Embodiments of the invention relate to methods of fabricating thin films of self-assembling block copolymers, and devices resulting from those methods.
As the development of nanoscale mechanical, electrical, chemical and biological devices and systems increases, new processes and materials are needed to fabricate nanoscale devices and components. Making electrical contacts to conductive lines has become a significant challenge as the dimensions of semiconductor features shrink to sizes that are not easily accessible by conventional lithography. Optical lithographic processing methods have difficulty fabricating structures and features at the sub-60 nanometer level. The use of self assembling diblock copolymers presents another route to patterning at nanoscale dimensions. Diblock copolymer films spontaneously assembly into periodic structures by microphase separation of the constituent polymer blocks after annealing, for example by thermal annealing above the glass transition temperature of the polymer or by solvent annealing, forming ordered domains at nanometer-scale dimensions.
The film morphology, including the size and shape of the microphase-separated domains, can be controlled by the molecular weight and volume fraction of the AB blocks of a diblock copolymer to produce lamellar, cylindrical, or spherical morphologies, among others. For example, for volume fractions at ratios greater than about 80:20 of the two blocks (AB) of a diblock polymer, a block copolymer film will microphase separate and self-assemble into periodic spherical domains with spheres of polymer B surrounded by a matrix of polymer A. For ratios of the two blocks between about 60:40 and 80:20, the diblock copolymer assembles into a periodic hexagonal close-packed or honeycomb array of cylinders of polymer B within a matrix of polymer A. For ratios between about 50:50 and 60:40, lamellar domains or alternating stripes of the blocks are formed. Domain size typically ranges from 5-50 nm.
Many applications of the self-assembly of block copolymers (BCPs) to lithography require that the self-assembled domains orient perpendicular to the substrate with both domains wetting and exposed at the air interface. With selective removal of one of the polymer blocks to form an etch mask, the perpendicularly oriented void structures can then be used for etching the underlying substrate.
Conventional thermal annealing of most BCPs (e.g., PS-b-PVP, etc.) in air or vacuum will typically result in one block preferentially wetting the air vapor interface. A variant of thermal annealing called zone annealing, can provide rapid self-assembly (e.g., on the order of minutes) but is only effective for a small number of BCPs (e.g., PS-b-PMMA, PS-b-PLA) with polymer domains that equally wet the air vapor interface. Solvent annealing of BCPs has been used to produce a perpendicular orientation of the self-assembled domains to the substrate, but is generally a very slow process, typically on the order of days, and can require large volumes of the solvent. A typical solvent anneal is conducted by exposing a BCP film to a saturated solvent atmosphere at 25° C. for at least 12 hours (often longer).
It would be useful to provide methods of fabricating films of arrays of ordered nanostructures that overcome these problems.
Embodiments of the invention are described below with reference to the following accompanying drawings, which are for illustrative purposes only. Throughout the following views, reference numerals will be used in the drawings, and the same reference numerals will be used throughout the several views and in the description to indicate same or like parts.
The following description with reference to the drawings provides illustrative examples of devices and methods according to embodiments of the invention. Such description is for illustrative purposes only and not for purposes of limiting the same.
In the context of the current application, the terms “semiconductor substrate,” or “semiconductive substrate,” or “semiconductive wafer fragment,” or “wafer fragment,” or “wafer,” will be understood to mean any construction comprising semiconductor material, including, but not limited to, bulk semiconductive materials such as a semiconductor wafer (either alone or in assemblies comprising other materials thereon), and semiconductive material layers (either alone or in assemblies comprising other materials). The term “substrate” refers to any supporting structure including, but not limited to, the semiconductive substrates, wafer fragments or wafers described above.
“Lo” as used herein is the inherent periodicity or pitch value (bulk period or repeat unit) of structures that self assemble upon annealing from a self-assembling (SA) block copolymer. “LB” as used herein is the periodicity or pitch value of a blend of a block copolymer with one or more of its constituent homopolymers. “L” is used herein to indicate the center-to-center cylinder pitch or spacing of cylinders of the block copolymer or blend, and is equivalent to “Lo” for a pure block copolymer and “LB” for a copolymer blend.
In embodiments of the invention, a polymer material (e.g., film, layer) is prepared by guided self-assembly of block copolymers, with both polymer domains at the air interface. The block copolymer material spontaneously assembles into periodic structures by microphase separation of the constituent polymer blocks after annealing, forming ordered domains of perpendicular-oriented cylinders at nanometer-scale dimensions within a trench.
A method for fabricating a self-assembled block copolymer material that defines a one-dimensional (1D) array of nanometer-scale, perpendicular-oriented cylinders according to an embodiment of the invention is illustrated with reference to
The described embodiment involves a thermal anneal of a cylindrical-phase block copolymer under a solvent atmosphere. The anneal is conducted in combination with a graphoepitaxy technique that utilizes a lithographically defined trench as a guide with a floor composed of a material that is neutral wetting to both polymer blocks, and sidewalls and ends that are preferential wetting to one polymer block and function as constraints to induce the block copolymer to self-assemble into an ordered 1-D array of a single row of cylinders in a polymer matrix oriented perpendicular to the trench floor and registered to the trench sidewalls. In some embodiments, two or more rows of perpendicular-oriented cylinders can be formed in each trench.
As depicted in
In any of the described embodiments, a single trench or multiple trenches can be formed in the substrate, and can span the entire width of an array of lines (or other active area). In embodiments of the invention, the substrate 10 is provided with an array of conductive lines 12 (or other active areas) at a pitch of L. The trench or trenches are formed over the active areas 12 (e.g., lines) such that when the block copolymer material is annealed, each cylinder will be situated above a single active area 12 (e.g., a conductive line). In some embodiments, multiple trenches 18 are formed with the ends 24 of each adjacent trench 18 aligned or slightly offset from each other at less than 5% of L such that cylinders in adjacent trenches 18 are aligned and situated above the same conductive line 12.
In the illustrated embodiment, a neutral wetting material 14 (e.g., random copolymer) has been formed over the substrate 10. A material layer 16 (or one or more material layers) can then be formed over the neutral wetting material and etched to form trenches 18 that are oriented perpendicular to the array of conductive lines 12, as shown in
In another embodiment, the material layer 16′ can be formed on the substrate 10′, etched to form the trenches 18′ as depicted in
Single or multiple trenches 18 (as shown) can be formed using a lithographic tool having an exposure system capable of patterning at the scale of L (10-100 nm). Such exposure systems include, for example, extreme ultraviolet (EUV) lithography, proximity X-rays and electron beam (E-beam) lithography, as known and used in the art. Conventional photolithography can attain (at smallest) about 58 nm features.
A method called “pitch doubling” or “pitch multiplication” can also be used for extending the capabilities of photolithographic techniques beyond their minimum pitch, as described, for example, in U.S. Pat. No. 5,328,810 (Lowrey et al.), U.S. Pat. No. 7,115,525 (Abatchev, et al.), U.S. Publication 2006/0281266 (Wells) and U.S. Publication 2007/0023805 (Wells). Briefly, a pattern of lines is photolithographically formed in a photoresist material overlying a layer of an expendable material, which in turn overlies a substrate, the expendable material layer is etched to form placeholders or mandrels, the photoresist is stripped, spacers are formed on the sides of the mandrels, and the mandrels are then removed, leaving behind the spacers as a mask for patterning the substrate. Thus, where the initial photolithography formed a pattern defining one feature and one space, the same width now defines two features and two spaces, with the spaces defined by the spacers. As a result, the smallest feature size possible with a photolithographic technique is effectively decreased down to about 30 nm or less.
Factors in forming a single (1D) array or layer of perpendicular-oriented nanocylinders within the trenches include the width (wt) and depth (Dt) of the trench, the formulation of the block copolymer or blend to achieve the desired pitch (L), and the thickness (t) of the block copolymer material within the trench.
There is a shift from two rows to one row of the perpendicular cylinders within the center of the trench 18 as the width (wt) of the trench 18 is decreased and/or the periodicity (L value) of the block copolymer is increased, for example, by forming a ternary blend by the addition of both constituent homopolymers. The boundary conditions of the sidewalls 22 of trenches 18 in both the x- and y-axis impose a structure wherein each trench 18 contains “n” number of features (e.g., cylinders). For example, a block copolymer or blend having a pitch or L value of 35-nm deposited into a 75-nm wide trench 18 having a neutral wetting floor will, upon annealing, result in a zigzag pattern of 17.5-nm diameter (≃0.5*L) perpendicular cylinders that are offset by about one-half the pitch distance (about 0.5*L) for the length (lt) of the trench 18, rather than a single line row of perpendicular cylinders aligned with the sidewalls 22 down the center of the trench 18.
In the illustrated embodiment, the trenches 18 are constructed with a width (wt) of about 1.5−2*L (or 1.5−2×the pitch value) of the block copolymer such that a cast block copolymer material (or blend) of about L will self assemble upon annealing into a single row of perpendicular cylinders (diameter≃0.5*L) with a center-to-center pitch distance (p) of adjacent cylinders at or about L. For example, in using a cylindrical phase block copolymer with an about 50 nm pitch value or L, the width (wt) of the trenches 18 can be about 1.5−2*50 nm or about 75-100 nm. The length (lt) of the trenches 18 is at or about n*L or an integer multiple of L, typically within a range of about n*10 to about n*100 nm (with n being the number of features or structures, e.g., cylinders). The depth (Dt) of the trenches 18 is greater than or equal to L (Dt>L). The width of the spacers 20 between adjacent trenches can vary and is generally about L to about n*L. In some embodiments, the trench dimension is about 20-100 nm wide (wt) and about 100-25,000 nm in length (lt), with a depth (Dt) of about 10-100 nm.
A self-assembling, cylindrical-phase block copolymer material 28 having an inherent pitch at or about Lo (or a ternary blend of block copolymer and homopolymers blended to have a pitch at or about LB) is deposited into the trenches 18, typically as a film (as in
The block copolymer (or blend) is constructed such that all of the polymer blocks will have equal preference for a neutral wetting material on the trench floor. The block copolymer material can be constructed to provide desired properties such as defect tolerance and ease of development and/or removal of one of the blocks. In some embodiments of the invention, the block copolymer or blend is constructed such that the minor domain can be selectively removed.
Examples of diblock copolymers include, for example, poly(styrene)-b-poly(vinylpyridine) (PS-b-PVP), poly(styrene)-b-poly(methylmethacrylate) (PS-b-PMMA) or other PS-b-poly(acrylate) or PS-b-poly(methacrylate), poly(styrene)-b-poly(lactide) (PS-b-PLA), poly(styrene)-b-poly(tert-butyl acrylate) (PS-b-PtBA), and poly(styrene)-b-poly(ethylene-co-butylene (PS-b-(PS-co-PB)), poly(styrene)-b-poly(ethylene oxide) (PS-b-PEO), poly(isoprene)-b-poly(ethyleneoxide) (PI-b-PEO), poly(isoprene)-b-poly(methylmethacrylate) (PI-b-PMMA), poly(butadiene)-b-poly(ethyleneoxide) (PBD-b-PEO), a PS-b-PEO block copolymer having a cleavable junction such as a triphenylmethyl (trityl) ether linkage between PS and PEO blocks (optionally complexed with a dilute concentration (e.g., about 1 wt-%) of a salt such as KCl, KI, LiCl, LiI, CsCl or CsI (Zhang et al., Adv. Mater. 2007, 19, 1571-1576), a PS-b-PMMA block copolymer doped with PEO-coated gold nanoparticles of a size less than the diameter of the self-assembled cylinders (Park et al., Macromolecules, 2007, 40(11), 8119-8124), and a poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer having a cleavable junction such as a dithiol group, among others, with PS-b-PVP used in the illustrated embodiment. Other types of block copolymers (i.e., triblock or multiblock copolymers) can be used. Examples of triblock copolymers include ABC copolymers such as poly(styrene-b-methyl methacrylate-b-ethylene oxide) (PS-b-PMMA-b-PEO), and ABA copolymers, such as PS-PMMA-PS, PMMA-PS-PMMA, and PS-b-PI-b-PS, among others.
The film morphology, including the domain sizes and periods (Lo) of the microphase-separated domains, can be controlled by chain length of a block copolymer (molecular weight, MW) and volume fraction of the AB blocks of a diblock copolymer to produce cylindrical morphologies (among others). For example, for volume fractions at ratios of the two blocks generally between about 60:40 and 80:20 (A:B), the diblock copolymer will microphase separate and self-assemble into periodic cylindrical domains of polymer B within a matrix of polymer A. An example of a cylinder-forming PS-b-PVP copolymer material (Lo˜28 nm) to form about 14 nm diameter cylindrical PVP domains in a matrix of PS is composed of about 70 wt-% PS and 30 wt-% PVP with a total molecular weight (Mn) of 44.5 kg/mol. An example of a cylinder-forming PS-b-PMMA copolymer material (Lo=35 nm) to form about 20 nm diameter cylindrical PMMA domains in a matrix of PS is composed of about 70 wt-% PS and 30 wt-% PMMA with a total molecular weight (Mn) of 67 kg/mol. As another example, a PS-b-PLA copolymer material (L=49 nm) can be composed of about 71 wt-% PS and 29 wt-% PLA with a total molecular weight (Mn) of about 60.5 kg/mol to form about 27 nm diameter cylindrical PLA domains in a matrix of PS.
The L value of the block copolymer can be modified, for example, by adjusting the molecular weight of the block copolymer. The block copolymer material can also be formulated as a binary or ternary blend comprising a block copolymer and one or more homopolymers (HPs) of the same type of polymers as the polymer blocks in the block copolymer, to produce a blend that will swell the size of the polymer domains and increase the L value. The concentration of homopolymers in the blend can range from 0 to about 60 wt-%.
An example of a ternary diblock copolymer blend is a PS-b-P2VP/PS/P2VP blend, for example, 60 wt-% of 32.5 K/12 K PS-b-P2VP, 20 wt-% of 10 K PS, and 20 wt-% of 10 K P2VP. Another example of a ternary diblock copolymer blend is a PS-b-PMMA/PS/PMMA blend, for example, 60 wt-% of 46K/21K PS-b-PMMA, 20 wt-% of 20K polystyrene and 20 wt-% of 20K poly(methyl methacrylate). Yet another example is a blend of 60:20:20 (wt-%) of PS-b-PEO/PS/PEO, or a blend of about 85-90 wt-% PS-b-PEO and up to 10-15 wt-% PEO; it is believed that the added PEO homopolymer may function, at least in part, to lower the surface energy of the PEO domains to that of PS.
In the present embodiment, the trench floors 26 are structured to be neutral wetting (equal affinity for both blocks of the copolymer) to induce formation of cylindrical polymer domains that are oriented perpendicular to the trench floors, and the trench sidewalls 22 and ends 24 are structured to be preferential wetting by one block of the block copolymer to induce registration of the cylinders to the sidewalls as the polymer blocks self-assemble. In response to the wetting properties of the trench surfaces, upon annealing, the preferred or minority block of the cylindrical-phase block copolymer will self-assemble to form a single row of cylindrical domains in the center of a polymer matrix for the length of the trench and segregate to the sidewalls and edges of the trench to form a thin interface brush or wetting layer (e.g., as in
To provide preferential wetting surfaces, for example, in the use of a PS-b-PVP (or PS-b-PMMA, etc.) block copolymer, the material layer 16 can be composed of silicon (with native oxide), oxide (e.g., silicon oxide, SiOx), silicon nitride, silicon oxycarbide, indium tin oxide (ITO), silicon oxynitride, and resist materials such as methacrylate-based resists and polydimethyl glutarimide resists, among other materials, which exhibit preferential wetting toward the PVP (or PMMA, etc.) block. In the use of a PS-b-PVP cylinder-phase block copolymer material, for example, the block copolymer material will self assemble to form a thin interface layer and cylinders of PVP in a PS matrix.
In other embodiments, a preferential wetting material such as a polymethylmethacrylate (PMMA) polymer modified with an —OH containing moiety (e.g., hydroxyethylmethacrylate) can be applied onto the surfaces of the trenches, for example, by spin coating and then heating (e.g., to about 170° C.) to allow the terminal OH groups to end-graft to oxide sidewalls 22 and ends 24 of the trenches 18. Non-grafted material can be removed by rinsing with an appropriate solvent (e.g., toluene). See, for example, Mansky et al., Science, 1997, 275, 1458-1460, and In et al., Langmuir, 2006, 22, 7855-7860.
A neutral wetting trench floor 26 allows both blocks of the copolymer material to wet the floor of the trench. A neutral wetting material 14 can be provided by applying a neutral wetting polymer (e.g., a neutral wetting random copolymer) onto the substrate 10, forming the material layer 16 and then etching the trenches to expose the underlying neutral wetting material, as illustrated in
In another embodiment illustrated in
Neutral wetting surfaces can be specifically prepared by the application of random copolymers composed of monomers identical to those in the block copolymer and tailored such that the mole fraction of each monomer is appropriate to form a neutral wetting surface. For example, in the use of a PS-b-PVP block copolymer, a neutral wetting material 14 can be formed from a thin film of a photo-crosslinkable random PS-r-PVP that exhibits non-preferential or neutral wetting toward PS and PVP, which can be cast onto the substrate 10 (e.g., by spin-coating). The random copolymer material can be fixed in place by chemical grafting (on an oxide substrate) or by thermally or photolytically crosslinking (any surface) to form a mat that is neutral wetting to PS and PVP and insoluble when the block copolymer material is cast onto it, due to the crosslinking. In another example, in the use of PS-b-PMMA, a photo-crosslinkable PS-r-PMMA random copolymer (e.g., containing an about 0.6 mole fraction of styrene) can be used.
In embodiments in which the substrate 10 is silicon (with native oxide), another neutral wetting surface for PS-b-PMMA can be provided by hydrogen-terminated silicon. The floors 26 of the trenches 18 can be etched, for example, with a hydrogen plasma, to remove the oxide material and form hydrogen-terminated silicon, which is neutral wetting with equal affinity for both blocks of a block copolymer material. H-terminated silicon can be prepared by a conventional process, for example, by a fluoride ion etch of a silicon substrate (with native oxide present, about 12-15 Å) by exposure to an aqueous solution of hydrogen fluoride (HF) and buffered HF or ammonium fluoride (NH4F), by HF vapor treatment, or by a hydrogen plasma treatment (e.g., atomic hydrogen).
An H-terminated silicon substrate can be further processed by grafting a random copolymer such as PS-r-PVP, PS-r-PMMA, etc. selectively onto the substrate resulting in a neutral wetting surface for the corresponding block copolymer (e.g., PS-b-PVP, PS-b-PMMA, etc.). For example, a neutral wetting layer of a PS-r-PMMA random copolymer can be provided by an in situ free radical polymerization of styrene and methyl methacrylate using a di-olefinic linker such as divinyl benzene which links the polymer to the surface to produce about a 10-15 nm thick film.
Referring again to
In another embodiment, a neutral wetting surface (e.g., for PS-b-PMMA and PS-b-PEO) can be provided by grafting a self-assembled monolayer (SAM) of a trichlorosilane-base SAM such as 3-(para-methoxyphenyl)propyltrichorosilane grafted to oxide (e.g., SiO2) as described for example, by D. H. Park, Nanotechnology 18 (2007), p. 355304.
In a further embodiment, a neutral wetting random copolymer of polystyrene (PS), polymethacrylate (PMMA) with hydroxyl group(s) (e.g., 2-hydroxyethyl methacrylate (P(S-r-MMA-r-HEMA)) (e.g., about 58 wt-% PS) can be can be selectively grafted to a substrate 10 (e.g., an oxide) as a neutral wetting layer 14 about 5-10 nm thick by heating at about 160° C. for about 48 hours. See, for example, In et al., Langmuir, 2006, 22, 7855-7860.
In yet another embodiment, a blend of hydroxyl-terminated homopolymers and a corresponding low molecular weight block copolymer can be grafted (covalently bonded) to the substrate to form a neutral wetting interface layer (e.g., about 4-5 nm) for PS-b-PMMA and PS-b-P2VP, among other block copolymers. The block copolymer can function to emulsify the homopolymer blend before grafting. For example, an about 1 wt-% solution (e.g., in toluene) of a blend of about 20-50 wt-% (or about 30-40 wt-%) OH-terminated homopolymers (e.g., Mn=6K) and about 80-50 wt-% (or about 70-60 wt-%) of a low molecular weight block copolymer (e.g., 5K-5K) can be spin coated onto a substrate 10 (e.g., SiO2), heated (baked) (e.g., at 160° C.), and non-grafted (unbonded) polymer material removed, for example, by a solvent rinse (e.g., toluene). For example, the neutral wetting material can be prepared from a blend of about 30 wt-% PS-OH (Mn=6K) and PMMA-OH (Mn=6K) (weight ratio of 4:6) and about 70 wt-% PS-b-PMMA (5K-5K), or a ternary blend of PS-OH (6K), P2VP-OH (6K) and PS-b-2PVP (8K-8K), etc.
A surface that is neutral wetting to PS-b-PMMA can also be prepared by spin coating a blanket layer of a photo- or thermally cross-linkable random copolymer such as a benzocyclobutene- or azidomethylstyrene-functionalized random copolymer of styrene and methyl methacrylate (e.g., poly(styrene-r-benzocyclobutene-r-methyl methacrylate (PS-r-PMMA-r-BCB)). For example, such a random copolymer can comprise about 42 wt-% PMMA, about (58-x) wt-% PS and x wt-% (e.g., about 2-3 wt-%) of either polybenzocyclobutene or poly(para-azidomethylstyrene)). An azidomethylstyrene-functionalized random copolymer can be UV photo-crosslinked (e.g., 1-5 MW/cm^2 exposure for about 15 seconds to about 30 minutes) or thermally crosslinked (e.g., at about 170° C. for about 4 hours) to form a crosslinked polymer mat as a neutral wetting layer 14. A benzocyclobutene-functionalized random copolymer can be thermally cross-linked (e.g., at about 200° C. for about 4 hours or at about 250° C. for about 10 minutes).
As illustrated in
The block copolymer material can be deposited by spin casting (spin-coating) from a dilute solution (e.g., about 0.25-2 wt % solution) of the copolymer in an organic solvent such as dichloroethane (CH2Cl2) or toluene, for example. Capillary forces pull excess block copolymer material 28 (e.g., greater than a monolayer) into the trenches 18. As shown, a thin layer or film 28a of the block copolymer material can be deposited onto the material layer 16 outside the trenches, e.g., on the spacers 20. Upon annealing, the thin film 28a will flow into the trenches leaving a structureless brush layer on the material layer 16 from a top-down perspective.
The block copolymer (BCP) material 28 is then heated above its glass transition temperature under a vapor phase containing a partially saturated concentration of an organic solvent to cause the polymer blocks to phase separate and self assemble according to the preferential and neutral wetting of the trench surfaces to form a self-assembled polymer material 30, as illustrated in
The block copolymer is heated at a thermal anneal temperature that is above its glass transition temperature (Tg) but below the decomposition or degradation temperature (Td) of the block copolymer material. For example, a PS-b-PVP block copolymer material can be annealed at a temperature of about 150° C.-275° C. in a solvent vapor atmosphere for about 1-24 hours to achieve a self-assembled morphology. A PS-b-PMMA block copolymer material can be annealed at a temperature of about 150° C.-275° C. in a solvent vapor atmosphere for about 1-24 hours to achieve a self-assembled morphology.
In most applications of a thermal anneal in a vacuum, the air interface is preferentially wetting to one of the polymer domains and the BCP material does not orient into perpendicular structures. In embodiments of the invention, during heating, the BCP material 28 is exposed to solvent vapors of a “good” solvent for both blocks, that is, a neutral organic solvent that solvates both the constituent blocks well.
In general, solvent annealing consists of two phases. In a first phase, the BCP material is exposed to a solvent vapor that acts to plasticize the film and increase chain mobility causing the domains to intermingle and the loss of order inherent from casting the polymer material. The organic solvent that is utilized is based at least in part on its solubility in the block copolymer material such that sufficient solvent molecules enter the block copolymer material to promote the order-disorder transition of the polymer domains and enable the required molecular rearrangement. Examples of solvents include aromatic solvents such as benzene, toluene, xylene, dimethoxyethane, ethyl acetate, cyclohexanone, etc., and chlorinated solvents such as chloroform, methylene chloride, a chloroform/octane mixture, etc., among others. In a second phase, the substrate is removed from the solvent vapor and the solvent and solvent vapors are allowed to diffuse out of the polymer material and evaporate. The block copolymer material begins to “dry” as the solvent evaporates from the material. The evaporation of the solvent is highly directional and forms a solvent gradient from the “top” (surface) of the BCP material to the “bottom” of the BCP material at the trench floor that induces orientation and self-assembly of structures starting at the air-surface interface, which is neutral wetting due to the partial pressure of solvent at the interface, and driven downward to the floor of the trench, with formation of perpendicular-oriented cylindrical domains (34) guided by the trench sidewalls and extending completely from the air interface (46) to the substrate surface (trench floor).
In embodiments of the invention, the substrate 10 and BCP material 28 are heated above the boiling point of the solvent such that swelling of the BCP material 28 by the solvent is disallowed.
The use of a partially saturated solvent vapor phase above the block copolymer material provides a neutral wetting interface, similar to the second phase of solvent annealing. The concentration of solvent in the air immediate at the vapor interface with the BCP material is maintained at or under saturation to maintain a neutral wetting interface such that both (or all) polymer blocks will equally wet the vapor interface. As both the air and trench floor are neutral wetting, the domains will orient perpendicular throughout the film layer, with the preferential wetting sidewalls inducing lateral order.
The resulting morphology of the annealed copolymer material 30 (e.g., perpendicular orientation of cylinders) can be examined, for example, using atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), among others.
In embodiments of the invention, the anneal is performed by globally heating the block copolymer within the trenches in a solvent atmosphere.
In other embodiments, a zone annealing is conducted to anneal portions or sections of the block copolymer material 28 in trenches on the substrate 10 by a localized application of thermal energy (e.g., heat). Zone annealing can provide rapid self-assembly of the block copolymer material (e.g., on the order of minutes).
For example, as depicted sequentially in
In some embodiments, a hot-to-cold temperature gradient can be provided over (or under) the substrate such that a certain portion of the substrate is heated and then cooled, which can be at a controlled rate. In other embodiments, the substrate can be exposed to a cold-to-hot temperature gradient to anneal the BCP material, followed by cooling.
In other embodiments, the BCP material can be heated above and then cooled below the order-disorder temperature (but above the glass transition temperature), for example, to remove (melt out) defects and allow the material to recrystalize provided that the order-disorder temperature (To-d) is less than the decomposition temperature (Td) of the block copolymer material. The order-disorder temperature is defined by the temperature dependence of the block copolymer, Chi value, the total number of monomers per chain, and the monomer composition.
Only those portions of the block copolymer material that are heated above the glass transition temperature (Tg) of the component polymer blocks will self-assemble, and areas of the material that were not sufficiently heated remain disordered and unassembled. For example, as illustrated in
Upon annealing, the cylindrical-phase block copolymer material 28 will self-assemble into a polymer material 30 (e.g. film) in response to the character of the block copolymer composition (e.g., PS-b-PVP having an inherent pitch at or about L) and the boundary conditions, including the constraints provided by the width (wt) of the trench 18 and the wetting properties of the trench surfaces including a trench floor 26 that exhibits neutral or non-preferential wetting toward both polymer blocks (e.g., a random graft copolymer), sidewalls 22 that are preferential wetting by the minority (preferred) block of the block copolymer (e.g., the PVP block), and the presence of a neutral or non-preferential solvent (or in some embodiments, a film or material that is neutral or non-preferential wetting) in contact with the surface of the block copolymer material 28 in the trenches. The anneal results in a row (or rows) of perpendicularly oriented cylinders 34 of the minority polymer (preferred) block (e.g., PVP) within a matrix 36 of the majority polymer block (e.g., PS), with the cylinders registered and parallel to the sidewalls 22 of the trench. The diameter of the cylinders 34 will generally be at or about 0.5*L (e.g., about one-half of the center-to-center distance between cylinders). In addition, the minority (preferred) block (e.g., PVP) will segregate to and wet the preferential wetting sidewalls 22 and ends 24 of the trenches 18 to form a thin interface or wetting brush layer 34a having a thickness generally about one-fourth of the center-to-center distance between adjacent cylinders 34. For example, a layer of the PVP block will wet oxide interfaces with attached PS domains directed outward from the oxide material.
In some embodiments, the self-assembled block copolymer material 30 is defined by a single layer of an array of cylindrical domains (cylinders) 34, each with a diameter at or about 0.5*L (e.g., about one-half of the center-to-center distance between cylinders), with the number (n) of cylinders in the row according to the length (lt) of the trench, and the center-to-center distance (pitch distance, p) between each cylinder at or about L.
Optionally, after the block copolymer material is annealed and ordered, the copolymer material can be treated to crosslink the polymer segments (e.g., the PS segments) to fix and enhance the strength of the self-assembled polymer blocks. The polymers can be structured to inherently crosslink (e.g., upon exposure to ultraviolet (UV) radiation, including deep ultraviolet (DUV) radiation), or one of the polymer blocks of the copolymer material can be formulated to contain a crosslinking agent.
Generally, the film 28a outside the trenches (e.g., on spacers 20) will not be thick enough to result in self-assembly. Optionally, the unstructured thin film 28a can be removed, as illustrated in
Referring to
With the non-preferential wetting material 37′ in contact with the surface of the block copolymer material 38′, a thermal annealing process is conducted (arrows ↓,
After annealing, the non-preferential wetting material 37′ can be removed from contact with the annealed polymer material 30′ (arrow ↑) as depicted in
Following self assembly, the pattern of perpendicular-oriented cylinders that is formed on the substrate can then be further processed as desired, for example, to form an etch mask for patterning nanosized features into the underlying substrate 10 through selective removal of one block of the self-assembled block copolymer. Since the domain sizes and periods (L) involved in this method are determined by the chain length of a block copolymer (MW), resolution can exceed other techniques such as conventional photolithography. Processing costs using the technique is significantly less than extreme ultraviolet (EUV) photolithography, which has comparable resolution.
For example, as illustrated in
Further processing can then be performed as desired. For example, as depicted in
Embodiments of the invention utilize a thermal anneal process in combination with solvent annealing, which can provide faster processing than with a solvent anneal alone and expands the types of block copolymers (BCPs) that can be processed to substantially all BCPs. In embodiments using a zone annealing in combination with an organic solvent atmosphere, a wide range of block copolymers can be processed to form perpendicular-oriented nanostructures (e.g., cylinders) and at a rapid rate.
In addition, methods of the disclosure provide a means of generating self-assembled diblock copolymer films composed of perpendicular-oriented cylinders in a polymer matrix. The methods provide ordered and registered elements on a nanometer scale that can be prepared more inexpensively than by electron beam lithography, EUV photolithography or conventional photolithography. The feature sizes produced and accessible by this invention cannot be easily prepared by conventional photolithography. The described methods and systems can be readily employed and incorporated into existing semiconductor manufacturing process flows and provide a low cost, high-throughput technique for fabricating small structures.
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement which is calculated to achieve the same purpose may be substituted for the specific embodiments shown. This application is intended to cover any adaptations or variations that operate according to the principles of the invention as described. Therefore, it is intended that this invention be limited only by the claims and the equivalents thereof. The disclosures of patents, references and publications cited in the application are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4623674 | Bailey, Jr. | Nov 1986 | A |
4877647 | Klabunde | Oct 1989 | A |
5328810 | Lowrey et al. | Jul 1994 | A |
5374367 | Edamura et al. | Dec 1994 | A |
5382373 | Carlson | Jan 1995 | A |
5482656 | Hiraoka et al. | Jan 1996 | A |
5512131 | Kumar et al. | Apr 1996 | A |
5538655 | Fauteux et al. | Jul 1996 | A |
5622668 | Thomas | Apr 1997 | A |
5834583 | Hancock et al. | Nov 1998 | A |
5849810 | Muller | Dec 1998 | A |
5879582 | Havelka et al. | Mar 1999 | A |
5891356 | Inoue et al. | Apr 1999 | A |
5904824 | Oh | May 1999 | A |
5925259 | Biebuyck et al. | Jul 1999 | A |
5948470 | Harrison et al. | Sep 1999 | A |
6111323 | Carter et al. | Aug 2000 | A |
6143647 | Pan et al. | Nov 2000 | A |
6270946 | Miller | Aug 2001 | B1 |
6310138 | Yonezawa et al. | Oct 2001 | B1 |
6312971 | Amundson et al. | Nov 2001 | B1 |
6368871 | Christel et al. | Apr 2002 | B1 |
6403382 | Zhu et al. | Jun 2002 | B1 |
6423465 | Hawker et al. | Jul 2002 | B1 |
6503841 | Criscuolo | Jan 2003 | B1 |
6506660 | Holmes et al. | Jan 2003 | B2 |
6548830 | Noguchi et al. | Apr 2003 | B1 |
6565763 | Asakawa | May 2003 | B1 |
6566248 | Wang et al. | May 2003 | B1 |
6569528 | Nam et al. | May 2003 | B2 |
6573030 | Fairbairn et al. | Jun 2003 | B1 |
6682660 | Sucholeiki et al. | Jan 2004 | B2 |
6689473 | Guire et al. | Feb 2004 | B2 |
6699797 | Morris et al. | Mar 2004 | B1 |
6713238 | Chou et al. | Mar 2004 | B1 |
6746825 | Nealey et al. | Jun 2004 | B2 |
6780492 | Hawker et al. | Aug 2004 | B2 |
6781166 | Lieber et al. | Aug 2004 | B2 |
6797202 | Endo et al. | Sep 2004 | B2 |
6809210 | Chandross et al. | Oct 2004 | B2 |
6884842 | Soane et al. | Apr 2005 | B2 |
6890624 | Kambe et al. | May 2005 | B1 |
6890703 | Hawker et al. | May 2005 | B2 |
6908861 | Sreenivasan et al. | Jun 2005 | B2 |
6913697 | Lopez et al. | Jul 2005 | B2 |
6924341 | Mays | Aug 2005 | B2 |
6926953 | Nealey et al. | Aug 2005 | B2 |
6946332 | Loo et al. | Sep 2005 | B2 |
6949456 | Kumar | Sep 2005 | B2 |
6957608 | Hubert et al. | Oct 2005 | B1 |
6962823 | Empedocles et al. | Nov 2005 | B2 |
6989426 | Hu et al. | Jan 2006 | B2 |
6992115 | Hawker et al. | Jan 2006 | B2 |
6998152 | Uhlenbrock | Feb 2006 | B2 |
7030495 | Colburn et al. | Apr 2006 | B2 |
7037744 | Colburn et al. | May 2006 | B2 |
7045851 | Black et al. | May 2006 | B2 |
7056455 | Matyjasewski et al. | Jun 2006 | B2 |
7056849 | Wan et al. | Jun 2006 | B2 |
7077992 | Sreenivasan et al. | Jul 2006 | B2 |
7090784 | Asakawa et al. | Aug 2006 | B2 |
7115525 | Abatchev et al. | Oct 2006 | B2 |
7115995 | Wong | Oct 2006 | B2 |
7118784 | Xie | Oct 2006 | B1 |
7132370 | Paraschiv | Nov 2006 | B2 |
7135144 | Christel et al. | Nov 2006 | B2 |
7135388 | Ryu et al. | Nov 2006 | B2 |
7135523 | Ho et al. | Nov 2006 | B2 |
7163712 | Chilkoti et al. | Jan 2007 | B2 |
7166304 | Harris et al. | Jan 2007 | B2 |
7172953 | Lieber et al. | Feb 2007 | B2 |
7186613 | Kirner | Mar 2007 | B2 |
7189430 | Ajayan et al. | Mar 2007 | B2 |
7189435 | Tuominen et al. | Mar 2007 | B2 |
7190049 | Tuominen et al. | Mar 2007 | B2 |
7202308 | Boussand et al. | Apr 2007 | B2 |
7252791 | Wasserscheid et al. | Aug 2007 | B2 |
7259101 | Zurcher et al. | Aug 2007 | B2 |
7282240 | Jackman et al. | Oct 2007 | B1 |
7291284 | Mirkin et al. | Nov 2007 | B2 |
7326514 | Dai et al. | Feb 2008 | B2 |
7332627 | Chandross et al. | Feb 2008 | B2 |
7347953 | Black et al. | Mar 2008 | B2 |
7407887 | Guo | Aug 2008 | B2 |
7408186 | Merkulov et al. | Aug 2008 | B2 |
7514339 | Yang et al. | Apr 2009 | B2 |
7521090 | Cheng et al. | Apr 2009 | B1 |
7553760 | Yang et al. | Jun 2009 | B2 |
7592247 | Yang et al. | Sep 2009 | B2 |
7605081 | Yang et al. | Oct 2009 | B2 |
7767099 | Li et al. | Aug 2010 | B2 |
20020055239 | Tuominen et al. | May 2002 | A1 |
20020158342 | Tuominen et al. | Oct 2002 | A1 |
20030077452 | Guire et al. | Apr 2003 | A1 |
20030091752 | Nealey et al. | May 2003 | A1 |
20030100822 | Lew et al. | May 2003 | A1 |
20030143375 | Noguchi et al. | Jul 2003 | A1 |
20030178707 | Abbott | Sep 2003 | A1 |
20030180522 | DeSimone et al. | Sep 2003 | A1 |
20030180966 | Abbott et al. | Sep 2003 | A1 |
20030185741 | Matyjaszewski | Oct 2003 | A1 |
20030235930 | Bao et al. | Dec 2003 | A1 |
20040028875 | Van Rijn et al. | Feb 2004 | A1 |
20040084298 | Yao et al. | May 2004 | A1 |
20040124092 | Black et al. | Jul 2004 | A1 |
20040125266 | Miyauchi et al. | Jul 2004 | A1 |
20040127001 | Colburn | Jul 2004 | A1 |
20040142578 | Wiesner et al. | Jul 2004 | A1 |
20040159633 | Whitesides et al. | Aug 2004 | A1 |
20040175628 | Nealey et al. | Sep 2004 | A1 |
20040192013 | Ryu et al. | Sep 2004 | A1 |
20040222415 | Chou et al. | Nov 2004 | A1 |
20040242688 | Chandross et al. | Dec 2004 | A1 |
20040254317 | Hu | Dec 2004 | A1 |
20040256615 | Sirringhaus et al. | Dec 2004 | A1 |
20040256662 | Black et al. | Dec 2004 | A1 |
20040265548 | Ho et al. | Dec 2004 | A1 |
20050008828 | Libera et al. | Jan 2005 | A1 |
20050062165 | Saenger et al. | Mar 2005 | A1 |
20050074706 | Bristol | Apr 2005 | A1 |
20050100830 | Xu et al. | May 2005 | A1 |
20050124135 | Ayazi et al. | Jun 2005 | A1 |
20050147841 | Tavkhelidze et al. | Jul 2005 | A1 |
20050167651 | Merkulov et al. | Aug 2005 | A1 |
20050208752 | Colburn et al. | Sep 2005 | A1 |
20050238889 | Iwamoto | Oct 2005 | A1 |
20050250053 | Marsh et al. | Nov 2005 | A1 |
20050271805 | Kambe et al. | Dec 2005 | A1 |
20050272341 | Colburn et al. | Dec 2005 | A1 |
20060013956 | Angelescu et al. | Jan 2006 | A1 |
20060014001 | Zhang et al. | Jan 2006 | A1 |
20060024590 | Sandhu | Feb 2006 | A1 |
20060030495 | Gregg | Feb 2006 | A1 |
20060038182 | Rogers et al. | Feb 2006 | A1 |
20060046079 | Lee | Mar 2006 | A1 |
20060046480 | Guo | Mar 2006 | A1 |
20060060863 | Lu et al. | Mar 2006 | A1 |
20060062867 | Choi | Mar 2006 | A1 |
20060078681 | Hieda et al. | Apr 2006 | A1 |
20060105562 | Yi | May 2006 | A1 |
20060124467 | Ho et al. | Jun 2006 | A1 |
20060134556 | Nealey et al. | Jun 2006 | A1 |
20060163646 | Black | Jul 2006 | A1 |
20060192283 | Benson | Aug 2006 | A1 |
20060205875 | Cha et al. | Sep 2006 | A1 |
20060211871 | Dai | Sep 2006 | A1 |
20060217285 | Destarac | Sep 2006 | A1 |
20060228635 | Suleski | Oct 2006 | A1 |
20060231525 | Asakawa et al. | Oct 2006 | A1 |
20060249784 | Black et al. | Nov 2006 | A1 |
20060249796 | Tavkhelidze et al. | Nov 2006 | A1 |
20060254440 | Choi et al. | Nov 2006 | A1 |
20060255505 | Sandhu et al. | Nov 2006 | A1 |
20060257633 | Inoue et al. | Nov 2006 | A1 |
20060258159 | Coburn et al. | Nov 2006 | A1 |
20060278158 | Tolbert et al. | Dec 2006 | A1 |
20060281266 | Wells | Dec 2006 | A1 |
20060286305 | Thies et al. | Dec 2006 | A1 |
20060286490 | Sandhu et al. | Dec 2006 | A1 |
20060292777 | Dunbar | Dec 2006 | A1 |
20070020749 | Nealy et al. | Jan 2007 | A1 |
20070023247 | Ulicny et al. | Feb 2007 | A1 |
20070023805 | Wells | Feb 2007 | A1 |
20070045562 | Parekh | Mar 2007 | A1 |
20070071881 | Chua et al. | Mar 2007 | A1 |
20070072403 | Sakata | Mar 2007 | A1 |
20070122932 | Kodas et al. | May 2007 | A1 |
20070138131 | Burdinski | Jun 2007 | A1 |
20070161237 | Lieber et al. | Jul 2007 | A1 |
20070175859 | Black et al. | Aug 2007 | A1 |
20070181870 | Libertino et al. | Aug 2007 | A1 |
20070200477 | Tuominen et al. | Aug 2007 | A1 |
20070208159 | McCloskey et al. | Sep 2007 | A1 |
20070218202 | Ajayan et al. | Sep 2007 | A1 |
20070222995 | Lu | Sep 2007 | A1 |
20070224819 | Sandhu | Sep 2007 | A1 |
20070227383 | Decre et al. | Oct 2007 | A1 |
20070249117 | Kang et al. | Oct 2007 | A1 |
20070281220 | Sandhu et al. | Dec 2007 | A1 |
20070289943 | Lu et al. | Dec 2007 | A1 |
20070293041 | Yang et al. | Dec 2007 | A1 |
20080032238 | Lu et al. | Feb 2008 | A1 |
20080083991 | Yang et al. | Apr 2008 | A1 |
20080093743 | Yang et al. | Apr 2008 | A1 |
20080103256 | Kim et al. | May 2008 | A1 |
20080164558 | Yang et al. | Jul 2008 | A1 |
20080176767 | Millward | Jul 2008 | A1 |
20080193658 | Millward | Aug 2008 | A1 |
20080217292 | Millward et al. | Sep 2008 | A1 |
20080233323 | Cheng et al. | Sep 2008 | A1 |
20080257187 | Millward | Oct 2008 | A1 |
20080260941 | Jin | Oct 2008 | A1 |
20080274413 | Millward | Nov 2008 | A1 |
20080286659 | Millward | Nov 2008 | A1 |
20080311347 | Millward et al. | Dec 2008 | A1 |
20080315270 | Marsh et al. | Dec 2008 | A1 |
20080318005 | Millward | Dec 2008 | A1 |
20090062470 | Millward et al. | Mar 2009 | A1 |
20090155579 | Greco et al. | Jun 2009 | A1 |
20090200646 | Millward et al. | Aug 2009 | A1 |
20090206489 | Li et al. | Aug 2009 | A1 |
20090240001 | Regner | Sep 2009 | A1 |
20090263628 | Millward | Oct 2009 | A1 |
20090274887 | Millward et al. | Nov 2009 | A1 |
20100092873 | Sills et al. | Apr 2010 | A1 |
20100102415 | Millward et al. | Apr 2010 | A1 |
20100124826 | Millward et al. | May 2010 | A1 |
20100137496 | Millward et al. | Jun 2010 | A1 |
20100163180 | Millward | Jul 2010 | A1 |
20100204402 | Millward et al. | Aug 2010 | A1 |
20100279062 | Millward | Nov 2010 | A1 |
20100316849 | Millward et al. | Dec 2010 | A1 |
20100323096 | Sills et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
1562730 | Jan 2005 | CN |
1562730 | Dec 2005 | CN |
0784543 | Apr 2000 | EP |
0784543 | Apr 2000 | EP |
1416303 | May 2004 | EP |
1593164 | Jun 2010 | EP |
11080414 | Mar 1999 | JP |
11080414 | Mar 1999 | JP |
2005008882 | Jan 2005 | JP |
2005008882 | Jan 2005 | JP |
2006036923 | Feb 2005 | JP |
2006036923 | Feb 2006 | JP |
2006055982 | Mar 2006 | JP |
2006055982 | Mar 2006 | JP |
2008-036491 | Feb 2008 | JP |
200400990 | Jan 2000 | TW |
200419017 | Oct 2004 | TW |
200511364 | Mar 2005 | TW |
I253456 | Apr 2006 | TW |
256110 | Jun 2006 | TW |
200740602 | Nov 2007 | TW |
9007575 | Jul 1990 | WO |
9007575 | Jul 1990 | WO |
9706013 | Feb 1997 | WO |
9706013 | Feb 1997 | WO |
9839645 | Sep 1998 | WO |
9947570 | Sep 1999 | WO |
9947570 | Sep 1999 | WO |
0031183 | Jun 2000 | WO |
02081372 | Oct 2002 | WO |
02081372 | Oct 2002 | WO |
2005122285 | Dec 2005 | WO |
2005122285 | Dec 2005 | WO |
2006076016 | Jul 2006 | WO |
2006078952 | Jul 2006 | WO |
2006076016 | Jul 2006 | WO |
2006078952 | Jul 2006 | WO |
2007001294 | Jan 2007 | WO |
2007019439 | Feb 2007 | WO |
2007013889 | Feb 2007 | WO |
2007019439 | Feb 2007 | WO |
2007024241 | Mar 2007 | WO |
2007024323 | Mar 2007 | WO |
2007024241 | Mar 2007 | WO |
2007024323 | Mar 2007 | WO |
2007055041 | May 2007 | WO |
2007055041 | May 2007 | WO |
2008091741 | Jul 2008 | WO |
2008097736 | Aug 2008 | WO |
2008096335 | Aug 2008 | WO |
2008124219 | Oct 2008 | WO |
2008118635 | Oct 2008 | WO |
2008130847 | Oct 2008 | WO |
2008145268 | Dec 2008 | WO |
2008156977 | Dec 2008 | WO |
2009099924 | Aug 2009 | WO |
2009102551 | Aug 2009 | WO |
2009117238 | Sep 2009 | WO |
2009134635 | Nov 2009 | WO |
Entry |
---|
Berry et al. “Orientational Order in Block Copolymer Films Zone Annealed below the Order-Disorder Transition Temperature,” Nano Letters vol. 7, No. 9 Aug. 2007; p. 2789-2794. |
Hammond et al. “Temperature Dependence of Order, Disorder, and Defects in Laterally Confined Diblock Copolymer Cylinder Monolayers,” Macromoleculers vol. 38, Jul. 2005; p. 6575-6585. |
Knoll et al. “Phase Behavior in Thin Films of Cylinder-Forming Block Copolymers,” Physical Review Letters vol. 89, No. 3 Jul. 2002. |
Fukunaga et al. “Self-Assembly of Block Copolymer Thin Films Having a Half-Domain-Spacing Thickness: Nonequilibrium Pathways to Achieve Equilibrium Brush Layers Parallel to Substrate,” Macromolecules vol. 39, Aug. 2006; p. 6171-6179. |
Bae, Joonwon, “Surface Modification Using Photo-Crosslinkable Random Copolymers”, Abstract submitted for the Mar. 2006 meeting of The American Physical Society, submitted Nov. 30, 2005. |
Bang, Joona, “The Effect of Humidity on the Ordering of Tri-block Copolymer Thin Films,” Abstract submitted for the Mar. 2007 meeting of The American Physical Society, submitted Nov. 20, 2006. |
Bass, Robert B., et al., “Microcontact Printing with Octadecanethiol”, Applied Surface Science, 226(4), pp. 335-340, Apr. 2004, http://www.ece.virginia.edu/UVML/sis/Papers/rbbpapers/assoct.pdf. |
Bearinger, J.P., et al., Nature Materials 2, 259-264, 2003. |
Black, C.T., IEEE 2005 Custom Integrated Circuits Conference, pp. 87-91. |
Black, C.T., et al., IBM J. Res. & Dev., vol. 51, No. 5, Sep. 2007, pp. 605-633. |
Black, Charles T., ACSNano, vol. 1, No. 3, 2007, American Chemical Society, pp. 147-150. |
Black, Charles T., et al., IEEE Electronon Device Letters, vol. 25, No. 9, Sep. 2004, pp. 622-624. |
Botelho do Rego, A.M., et al., Surface Science, 482-485 (2001), pp. 1228-1234. |
Brydson, Rik M., et al. (chapter authors), “Generic Methodologies for Nanotechnology: Classification and Fabrication”, Nanoscale Science and Technology, edited by R.W. Kelsall, et al., 2005 John Wiley & Sons, Ltd., (published online: Dec. 20, 2005) (http://www3.interscience.wiley.com/cgi-bin/summary/112217550/SUMMARY). |
Canaria, Christi A., et al., “Formation and Removal of Alkylthiolate Self-Assembled Monolayers on Gold in Aqueous Solutions”, Lab Chip 6, 289-295 (2006), http://www.rsc.org/publishing/journals/LC/article.asp?doi=b51066c) (Abstract). |
Chandekar, Amol, et al., “Template-Directed Adsorption of block Copolymers on Alkanethiol-Patterned Gold Surfaces,” (circa 2006), http://www.nano.neu.edu/industry/industry—showcase/industry—day/documents/Chandekar.pdf) (Powerpoint template for scientific posters (Swarthmore College)). |
Cheng, Joy T., et al., Nano Letters, vol. 0, No. 0, A-E, published on Web Aug. 16, 2006. |
Daoulas Kostas Ch., et al., Physical Review Letters 96, week ending Jan. 27, 2006, pp. 036104-1-3. |
Desai, Dr. Trejal A., et al., Business Briefing: Medical Device Manufacturing & Technology, 2002. |
Edwards, Erik W., et al., Journal of Polymer Science: Part B Polymer Physics, vol. 43, 3444-3459, 2005. |
Edwards, Erik W., et al., Advanced Mater, 16, No. 15, Aug. 4, 2004, pp. 1315-1319. |
Fasolka, Michael J. et al., Macromolecules 2000, vol. 33, No. 15, pp. 5702-5712. |
Gates, Byron D., et al., Annu. Rev. Mater. Res. 2004, 34:339-72. |
Ge, Zhenbin, et al., PRL 96, 186101-1-186101-4, The American Physical Society, week ending May 12, 2006. |
Genua, A., et al., Nanotechnology, 18 (2007), pp. 1-7. |
Gillmor, S.D., et al., Langmuir 2000, vol. 16, No. 18, 2000, pp. 7223-7228. |
Hamley, I. W., “Introduction to Block Copolymers”, Developments in Block Copolymers Science and Technology, 2004, John Wiley & Sons, Ltd., pp. 1-29. |
Hermans, Thomas M., et al., “Application of Solvent-Directed Assembly of Block Copolymers to the Synthesis of Nanostructured Materials with Low Dielectric Constants”, Angewandte Chem. Int. Ed. 2006, 45, pp. 6648-6652. |
Hutchison, J. Brian, et al., Chem. Mater., vol. 17, No. 19, 2005, pp. 4789-4797. |
In, Insik, et al., Langmuir, vol. 22, No. 18, 2006, pp. 7855-7860. |
Kim, Sang Ouk, et al., Nature, vol. 424, Jul. 24, 2003, pp. 411-414. |
Kim, Sang Ouk, et al., Adv. Mater., 2007, 19, pp. 3271-3275. |
Kim, Seung Hyun, et al., Macromolecules 2006, vol. 39, No. 24, 2006, pp. 8473-8479. |
Kim, Seung Hyun, et al., Advanced Mater., vol. 16, No. 23-24, pp. 2119-2123, Dec. 17, 2004. |
Krishnamoorthy, Sivashankar, et al., MaterialsToday, vol. 9, No. 9, Sep. 2006, pp. 40-47. |
La, Young-Hye, et al., Chem. Mater, 2007, vol. 19, No. 18, pp. 4538-4544. |
Laracuente, A.R., et al., Surface Science 545, 2003, pp. 70-84. |
Lentz, David, et al., “Whole Wafer Imprint Patterning Using Step and Flash Imprint Lithography: A Manufacturing Solution for Sub 100 nm Patterning”, SPIE Advanced Lithography Paper, http://molecularimprints.com/NewsEvents/tech—articles/new—articles/SPIE—07—MII—WW—Paper.pdf), Feb. 2007, pp. 1-10. |
Li, Mingqi, et al., MaterialsToday, vol. 9, No. 9, Sep. 2006, pp. 30-39. |
Li, Xue, et al., ScienceDirect, Polymer 48 (2007), pp. 2434-2443. |
Lin, Zhiqun, et al., Adv. Mater. 2002, 14 No. 19, Oct. 2, pp. 1373-1376. |
Lin-Gibson, Sheng, et al., Macromolecules 2005, 38, pp. 2897-2902. |
Malkoch, Michael, et al., Chem. Commun., 2006, pp. 2774-2776. |
Mansky, P., et al., Science, vol. 275, Mar. 7, 1997, pp. 1458-1460. |
Maye, Mathew A., et al., Journal of Chemical Education, vol. 79, No. 2, Feb. 2002, pp. 207-210. |
Meyer, Evelyn, et al., Macromollecular Mater. Eng., 276/277, 2000, pp. 44-50. |
Mezzenga, Raffaele, et al., Langmuir 2003, vol. 19, No. 20, 2003, pp. 8144-8147. |
Mindel, Joseph., et. al., “A Study of Bredig Platinum Sols”, The Chemical Laboratories of New York University, vol. 65 pp. 2112. |
Naito, et al., IEEE Transactions on Magnetics, vol. 38, No. 5, Sep. 2002, pp. 1949-1951. |
Nealey, Paul F., et al., “Self-Assembling Resists for Nanolithography”, IEEE 2005. |
Nguyen, Kytai, et al., Biomaterials 23, 2002, pp. 4307-4314. |
Cheng, Joy Y., et al., Nano Letters, vol. 6, No. 9, 2006, pp. 2009-2103. |
Cheng, Joy Y., et al., Adv. Mater. 2003, vol. 15, No. 19, pp. 1599-1602. |
Cheng, Joy Y., et al., Applied Physics Letters, 91, 143106-143106-3 (2007). |
Niu, Sanjun, et al., Macromolecules, 36(7), 2428-2440, 2003 (web release date: Mar. 13, 2003) http://digitalcommons.uni.edu/cgi/viewcontent.cgi?article+1005&contect=chemeng—nanotechnology). |
Parejo, Pilar Garcia, et al., J. Mater. Chem., 2006, 16, pp. 2165-2169. |
Park, Cheolmin, et al., Polymer 44, 2003, 6725-6760. |
Park, Miri, et al., Science, v. 276, No. 5317, p. 1401-1404, May 30, 1997. |
Park, Sang-Min, et al., Adv. Mater., 2007, 19, pp. 607-611. |
Park, Sung Chan, et al., Macromolecules 2007, vol. 40, No. 22, pp. 8119-8124. |
Peters, Richard D., et al., J. Vac. Sci. Technol. B, vol. 18, No. 6, Nov./Dec. 2000, pp. 3530-3532. |
Peters, Richard D., et al., Macromolecules, vol. 35, No. 5, 2002, pp. 1822-1834. |
Potemkin, Igor I., et al., Macromol. Rapid Commun., 2007, 28, pp. 579-584. |
Resnick, Douglas, J., et al., J. Microlith., Microfab., Microsyst., vol. 3, No. 2, Apr. 2004, pp. 316-321. |
Ruiz, Ricardo, et al., Adv. Mater, 2007, 19, pp. 587-591. |
Ryu, Du Yeol, et al., Macromolecules, vol. 40, No. 12, 2007, pp. 4296-4300. |
Saraf, Ravi R., et al., Applied Physics Letters, vol. 80, No. 23, Jun. 10, 2002, pp. 4425-4427. |
Shahrjerdi, Davood, et al., IEEE Electron Device Letters, vol. 28, No. 9, Sep. 2007, pp. 793-796. |
Sharma, Sadhana, et al., Applied Surface Science, 206 (2003), pp. 218-229. |
Sivaniah, E., et al., Macromolecules 2003, 36, pp. 5894-5896. |
Sivaniah, et al., Macromolecules 2005, 38, 1837-1849. |
Solak, Harun H., Journal of Physics D: Applied Physics, 2006, pp. R171-188. |
Stoykovich, Mark P., et al., Science, vol. 308, Jun. 3, 2005, pp. 1442-1446. |
Stoykovich, Mark P., et al., ACS Nano, vol. 1, No. 3, 2007, pp. 168-175. |
Sundrani, Deepak, et al., Nano Lett., vol. 4, No. 2, 2004, pp. 273-276. |
Sundrani, Deepak, et al., Langmuir 2004, vol. 20, No. 12, 2004, pp. 5091-5099. |
Sigma-Aldrich, Tutorial regarding Materials for Lithography/Nanopatterning, http://www.sigmaaldrich.com/Area—of—Interest/Chemistry/Materials—Science/Micro—and—Nanoelectronic website, retrieved Aug. 27, 2007. |
Van Poll, Maaike L., et al., Angew. Chem. Int. Ed. 2007, 46, pp. 6634-6637. |
Winesett, D.A., et al., Langmuir 2003, 19, pp. 8526-8535. |
Xu, Ting et al., Polymer 42, (2001) 9091-9095. |
Wu, C.Y., et al., IEEE, 2007, pp. 153-154. |
Yamaguchi, Toru, et al., Journal of Photopolymer Science and Technology, vol. 19, No. 3, 2006, pp. 385-388. |
Yan, Xiaohu, et al., J. Am. Chem. Soc., vol. 126, No. 32, 2004, pp. 10059-10066. |
Yang, Xiao M., et al., Macromolecules 2000, vol. 33, No. 26, 2000, pp. 9575-9582. |
Yurt, Serkan, et al., Macromolecules 2006, vol. 39, No. 5, 2006. |
Zhang, Mingfu, et al., Adv. Mater. 2007, 19, pp. 1571-1576. |
Arshady et al., Makromol. Chem., 1976, vol. 177, p. 2911-2918. |
Bang, J. Abstract submitted for the Mar. 2006 meeting of the American Physical Society, submitted Nov. 2005 [online], accessed via the Internet [retrieved on Apr. 5, 2010], URL: <http://absimage.aps.org/image/MWS—MAR06-2005-003641.pdf>. |
Candau et al., Polymer, 1977, vol. 18, p. 1253-1257. |
Hawker et al., Facile Synthesis of Block Copolymers for Nanolithographic Applications; Polymer Reprints, 2005. |
Nishikubo, T., American Chemical Society Symposium Series, 1997, p. 214-230. |
Berry, B.C., et al., “Effects of Zone Annealing on Thin Films of Block Copolymers”, National Institute of Standard and Technology, Polymers Division, Gaithersburg, MD., 2007. |
Black, C.T., Applied Physics Letters 87, 163116-1 to 1163116-3, 2005. |
Black, Charles T., IEEE Transactions on Nanotechnology, vol. 3, No. 3, Sep. 2004, pp. 412-415. |
Cavicchi, Kevin A., et al., Macromolecules 2007, vol. 40, 2007, pp. 1181-1186. |
Gudipati, Chakravarthy S., et al., Journal of Polymer Science Part A: Polymer Chemistry, vol. 42, pp. 6193-6208. |
Guo, Kai, et al., Abstract of “Synthesis and Characterization of Novel Biodegradable Unsaturated Poly(ester amide)/Poly(ethylene glycol) Diacrylate Hydrogels”, Journal of Polymer Science Part A: Polymer Chemistry, vol. 43, Issue 17, pp. 3932-3944, 2005 Wiley Periodicals, Inc. |
Karim, Alamgir et al., “Control of Ordering Kinetics and Morphology Using Zone Annealing of Thin Block Copolymer Filmes”, Abstract submitted for the Mar. 2007 Meeting of The American Physical Society, Nov. 20, 2006. |
Kim, Seung Hyun, et al., Adv. Mater. 2004, 16, No. 3, Feb. 3, pp. 226-231. |
Park, Dae-Ho, Nanotechnology 18, 2007, 355304, pp. 1-7. |
Peng, Juan et al., Macromol. Rapid Commun. 2007, 28, 1422-1428. |
Rogers, John A., ACS Nano, vol. 1, No. 3, pp. 151-153, 2007. |
Rozkiewicz, Dorota I., et al., Angew. Chem. Int. Ed., 2006, 45, pp. 5292-5296. |
Ruiz, Ricardo et al., Science, vol. 321, Aug. 15, 2008, pp. 936-939. |
Segalman, Rachel A., Materials Science and Engineering R 48 (2005), pp. 191-226. |
Srinvivasan, Charan, et al., ACS Nano, vol. 1, No. 3, pp. 191-201, 2007. |
Xiao, Shuaigang et al., Nanotechnology 16 (2005) S324-S329. |
Jun, et al., Langmuir, 2002, 18(9), pp. 3415-3417, Abstract only. |
Balsara et al, CPIMA, IRG Technical Programs, Synthesis and application of Nanostructured Materials, Leland Stanford Junior Univ., 2006, http://www.stanford.edu/group/cpima/irg/irg—1.htm, printed Jul. 1, 2009. |
Bulpitt, Paul et al, Journal of Biomedical Materials Research, vol. 47, Issue 2, pp. 152-169, Abstract only. |
Elisseeff J., et al., Journal of Biomedical Materials Research, 51(2): 164-171, Aug. 2000, Abstract only. |
Gelest Inc., Silane Coupling Agents: Connecting Across Boundaries, pp. 1-56, 2006. |
Ji, Shengxiang, et al., Preparation of Neutral Wetting Brushes for Block Copolymer Films from Homopolymer Blends, submitted to Advanced Materials, 20(16): 3054-3060; published online Jul. 7, 2008. |
Ji, Shengxiang, et al., Macromolecules, 2008, 41(23): 9098-9103. |
Kim, SH, J Biomater Appl., Jul. 2000; 15(1): 23-46 Abstract only. |
Kim, SH, J Biomater Res., Mar. 15,2000; 49(4): 517-27 Abstract only. |
Kim, IS, et al., Int J Pharm., Sep. 15, 2000; 205(1-2): 109-16, Abstract only. |
Li, Wai-kin, et al, J. Vac. Sci. Technol. B 25(6), Nov./Dec. 2007, pp. 1982-1984. |
Lutolf, M.P., et al, Nature Biotechnology, 23, 47-55 (2005), Abstract only. |
Martens, P., et al., Polymer, vol. 41, Issue 21, Oct. 2000, pp. 7715-7722, Abstract only. |
Matsuda, T., et al., ASAIO J, Jul.-Sep. 1992; 38(3): M154-7, Abstract only. |
Sawhney, Amarpreet S., et al., Macromolecules 1993, 26, 581-587, Abstract only. |
Wathier, Michel, et al., J. Am. Chem. Soc., 2004, 126 (40), pp. 12744-12745, Abstract only. |
He, Yiyong et al., J. Am. Chem. Soc. 2006, 128, pp. 2745-2750. |
Wang, C., et al., Electrochimica Acta 52 (2006), pp. 704-709. |
Ali, H.A., et al., Solid-State Electronics, 46 (2002), 1639-1642. |
Black, C.T., Proc. of SPIE, vol. 6153, 615302 (2006). |
Darling, S.B., Progress in Polymer Science, vol. 32, No. 10, Sep. 28, 2007, pp. 1152-1204. |
Harrison, Christopher et al., Polymer, vol. 39, No. 13, pp. 2733-2744, 1998. |
Kim, Su-Jin, et al., J. Vac. Sci. Technol. B26(1), Jan./Feb. 2008, 189-194. |
La, Young-Hye, et al., J. Vac. Sci. Technol. B 25(6), Nov./Dec. 2007, pp. 2508-2513. |
Olayo-Valles, Roberto et al., J. Mater. Chem, 2004, 14, 2729-2731. |
Yang, XiaoMin, et al., J. Vac. Sci. Technol. B 22(6), Nov./Dec. 2004, 3331-3334. |
Zehner, Robert W. et al., Langmuir, vol. 14, No. 2, pp. 241-244, Jan. 20, 1998. |
Wipf, Handbook of Reagents for Organic Synthesis, 2005, John Wiley & Sons Ltd., pg. 320. |
Cha, Jenifer N., et al., Chem. Mater. 2007, 19, 839-843. |
Chang, Li-Wen, Proc. Of SPIE, vol. 6156, 2006, 615611-1 to 615611-6. |
Chang, Li-Wen, IEE International Electron Devices Meeting (IEDM), paper 33.2, Dec. 6-8, San Francisco, 2010, pp. 33.21 - 33.2.4 |
Ji, Shengxiang et al., ACS Nano, vol. 4, No. 2, 2010, pp. 599-609. |
Metters, Andrew, et al., Biomacromolecules 2005, 6, pp. 290-301, 2005. |
Park, Seung Hak, et al., Soft Matter, 2010, 6, 2010, 120-125. |
Yamaguchi, Toru, et al., Microprocesses and Nanotechnology, 2007, Conference date Nov. 5-8, 2007, pp. 434-435. |
Zhang, Yuan et al., Applied Physics Letter, 91, 013104, 2007 pp. 013104-3. |
Ikeda, Susumu et al., NanotechJapan Bulletin—vol. 3, No. 3, Dec. 17, 2010/Focus 26-06. |
Search Report of the IPO, Taiwanese Application No. 098109253 issued Aug. 22, 2012, 1 page. |
Bearinger at al., Chemisorbed Poly(Proplene Sulphide) Based Copolymers Resist Biomolecular Interactions, Nature Materials, vol. 2, pp. 259-264, 2003. |
Berry et al., Orientational Order in Block Copolymer Films Zone Annealed below the Order-Disorder Transition Temperature, Nano Letters vol. 7, No. 9 Aug. 2007, p. 2789-2794. |
Black et al., Polymer Self Assembly in Semiconductor Microelectronics, IBM J. Res. & Dev., vol. 51, No. 5, Sep. 2007, pp. 605-633. |
Black et al., Integration of Self Assembly for Semiconductor Microelectronics, IEEE 2005 Custom Integrated Circuits Conference, pp. 87-91 (2005). |
Chandekar et al., “Template-Directed Adsorption of block Copolymers on Alkanethiol-Patterned Gold Surfaces,” (circa 2006), http://www.nano.neu.edu/industry—shouwcase/industry—day/documents/Chandekar.pdf) (Powerpoint template for scientific posters (Swarthmore College)). |
Choi et al., Magnetorheology of Synthesized Core-Shell Structured Nanopractice, IEEE Transactions on Magnetics 41(10):3448-3450 (2005). |
Hawker et al., “Improving the manufacturability and structural control of block copolymer lithography,” Abstracts of Papers, 232nd ACS National Meeting, San Francisco, CA, Sep. 10-14, 2006. |
Helmbold et al., Optical Absorption of Amorphous Hydrogenated Carbon Thin Films, Thin Solid Films, vol. 283, pp. 196-203 (1996). |
Ji et al., Molecular Transfer Printing Using Block Copolymers, ACS Nano, vol. 4, No. 2, 2010, pp. 599-609. |
Lentz et al., Whole Wafer Imprint Patterning Using Step and Flash ImprintLithography: A Manufacturing Solution for Sub 100nm Patterning, SPIE Advanced Lithography Paper, http://molecularimprints.com/NewsEvents/tech—articles/new—articles/SPIE—07—MII—WW—Paper.pdf), Feb. 2007, pp. 1-10. |
Search Report of the IPO, Taiwanese Application No. 097110156, issued Apr. 10, 2012, two pages. |
Lutolf et al., Synthetic Biomaterials as Instructive Extracellular Microenvironments for Morphogenesis in Tissue Engineering, Adv. Mater., 2003, 15(11), 888-892. |
Nguyen et al., Photopolymerizable-Hydrogels, for Tissue Engineering Applications, Biomaterials 23, 2002, pp. 4307-4314. |
Ruiz et al., Density Multiplication and Improved Lithography by Directed Block Copolymer Assembly, Science, vol. 321, Aug. 13, 2008, pp. 936-939. |
Truskett et al., Trends in Imprint Lithography for Biological Applications, TRENDS in Biotechnology, vol. 24, No. 7, Jul. 2006, pp. 312-315. |
Zhu et al., Molecular Assemblies on Silicon Surfaces Via Si-O Linkages, Langmuir, 2006, 1b, 6766-6772. |
Number | Date | Country | |
---|---|---|---|
20090236309 A1 | Sep 2009 | US |