IBM® is a registered trademark of International Business Machines Corporation, Armonk, N.Y., U.S.A. Other names used herein may be registered trademarks, trademarks or product names of International Business Machines Corporation or other companies.
1. Field of the Invention
This invention relates generally to controlled collapse chip connection, and more particularly to providing a structure and method for stress reduction in solder ball attachment joints by varying alignments of solder pads in the azimuthal direction.
2. Description of the Background
Controlled-Collapse Chip Connection (C4) is a means of connecting IC (integrated circuit) chips to substrates in electronic packages. C4 is known as a flip-chip technology, in which the interconnections are small solder balls on the bottom side chip surface. C4 technology represents one of the highest density schemes known in the art for chip interconnections. The C4 technology was initially developed in the 1960s and has proven reliable in the semiconductor field. Historically, the PbSn solder for the formation of the solder ball was evaporated through a metal mask. In the 1990s, electrochemical fabrication of C4 interconnections was introduced. Electroplating is more extendible than evaporation to small C4-pad dimensions, closer pad spacing, larger wafers, and lower-melting solders (which have a higher content of Sn). More recently, the C4 new process (C4NP) technology has been developed by IBM, where bumps are first formed by injection molding in a glass mold, and later transferred to the chip. Recent years have also witnessed the introduction of lead-free alloys for c4 interconnections. These alloys are generally more resistant to plastic deformation than prior leaded versions, making them less susceptible to stress relaxation. This and other factors have resulted into the observation of new failure mechanisms on lead-free interconnections, which are generally related to the high levels of stress supported by these structures.
In general, the top layers of an integrated circuit (IC) chip are wiring levels, separated by insulating layers of dielectric material that provide input/output for the device. In C4 structures, the chip wiring is terminated by a plurality of metal films that form the ball-limiting metallurgy (BLM), which is also referred to as under-bump metallurgy (UBM). The ball-limiting metallurgy defines the size of the solder bump after reflow, provides a surface that is wettable by the solder, and that reacts with the solder to provide good adhesion and acceptable reliability under mechanical stress. The BLM also serves as a barrier between the integrated-circuit device and the metals in the interconnection.
However, despite the widespread use of C4 technology, implementations of new lead free solder bump alloys, BLM and chip circuitry designs have resulted in c racking and metal layer separation at the chip level after attachment to a carrier; in addition to conventional C4 fatigue under thermal cycling (TC). C4 interconnects (especially lead-free) are subject to large mechanical strains in organic packaging. The strains on the C4 solder interconnections are mostly induced by differences in coefficient of thermal expansion (CTE) between chip and carrier during assembly process and product operating conditions.
Embodiments of the present invention include a structure for controlled collapse chip connection (C4) between an integrated circuit IC and a substrate that alleviates the adverse effects of induced stresses in solder joints of the C4. The structure includes: a first array of solder balls arranged on the ball limiting metallurgy (BLM) side of the IC; a second array of solder balls arranged on the BLM side of the IC; a first array of surface mount (SM) pads arranged on the placement side of the substrate and corresponding to the first array of solder balls on the BLM side of the IC; a second array of SM pads arranged on the placement side of the substrate and corresponding to the second array of solder balls on the BLM side of the IC; and wherein the compensation for the adverse effects of induced stress in the solder joints is facilitated by varying the relative alignment of the first and second SM pads to the first and second array of solder balls on the BLM side of the IC.
A method for controlled collapse chip connection (C4) between an integrated circuit IC and a substrate that alleviates the adverse effects of induced stresses in solder joints of the C4 is also provided. The method includes: defining a first array of solder balls arranged on the BLM side of the IC; defining a second array of solder balls arranged on the BLM side of the IC; forming a first array of surface mount (SM) pads arranged on the placement side of the substrate and corresponding to the first array of solder balls on the BLM side of the IC; forming a second array of SM pads arranged on the placement side of the substrate and corresponding to the second array of solder balls on the BLM side of the IC; varying the relative alignment of the first and second SM pad arrays to the first and second array of solder balls on the BLM of the IC; and wherein the varying facilitates the reduction of adverse effects resulting from induced stress in the solder joints.
Additional features and advantages are realized through the techniques of the present invention. Other embodiments and aspects of the invention are described in detail herein and are considered a part of the claimed invention. For a better understanding of the invention with advantages and features, refer to the description and to the drawings.
As a result of the summarized invention, a solution is technically achieved in which solder attach between an IC chip and a carrier employing controlled-collapse chip connection (C4) is enhanced by alleviating adverse effects resulting from stresses induced by differences in chip to carrier coefficient of thermal expansion (CTE) by varying substrate SM pad location relative the ball limiting metallurgy (BLM).
The subject matter that is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains the preferred embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
Embodiments of the present invention provide a structure and method for solder attach between an IC chip and a carrier employing controlled-collapse chip connection (C4) that is enhanced by alleviating the adverse effects resulting from stresses induced by differences in chip to carrier coefficient of thermal expansion (CTE) by varying substrate SM pad locations relative the IC chip ball limiting metallurgy (BLM). The resultant azimuthal (rotational) stretching acts to increase the compliancy of the solder connections.
While the preferred embodiments to the invention have been described, it will be understood that those skilled in the art, both now and in the future, may make various improvements and enhancements which fall within the scope of the claims which follow. These claims should be construed to maintain the proper protection for the invention first described.