam | Jun 2007 | A1 |
20090294957 | Lam | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
2288074 | Oct 1995 | GB |
WO-00054337 | Sep 2000 | WO |
WO-2008008581 | Jan 2008 | WO |
WO-2008008581 | Jan 2008 | WO |
WO-2008008587 | Jan 2008 | WO |
WO-2008008587 | Jan 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20110193192 A1 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11457409 | Jul 2006 | US |
Child | 13088296 | US |