This invention relates to Radio Frequency (RF) shielding and, more specifically, to a system and method for providing an RF shield for a Package on Package (PoP) base package which leaves contacts of the base package exposed and available for mounting another PoP package on the base package while reducing the possibility of shorting the shield material to a PoP solder joint.
Radio Frequency (RE) shielding is required on certain semiconductor devices in order to minimize Electro-Magnetic Interference (EMI) radiation from the semiconductor device. RE shielding is further required to prevent RF radiation from external sources from interfering with operation of the semiconductor device.
RF shielding is generally accomplished in one of three ways. A first method is to attach a metal can over the component after the component is attached to the motherboard. However, shield attach on the mother board has several problems. First, shield attach can be costly and a low yielding process. External shields soldered to the motherboard further require additional board space.
An alternative to the shield attached method described above is an embedded RF shield. In an embedded shield, the metal RF shield is directly attached to the semiconductor package substrate by means of solder or a conductive adhesive. The shield may be fully embedded within the mold compound of the finished package or can be exposed after assembly. In either case, the addition of a metal shield as a component attached to the top surface of the substrate is problematic for several reasons. First, the addition of a metal shield as a component attached to the top surface of the substrate requires a significant amount of additional space on the package substrate and adds additional thickness to the package. Second, it can be difficult to transfer mold in and around the metal shield to fully encapsulate the semiconductor package. Shield attach is also problematic due to flux creep during shield attach which may cause delamination and extrusion issues
The third method is the conventional conformal shield. In this method, all of the components are placed on the substrate and the substrate, or strip, is over-molded using unit molding, or pin gate molding where individual mold caps are defined within the strip such that upward facing, exposed pads in the substrate remain exposed after the mold operation. A conductive material is then applied to the strip such that it covers the units and also makes electrical contact to the upward facing pads. The strip is then singulated into individual units. While this technique eliminates the molding process concerns associated with the aforementioned embedded shield method, it does not eliminate the added substrate size required to form the so-called upward facing, exposed pads.
POP packages create a problem for RF shielding. For a PoP package, the ground connection for the RF shield must be electrically isolated from functional ground signals for the base/bottom and top PoP packages. In order to meet this requirement, the PoP base package must be shielded on the top and 4 sides of the package, while leaving contacts on the base package exposed and available for mounting the top PoP package. In addition, there can be no possibility to short the shield material to the PoP solder joint.
Therefore, a need existed to provide a system and method to overcome the above problem. The system and method would provide an RF shield for a PoP base package which leaves contacts on the base package exposed and available for mounting a top PoP package while reducing the possibility of shorting the shield material to a PoP solder joint.
A semiconductor package has a first substrate having a plurality of metal traces. At least one die is electrically coupled to the first surface of the first substrate. A plurality of land pads is electrically coupled to the first surface of the first substrate. A mold compound encapsulates portions of the die and portions of the first surface of the first substrate. A conductive coating is applied to the mold compound and electrically coupled to at least one metal trace. A non-conductive coating is formed over the conductive coating and portions of the mold compound. A plurality of vias is formed through the non-conductive coating and the mold compound to expose the land pads.
The present invention is best understood by reference to the following detailed description when read in conjunction with the accompanying drawings.
Common reference numerals are used throughout the drawings and detailed description to indicate like elements.
Referring to
The package 10 has a first substrate 12. The first substrate 12 may be any one chosen from a conventional rigid PCB, a flexible PCB, and an equivalent thereof, but the kind of first substrate 12 is not limited herein. The first substrate 12 includes an insulation layer 14 having predetermined area and thickness. The insulation layer 14 has an approximately planar first surface and an approximately planar second surface opposing the first surface. The first substrate 12 has a plurality of metal traces 16 formed on the first surface of the insulation layer 14. A plurality of metal traces 16 may also be formed on the second surface of the insulation layer 14. The number of metal traces 16 is not limited to the number shown in
One or more dies 18 are attached to a first surface of the first substrate 12. The dies 18 may be any type of device. For example, the die 18 may be a memory device, a logic device, an ASIC device, and other like elements. It should be noted that the listing of the above types of die 18 is given as an example and should not be seen as to limit the scope of the present invention. Different methods may be used to electrically couple the die 18 to the first substrate 12. Wirebonds, surface mount technology, die stacking technology, flip chip technology, and the like may be used. The listing of the above is given as an example and should not be seen as to limit the scope of the present invention.
In the embodiment shown in
The process of flip chip mounting generally leaves spaces between the first surface of the substrate 12 and the bottom surface of the die 18. An underfill 24 is generally used to fill the gap between the bottom surface of the die 18 and the first surface of the substrate 12. The underfill 24 may be the same or different than the material used to encapsulate the package 10.
A plurality of land pads 26 are formed around a perimeter of the first surface of the substrate 12 and attached to at least one metal trace 16. Each land pad 26 is used to electrically couple a second package to the base package 10. In accordance with the embodiment shown in
A mold compound 30 is used to encapsulate the package 10. The mold compound 30 is mainly made of non-conductive resin, film, or the like. The mold compound 30 is used to encapsulate the die 18, exposed areas on the first surface of the substrate 12, and the contacts 28.
In the embodiment shown in
A conductive coating 32 is then applied to the package 10. The conductive coating 32 is used to provide RF shielding for the package 10. The conductive coating 32 may be applied by plating, vacuum printing, vacuum deposition, insert molding, spray coating, and the like. The conductive coating 32 is applied to the top surface of the package 10 and to the side surfaces of the package 10. The conductive coating 32 is applied so that the conductive coating 32 will be in contact with the exposed metal traces 16a. Thus, the package 10 will have a conductive coating 32 that contacts grounded metal. If all four sides of the package 10 have exposes metal traces 16a, the conductive coating 32 will contact ground metal on all four sides of the package 10.
The conductive coating 32 above each of the contacts 28 (or above the land pad 26 if contacts 28 are not used) is removed. In general, the amount of conductive coating 32 removed is slightly more than the width of the contact 28. The conductive coating 32 may be removed via a mask printing process, a laser ablation process, a selective plating process, and the like. Other methods may be used to remove the conductive coating 32 without departing from the spirit and scope of the present invention.
A non-conductive coating 34 is then applied to the package 10 and cured. The non-conductive coating 34 is applied to the conductive coating 32 and to the mold compound 30 where the conductive coating 32 was removed. The non-conductive coating 34 will cover the exposed sections of the conductive coating 32. The non-conductive coating 34 may be a ceramic, silicon, a polymer, or the like. The listing of the above types of non-conductive coatings 34 is given as an example and should not be seen as limiting the scope of the present invention.
A plurality of vias 36 is formed in the package 10. Each of the vias 36 extends through the non-conductive coating 34 and the mold compound 30 to a top surface of a respective contact 28 (or all the way to the land pads 26 if contacts 28 are omitted). Each of the vias 36 has a frusto-conical configuration having the non-conductive coating 34 formed around the inner top perimeter of each via 36. In general, the number of vias 36 formed in the package 10 conforms to the number of contacts 28. The vias 36 allow contacts from another package to be placed on top of the package 10 and be in electrically coupled to the contacts 28.
A set of contacts 38 may be coupled to the second surface of the substrate 12. In the embodiment shown in
The package 10 provides shielding on a top surface and all four sides surfaces of the package 10 and provides isolation between the package 10 and a package to be stacked on a top surface of the package 10. The shielding on the top surface has minimal openings that allow another package to be electrically coupled to the package 10. The non-conductive coating 34 provides isolation between the conductive coating 32 and signal transmitted from solder joints between the stacked packages.
Referring now to
One or more dies 18 are attached to a first surface of the first substrate 12. Different methods may be used to electrically couple the die 18 to the first substrate 12. Wirebonds, surface mount technology, through hole technology, flip chip technology, and the like may be used. The listing of the above is given as an example and should not be seen as to limit the scope of the present invention.
In the embodiment shown in
A plurality of land pads 26 are formed around a perimeter of the first surface of the substrate 12 and attached to at least one metal trace 16. Each land pad 26 is used to electrically couple a second package to the base package 10A. In the embodiment shown in
A plurality of metal wires 42 are electrically coupled to one of the metal traces 16 formed on the first surface of the insulation layer 14. In general, the metal wires 42 are wirebonded to a grounded metal trace 16b formed on the first surface of the insulation layer 14. In accordance with one embodiment, both ends of the metal wires 42 are electrically coupled to the metal traces 16b so that the metal wires 42 form a loop. The metal wires 42 may be gold, copper, aluminum, or the like. The listing of the above is given as examples and should not be seen as to limit the scope of the present invention.
A mold compound 30 is used to encapsulate the semiconductor device 10A. The mold compound 30 is mainly made of non-conductive material, which is applied on the top surface of the die 18 and the substrate 12. During the process of applying the mold compound 30, the loops formed by the metal wires 42 are compressed by the mold tooling so that the top of the loop of the metal wires 42 are exposed on the top of the package 10A after molding. A cleaning process may be performed to remove any mold compound 42 that may have formed on the top of the loop of the metal wires 42. The cleaning process will clean the contact area of the metal wire 42, resulting in increased contact area and reduced contact resistance between the metal wire 42 and the conductive coating 32 to be applied. The cleaning process may be done by chemical removal process, a grinding process or other physical abrasion techniques, laser ablation, and the like. The listing of the above is given as examples and should not be seen as to apply to a specific embodiment or to limit the scope of the present invention.
The conductive coating 32 is then applied to the package WA. The conductive coating 32 is applied to the top surface of the package 10A and to the side surfaces of the package 10A. The conductive coating 28 is applied so that the conductive coating 28 is in contact with the exposed portion of the top of the loop of the metal wires 42. The conductive coating 32 may further be applied so that the conductive coating 32 will be in contact with the exposed metal traces 16a. Thus, the semiconductor device 10A will have a conductive coating 28 that contacts grounded metal. The conductive coating 32 is used to provide RF shielding for the package 10A. The conductive coating 32 may be applied by plating, vacuum printing, vacuum deposition, insert molding, spray coating, and the like. The conductive coating 32 may be applied by plating, vacuum printing, vacuum deposition, insert molding, spray coating, and the like. In
The conductive coating 32 above each of the contacts 28 (or above the land pad 26 if contacts 28 are not used) is removed. In general, the amount of conductive coating 32 removed is slightly more than the width of the contact 28. The conductive coating 32 may be removed mask printing process, a selective plating process, and the like. Other methods may be used to remove the conductive coating 32 without departing from the spirit and scope of the present invention.
A non-conductive coating 34 is then applied to the package 10A and cured. The non-conductive coating 34 is applied to the conductive coating 32 and to the mold compound 30 where the conductive coating 32 was removed. The non-conductive coating 34 will cover the exposed sections of the conductive coating 32. The non-conductive coating 34 may be a ceramic, silicon, a polymer, or the like. The listing of the above types of non-conductive coatings 34 is given as an example and should not be seen as limiting the scope of the present invention.
A plurality of vias 36 is formed in the package 10A. Each of the vias 36 extends through the non-conductive coating 34 and the mold compound 30 to a top surface of a respective contact 28 (or above the land pad 26 if contacts 28 are not used). Each of the vias 36 has a frusto-conical configuration having the non-conductive coating 34 formed around the inner top perimeter of each via 36. In general, the number of vias 36 formed in the package 10A conforms to the number of contacts 28/land pads 26. The vias 36 allow contacts from another package to be placed on top of the package 10A and be in electrically coupled to the contacts 28/land pads 26.
A set of contacts 38 may be coupled to the second surface of the substrate 12. In the embodiment shown in
Referring now to
A plurality of land pads 26 are formed around a perimeter of the first surface of the substrate 12 and attached to at least one metal trace 16. Each land pad 26 is used to electrically couple a second package to the base package 10. A contact 28 is attached to each bond pad 26. The contact 28 is generally a solder ball/bump. The A reflow process may be used to couple the solder ball/bumps to the land pads 26. The contact 28 is optional. In some embodiments, particularly when the mold compound 32 is very thin and the diameter of the via 36 is large, contacts 28 may not be required.
A mold compound 30 is used to encapsulate the package 10. The mold compound 30 is mainly made of non-conductive paste, film, or the like. The mold compound 30 is used to encapsulate the die 18, exposed areas on the first surface of the substrate 12, and the contacts 28.
Referring to
Referring to
Referring to
Referring to
A set of contacts 38 may be coupled to the second surface of the substrate 12. In the embodiment shown in
Referring now to
A mold compound 130 is used to encapsulate the package 100. The mold compound 130 is mainly made of non-conductive resin, film, or the like. The mold compound 130 is used to encapsulate the die 118 and exposed areas on the first surface of the substrate 112.
A set of solder ball contacts 138 may be coupled to the second surface of the substrate 112. The solder ball contacts 138 will be electrically coupled to the second surface of the substrate 112 via land pads 140. The solder ball contacts 138 are then electrically coupled to the contacts 28 (or to the land pad 26 if contacts 28 are not used) in order to electrically attach the second package 110 to the package 10.
The package 10 provides shielding on a top surface and all four sides surfaces of the package 10 and provides isolation between the package 10 and the second package 110 to be stacked on a top surface of the package 10. The shielding on the top surface has minimal openings that allow the second package 110 to be electrically coupled to the package 10. The non-conductive coating 34 provides isolation between the conductive coating 32 and signal transmitted from solder joints between the stacked packages.
This disclosure provides exemplary embodiments of the present invention. The scope of the present invention is not limited by these exemplary embodiments. Numerous variations, whether explicitly provided for by the specification or implied by the specification, such as variations in structure, dimension, type of material and manufacturing process may be implemented by one of skill in the art in view of this disclosure.
Number | Name | Date | Kind |
---|---|---|---|
4925024 | Ellenberger et al. | May 1990 | A |
5166772 | Soldner et al. | Nov 1992 | A |
5416358 | Ochi et al. | May 1995 | A |
5468999 | Lin et al. | Nov 1995 | A |
5473191 | Tanaka | Dec 1995 | A |
5557142 | Gilmore et al. | Sep 1996 | A |
5608265 | Kitano et al. | Mar 1997 | A |
5614694 | Gorenz, Jr. et al. | Mar 1997 | A |
5639989 | Higgins, III | Jun 1997 | A |
5656864 | Mitsue et al. | Aug 1997 | A |
5694300 | Mattei et al. | Dec 1997 | A |
5726493 | Yamashita et al. | Mar 1998 | A |
5907477 | Tuttle et al. | May 1999 | A |
5940271 | Mertol | Aug 1999 | A |
6136131 | Sosnowski | Oct 2000 | A |
6194655 | Lange, Sr. et al. | Feb 2001 | B1 |
6246115 | Tang et al. | Jun 2001 | B1 |
6423570 | Ma et al. | Jul 2002 | B1 |
6433420 | Yang et al. | Aug 2002 | B1 |
6465280 | Martin et al. | Oct 2002 | B1 |
6602737 | Wu | Aug 2003 | B2 |
6686649 | Mathews et al. | Feb 2004 | B1 |
6815254 | Mistry et al. | Nov 2004 | B2 |
7030469 | Mahadevan et al. | Apr 2006 | B2 |
20020089832 | Huang | Jul 2002 | A1 |
20030067757 | Richardson et al. | Apr 2003 | A1 |
20040145051 | Klein et al. | Jul 2004 | A1 |
20050029644 | Ho et al. | Feb 2005 | A1 |
20050184377 | Takeuchi et al. | Aug 2005 | A1 |
20050205978 | Pu et al. | Sep 2005 | A1 |
20050280139 | Zhao et al. | Dec 2005 | A1 |
20060244131 | Kobayashi et al. | Nov 2006 | A1 |
20070030661 | Morris et al. | Feb 2007 | A1 |
20070176281 | Kim et al. | Aug 2007 | A1 |
20070181989 | Corisis et al. | Aug 2007 | A1 |
20080149381 | Kawagishi et al. | Jun 2008 | A1 |
20080230887 | Sun et al. | Sep 2008 | A1 |
20090014858 | Boon et al. | Jan 2009 | A1 |
20090152715 | Shim et al. | Jun 2009 | A1 |