This application claims priority to Germany Patent Application 103 27 515.0, which was filed Jun. 17, 2003 and is incorporated herein by reference.
The present invention relates generally to device packaging, and more particularly to a substrate-based integrated circuit package.
Substrate-based integrated circuit (IC) packages include BGA packages, BGA standing for Ball Grid Array. In U.S. Pat. No. 6,048,755 A, a method for producing a BGA package by using a substrate with a patterned solder resist mask is described. In this arrangement, a number of IC packages can be arranged on a common substrate strip (matrix strip).
In such substrate-based IC packages, the mold cap (covering material or mold compound) is used to protect the chip edges since cracks or other mechanical damage can also affect the active chip side. Such damage can be produced during the handling, during the back-end process and also at the customer. The mold cap encloses the back of the chip and adjoining areas of the substrate.
In these IC packages, the chip can be fixed on the substrate in different ways. Thus, the chips are mounted, for example, by means of a tape or a printed or dispensed adhesive. It is particularly effective to print the adhesive onto the substrate by interposing a printing template and then to bond the chip to the substrate. To ensure a reliable adhesive printing process in this case, particularly on matrix substrates, the solder resist is omitted in the package area on the chip side. This additionally impedes contamination and a sufficient support area is created for the printing template used during the printing process. Matrix substrates are understood to be substrates, which are provided for accommodating a multiplicity of chips.
The adhesive has been previously printed with the aid of a squeegee and a printing template onto substrates, which were covered with solder resist over the whole area or at least most of the area on the chip side. However, this results in the risk, particularly in substrates with a bond channel, that during the die attach process (chip assembly process) contamination of the wire bond area on the chip can occur due to flowing of the adhesive. The adhesive can flow over the edge of the bond channel to the vicinity of the bond pad on the chip, which would have extremely negative effects for the wire bond process.
The applied adhesive was thus an additional layer on the solder resist. If then the solder resist is left off at least partially in the package area on the chip side, there is no support area (spacer) for the printing template, particularly in the case of matrix strips, and a cover with solder resist is necessary for process reasons (e.g., substrate warpage, mold sealing ring) on the substrate edge around the chip area. As a result, however, support area is lacking in the center of the matrix, which results in non-uniform bending of the printing template in the direction of the area to be printed. This also has the effect that the applied adhesive has a non-uniform thickness.
The preferred embodiment of the invention relates to a substrate-based IC package that includes a substrate on which a chip is mounted with a die attach material. The substrate is provided with a solder resist and has, on the side opposite the chip, conductor tracks provided with soldering globules. The soldering globules are connected to the chip via wire jumpers that extend through a bond channel, which is filled with a mold compound. The chip and the substrate are encapsulated with a mold cap on the chip side.
The preferred embodiment of the invention, therefore, provides for the creation of a substrate-based IC package in which the defects of the prior art are prevented. In one aspect, the invention provides a substrate-based IC package of the type initially mentioned in that the substrate is provided with spacers for supporting a printing template for applying a die attach material.
It is preferred to provide as spacer a strip of a solder resist, which surrounds at least the bond channel gaplessly with essentially the same width.
In a further embodiment of the invention, each bond channel is gaplessly surrounded by a strip of solder resist in the case of matrix substrates.
An advantage of the invention can be seen in the fact that the ring of a solder resist around the bond channel forms a flow barrier for the hybrid polyimide epoxy material used as adhesive that can emerge below the chip while it is being laminated. Furthermore, the spacers of the solder resist ensure a uniform distance of the printing template during the printing process so that the thickness of the adhesive is constant over the entire area of the matrix substrate.
A further advantage of the invention can be seen in the fact that the free space produced underneath the printing template due to the omission of the solder resist can be filled with adhesive in addition to the volume in the printing template.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The making and using of the presently preferred embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.
In one aspect, the invention provides the concept of leaving a ring 5 around the bond channel 2 in substrates 1 in which the solder resist is left off in the chip area on the chip side for reasons of reliability at chip and module level.
This ring then fulfills at least a threefold function. It is used as a template support and, at the same time, as flow barrier for the adhesive 3 during the assembly of the chip. In addition, the thickness of the adhesive is increased by the additional distance from the surface of the substrate 1 to be printed.
Table 1 provides a list of reference numbers used in the figures.
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
103 27 515 | Jun 2003 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
6048755 | Jiang et al. | Apr 2000 | A |
6297543 | Hong et al. | Oct 2001 | B1 |
6531763 | Bolken et al. | Mar 2003 | B1 |
6667560 | Goh | Dec 2003 | B1 |
6724076 | Kahlisch et al. | Apr 2004 | B1 |
20020030288 | Murata | Mar 2002 | A1 |
Number | Date | Country |
---|---|---|
199 54 888 | May 2001 | DE |
0 810 655 | Dec 1997 | EP |
Number | Date | Country | |
---|---|---|---|
20040256705 A1 | Dec 2004 | US |