Three-dimensional arrays with magnetic tunnel junction devices including an annular discontinued free magnetic layer and a planar reference magnetic layer

Abstract
A Magnetic Tunnel Junction (MTJ) can include an annular structure and a planar reference magnetic layer disposed about the annular structure. The annular structure can include an annular non-magnetic layer disposed about an annular conductive layer, an annular free magnetic layer disposed about the annular non-magnetic layer, and an annular tunnel insulator disposed about the annular free magnetic layer. The planar reference magnetic layer can be separated from the free magnetic layer by the annular tunnel barrier layer.
Description
BACKGROUND OF THE INVENTION

Computing systems have made significant contributions toward the advancement of modern society and are utilized in a number of applications to achieve advantageous results. Numerous devices, such as desktop personal computers (PCs), laptop PCs, tablet PCs, netbooks, smart phones, game consoles, servers, distributed computing systems, Internet of Things (IoT) devices, Artificial Intelligence (AI), and the like have facilitated increased productivity and reduced costs in communicating and analyzing data in most areas of entertainment, education, business, and science. One common aspect of computing systems is the computing device readable memory. Computing devices may include one or more types of memory, such as volatile random-access memory, non-volatile flash memory, and the like.


An emerging non-volatile memory technology is Magnetoresistive Random Access Memory (MRAM). In MRAM devices, data can be stored in the magnetization orientation between ferromagnetic layers of a Magnetic Tunnel Junction (MTJ). Referring to FIG. 1, a MTJ, in accordance with the convention art, is shown. The MTJ can include two magnetic layers 110, 120, and a magnetic tunnel barrier layer 130. One of the magnetic layers 110 can have a fixed magnetization polarization 140, while the polarization of the magnetization of the other magnetic layer 120 can switch between opposite directions. Typically, if the magnetic layers 110, 120 have the same magnetization polarization, the MTJ cell will exhibit a relatively low resistance value corresponding to a ‘1’ hit state; while if the magnetization polarization between the two magnetic layers 110, 120 is antiparallel the MTJ cell will exhibit a relatively high resistance value corresponding to a ‘0’ bit state. Because the data is stored in the magnetic fields, MRAM devices are non-volatile memory devices. The state of a MRAM cell can be read by applying a predetermined current through the cell and measuring the resulting voltage, or by applying a predetermined voltage across the cell and measuring the resulting current. The sensed current or voltage is proportional to the resistance of the cell and can be compared to a reference value to determine the state of the cell.


MRAM devices are characterized by densities similar to Dynamic Random-Access Memory (DRAM), power consumption similar to flash memory, and speed similar to Static Random-Access Memory (SRAM). Although MRAM devices exhibit favorable performance characteristics as compared to other memory technologies, there is a continuing need for improved MRAM devices and methods of manufacture thereof.


SUMMARY OF THE INVENTION

The present technology may best be understood by referring to the following description and accompanying drawings that are used to illustrate embodiments of the present technology directed toward Magnetic Tunnel Junction (MTJ) devices.


In one embodiment, an MTJ structure can include an annular structure and a planar reference magnetic layer disposed about the annular structure. The annular structure can include an annular non-magnetic layer disposed about an annular conductive layer, an annular free magnetic layer disposed about the annular non-magnetic layer, and an annular tunnel insulator disposed about the annular free magnetic layer. The planar reference magnetic layer can be separated from the free magnetic layer by the annular tunnel barrier layer. The MTJ structure can also include a first non-magnetic insulator layer disposed on a first side of the planar reference magnetic layer and about the annular structure. A second non-magnetic insulator layer can be disposed on a second side of the planar reference magnetic layer and about the annular structure. The magnetic field of the planar reference magnetic layer can have a fixed polarization substantially perpendicular to a major planar orientation of the planar reference magnetic layer. The magnetic field of the annular free magnetic layer can have a polarization substantially perpendicular to the major planar orientation of the planar reference magnetic layer. The magnetic field of the annular free magnetic layer can switch to being substantially parallel to the magnetic field of the planar reference layer in response to a current flow in a first direction through the conductive annular layer and switch to being substantially anti-parallel to the magnetic field of the planar reference layer in response to a current flow in a second direction through the conductive annular layer.


In another embodiment, a memory device can include an array of MJT cells. Each MTJ cell can include an annular structure and a portion of a planar reference magnetic layer proximate the respective annular structure. Each annular structure can include an similar non-magnetic layer disposed about an annular conductive layer, an annular free magnetic layer disposed about the annular non-magnetic layer, and an annular tunnel insulator disposed about the annular free magnetic layer. The planar reference magnetic layer can be disposed about the plurality of annular structures and separated from the free magnetic layers by the annular tunnel barrier layers.


In yet another embodiment, a memory device can include an array of MTJ cells and a plurality of select elements. The array of MTJ cells can be arranged in cell columns and cell rows in a plurality of cell levels. The MTJ cells in corresponding cell column and cell row positions in the plurality of cell levels can be coupled together in cell strings. Each MTJ cell can include an annular structure including an annular non-magnetic layer disposed about an annular conductive layer, an annular free magnetic layer disposed about the annular non-magnetic layer, and an annular tunnel insulator disposed about the annular free magnetic layer. Each MTJ cell can also include a portion of a respective planar reference magnetic layer disposed about the annular structure, a portion of a respective planar non-magnetic insulator layer disposed on a first side of the planar reference magnetic layer and about the annular structure, and a portion of another respective planar non-magnetic insulator layer disposed on a second side of the planar reference magnetic layer and about the annular structure.


In yet another embodiment, a string of MTJ cells can include one or more annular structures. Each annular structure can include an annular non-magnetic layer disposed about an annular conductive layer, a plurality of annular free magnetic layers disposed about the annular non-magnetic layer, the plurality of annular free magnetic layers separated from each other by corresponding ones of a plurality of non-magnetic separator layers, and an annular tunnel insulator disposed about the annular free magnetic layer. A plurality of planar reference magnetic layers can be disposed about the annular tunnel barrier layer and aligned with corresponding ones of the plurality of portions of the free magnetic layers. Non-magnetic insulator layers can be disposed about the plurality of annular structures and on either side of each planar reference magnetic layer.


In yet another embodiment, the array of MTJ cells can include a plurality of planar reference magnetic layers disposed about respective ones of a plurality of annular structures. Alternatively, the array of MTJ cells can include a plurality of planar reference magnetic layers disposed about a plurality of annular structures. Respective ones of a plurality of bit lines can be disposed on and electrically coupled to respective ones of the plurality of planar reference magnetic layers. In one implementation, the bit lines can be disposed and electrically coupled to the planar reference magnetic layers in a peripheral region of the array of MTJ cells.


In yet another embodiment, fabrication of an MTJ cell can include forming a planar reference magnetic layer on a first planar non-magnetic insulator layer and forming a second planar non-magnetic insulator layer on the planar reference magnetic layer. One or more annular openings can be formed through the second planar non-magnetic insulator layer, the planar reference magnetic layer and the first planar non-magnetic insulator layer. An annular tunnel insulator can be formed on the walls of the one or more annular openings, an annular free magnetic layer can be formed on the annular insulator inside the one or more annular openings, an annular non-magnetic layer can be formed on the annular free magnetic layer inside the one or more annular openings, and an annular conductive core can be formed inside the annular non-magnetic layer in the one or more annular openings.


This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not tended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present technology are illustrated by way of example and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:



FIG. 1 shows a Magnetic Tunnel junction (MTJ), in accordance with the conventional art.



FIG. 2 shows a MTJ, in accordance with aspects of the present technology.



FIG. 3 shows a device including an array of MTJ, in accordance with aspects of the present technology.



FIG. 4 shows a memory cell array, in accordance with aspects of the present technology.



FIG. 5 shows a memory cell array, in accordance with aspects of the present technology.



FIG. 6 shows a memory cell array, in accordance with aspects of the present technology.



FIG. 7 shows a memory cell array, in accordance with aspects of the present technology.



FIG. 8 shows a memory cell array, in accordance with aspects of the present technology.



FIG. 9 shows a memory device. In accordance aspects of the present technology.


PIG. 10 shows a device including a string of MTJs, in accordance with aspects of the present technology.



FIG. 11 shows a device including a string of MTJs, in accordance with aspects of the present technology.



FIG. 12 shows a device including a string of MTJs, in accordance with aspects of the present technology.



FIG. 13 shows a memory cell array, in accordance with aspect of the present technology.



FIG. 14. shows a memory cell array, in accordance with aspect of the present technology.



FIG. 15 shows a memory cell array, in accordance with aspect of the present technology.



FIG. 16 shows a device including a string of MTJs, in accordance with aspects of the present technology.



FIGS. 17A and 17B show a memory cell array, in accordance with aspect of the present technology.



FIGS. 18A and 18B show a memory cell array, in accordance with aspect of the present technology.



FIGS. 19A-19B show a method of fabricating a MTJ, in accordance with aspects of the present technology.



FIGS. 20A-20F show a method of fabricating a MTJ, in accordance with aspects of the present technology.



FIGS. 21A-21C show a method of fabricating a memory cell array, in accordance with aspects of the present technology.



FIGS. 22A-22C show a method of fabricating a memory cell array, in accordance with aspects of the present technology.



FIGS. 23A-23F show a method of fabricating a memory cell array, in accordance with aspects of the present technology.





DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to the embodiments of the present technology, examples of which are illustrated in the accompanying drawings. While the present technology will be described in conjunction with these embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the present technology, numerous specific details are set forth in order to provide a thorough understanding of the present technology. However. It is understood that the present technology may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present technology.


Some embodiments of the present technology which follow are presented in terms of routines, modules, logic blocks, and other symbolic representations of operations on data within one or more electronic devices. The descriptions and representations are the means used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. A routine, module, logic block and/or the like, is herein, and generally, conceived to be a self-consistent sequence of processes or instructions leading to a desired result. The processes are those including physical manipulations of physical quantities. Usually, though not necessarily, these physical manipulations take the form of electric or magnetic signals capable of being stored, transferred, compared and otherwise manipulated in an electronic device. For reasons of convenience, and with reference to common usage, these signals are referred to as data, bits, values, elements, symbols, characters, terms, numbers, strings, and/or the like with reference to embodiments of the present technology.


It should be borne in mind, however, that all of these terms are to be interpreted as referencing physical manipulations and quantities and are merely convenient labels and are to be interpreted further in view of terms commonly used in the art. Unless specifically stated otherwise as apparent from the following discussion, it is understood that through discussions of the present technology, discussions utilizing the terms such as “receiving,” and/or the like, refer to the actions and processes of an electronic device such as an electronic computing device that manipulates and transforms data. The data is represented as physical (e.g., electronic) quantities within the electronic device's logic circuits, registers, memories and/or the like, and is transformed into other data similarly represented as physical quantities within the electronic device.


In this application, the use of the disjunctive is intended to include the conjunctive. The use of definite or indefinite articles is not intended to indicate cardinality. In particular, a reference to “the” object or “a” object is intended to denote also one of a possible plurality of such objects. It is also to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.


Referring to FIG. 2, a Magnetic Tunnel Junction (MTJ), in accordance with aspects of the present technology, is shown. The MTJ 200 can include an annular structure 210-240 including an annular non-magnetic layer 210 disposed about an annular conductive layer 220, an annular free magnetic layer 230 disposed about the annular non-magnetic layer 220, and an annular tunnel barrier layer 240 disposed about the annular free magnetic layer 230. The MTJ 200 can also include a planar reference magnetic layer 250 disposed about the annular structure 210-240 and separated from the free magnetic layer 230 by the annular tunnel barrier layer 240.


The MTJ 200 can further include a first set of one or more additional layer 260 disposed about the annular structure 210-240 and on a first side (e.g., bottom side) of the planar reference magnetic layer 250, and a second set of one or more additional layers 270 disposed about the annular structure 210-240 and on a second side (e.g., top) of the planar reference magnetic layer 250. The first set of one or more additional layers 260 can include a first planar non-magnetic insulator layer disposed about the annular structure 210-240 and on a first side of the planar reference magnetic layer 250. The first set of one or after additional layers 260 can include, alternatively or in addition, one or more seed layers, one or more Synthetic Antiferromagnetic (SAF) layers, one or more contacts, a substrate, and/or the like. The second set of one or more additional layers 270 can include, a second planar non-magnetic insulator layer disposed about the annular structure 210-240 and on a second side of the planar reference magnetic layer 250. The second set of one or more additional layers 270 can include, alternatively or in addition one or more Perpendicular Magnetic Anisotropy (PMA) enhancing layers, one or more Precessional Spin Current (PSC) layers, one or more insulator layers, one or more contacts, one or more capping layers, and/or the like. The first and second set of one or more additional layers 260, 270 are not germane to an understanding of aspects of the present technology and therefore will not be discussed in further detail.


In one implementation, the planar reference magnetic layer 250 can include one or more layers of a Cobalt-Iron-Boron (Co—Fe—B) alloy, a Cobalt-Iron (CoFe) alloy, a Cobalt-Iron-Nickle (CoFeNi) alloy, an Iron-Nickle (FeNi) alloy, an Iron-Boron (FeB) alloy a multilayer of Cobalt-Platinum (CoPt) and Cobalt Palladium (CoPd), a Heusler Alloy selected from Cobalt-Manganese-Silicon (CoMnSi), Cobalt-Manganese-Germanium (CoMnGe), Cobalt-Manganese-Aluminum (CoMnAl), Cobalt-Manganese-lron-Silicon (CoMnFeSi), Cobalt-Iron-Silicon (CoFeSi), Cobalt-Iron-Aluminum (CoFeAl), Cobalt-Chromium-Iron-Aluminum (CoCrFeAl), Cobalt-Iron-Aluminum-Silicon (CoFeAlSi), or compounds thereof, with a thickness of approximately 1-20 nm, preferably 1 to 10 nm, more preferably 1 to 5 nm. The annular tunnel insulator layer 240 can include one or more layers of a Magnesium Oxide (MgO), Silicon Oxide (SiOx), Aluminum Oxide (AlOx), Titanium Oxide (TiOx) or combination of these oxide materials with a thickness of approximately 0.1-3 nm. The annular free magnetic layer 230 can include one or more layers of a Cobalt-ion-Boron (Co—Fe—B), Cobalt-Nickle-Iron (CoNiFe), Nickle-Iron (NiFe) alloy or their multilayer combinations with a thickness of approximately 0.5-5 nm. The annular non-magnetic layer 210 can include one or more layers of metal protecting layers that can include one or more elements of a Tantalum (Ta), Chromium (Cr), W, V, Pt, Ru, Pd, Cu, Ag, Rh, or their alloy, with a thickness of approximately 1 to 10 nm. The annular conductive layer 220 can include one or more layers of Copper (Cu), Aluminum (Al), Ruthenium (Ru), and/or one or more alloys thereof with a thickness of approximately 5-20 nm. The first and second additional layers 260, 270 can include one or more layers f MgO, SiOx, AlOx, are alloys thereof with a thickness of the first and second additional in the range of 5 to 20 nm, preferably 5 to 10 nm.


In one implementation, the annular structure can be a substantially cylindrical structure with tapered sidewalls, herein referred to as a conical structure. In one implementation, the conical structure can have a taper of approximately 10-45 degrees from a first side of the planar reference magnetic layer 250 to a second side of the planar reference magnetic layer 250. In another expression, the wall angle measured from the normal axis to the horizontal direction of the planar reference magnetic layer 250 can be approximately 10-45 degrees. In one implementation, the annular tunnel insulator 240, the annular free magnetic layer 230, and the annular non-magnetic layer 210 can be concentric regions each bounded by inner and outer respective tapered cylinders having substantially the same axis, disposed about a solid tapered cylindrical region of the annular conductive layer 220.


In aspects, the magnetic field of the planar reference magnetic layer 250 can have a fixed polarization substantially perpendicular to a major planar orientation of the planar reference magnetic layer 250. The magnetic field of the annular free magnetic layer 230 can have a polarization substantially perpendicular to the major planar orientation of the planar reference magnetic layer 250 and selectively switchable between being substantially parallel and substantially antiparallel to the magnetic field of the planar reference layer 250. In one implementation, the magnetic field of the annular free magnetic layer 230 can be configured to switch to being substantially parallel to the magnetic field of the planar reference layer 250 in response to a current flow in a first direction through the conductive annular layer 220 and to switch to being substantially anti-parallel to the magnetic field of the planar reference layer 250 in response to a current flow in a second direction through the conductive annular layer 220. More generally, the polarization direction, either parallel or anti-parallel, can be changed by a corresponding change in the current direction. Therefore, regardless of the definition of the current flowing direction, the polarization of the annular free magnetic layer 230 can switch to the other polarization orientation by switching the current direction.


Referring now to FIG. 3, a device including an array of Magnetic Tunnel Junctions (MTJs), in accordance with aspects of the present technology, is shown. The device can include a plurality of annular structures 310-360 and a planar reference magnetic layer 370. The plurality of annular structures 310-360 can each include an annular non-magnetic layer 210 disposed about an annular conductive layer 220, an annular free magnetic layer 230 disposed about the annular non-magnetic layer 220, and an annular tunnel insulator 240 disposed about the annular free magnetic layer 230, as described above in more detail with reference to FIG. 2. The planar reference magnetic layer 370 can be disposed about the plurality of annular structures 310-360 and separated from the free magnetic layers 230 by the annular tunnel barrier layers 240. The device can also include a first set of one or more additional layers 380 disposed about the plurality of annular structures 310-360 and on a first side of the planar reference magnetic layer 370. The device can also include a second set of one or more additional layers 390 disposed about the plurality of annular structures 310-360 and on a second side of the planar reference magnetic layer 370.


In aspects, each annular structure 310-360 and the corresponding portion of the planar reference magnetic layer 370 proximate the respective annular structure 310-360 can form a MTJ cell. The magnetic field of the planar reference magnetic layer 370 can have a fixed polarization substantially perpendicular to a major planar orientation of the planar reference magnetic layer 370. The magnetic field of the annular free magnetic layers 230 can have a polarization substantially perpendicular to the major planar orientation of the planar reference magnetic layer 370 and selectively switchable between being substantially parallel and substantially antiparallel to the magnetic field of the planar reference layer 370. In one implementation, the magnetic field of the annular free magnetic layer 230 can be configured to switch to being substantially parallel to the magnetic field of the planar reference layer 370 in response to a current flow in a first direction through a respective conductive annular layer 220 and to switch to being substantially anti-parallel to the magnetic field of the planar reference layer 370 in response to a current flow in a second direction through the respective conductive annular layer 220.


Referring now to FIG. 4, a memory cell array, in accordance with aspects of the present technology, is shown. The memory cell array can include a plurality of MTJ cells. Each MTJ cell can include an annular structure 410-450 and a corresponding portion of a planar reference magnetic layer 460. The annular structures 410-450 can each include an annular non-magnetic layer 210 disposed about an annular conductive layer 220, an annular free magnetic layer 230 disposed about the annular non-magnetic layer 220, and an annular tunnel insulator 240 disposed about the annular free magnetic layer 230, as described above in more detail with reference to FIG. 2. The planar reference magnetic layer 460 can be disposed about the plurality of annular structures 410-450 and separated from the free magnetic layers 230 by the annular tunnel barrier layers 240. The memory cell array can also include a first set of one or more additional layers 470 disposed about the plurality of annular structures 410-450 and on a first side of the planar reference magnetic layer 460. The memory cell array can also include a second set of one or more additional layers 480 disposed about the plurality of annular structures 410-450 and on a second side of the planar reference magnetic layer 460.


In aspects, the magnetic field of the planar reference magnetic layer 250 can have a fixed polarization substantially perpendicular to a major planar orientation of the planar reference magnetic layer 250. The magnetic field of the annular free magnetic layer 230 can have a polarization substantially perpendicular to the major planar orientation of the planar reference magnetic layer 250 and selectively switchable between being substantially parallel and substantially antiparallel to the magnetic field of the planar reference layer 250. In one implementation, the magnetic field of the annular free magnetic layer 230 can be configured to switch to being substantially parallel to the magnetic field of the planar reference layer 250 in response to a current flow in a first direction through the conductive annular layer 220 and to switch to being substantially anti-parallel to the magnetic field of the planar reference layer 250 in response to a current flow in a second direction through the conductive annular layer 220. Typically, if the planar reference magnetic layer 250 and the annular free magnetic layer 230 have the same magnetization polarization, the MTJ cell will exhibit a relatively low resistance value corresponding to a ‘1’ bit state; while if the magnetization polarization between the two magnetic layers is antiparallel the MTJ cell will exhibit a relatively high resistance value corresponding to a ‘0’ bit state. Accordingly, the MTJ cells can also be schematically represented as resistive cell elements.


The memory cell array can also include a plurality of bit lines 490, a plurality or source lines, a plurality of word lines, and a plurality of select transistors. The plurality of bit lines 490 can be coupled to the planar reference magnetic layer 460. The annular conductive layer 220 of each annular structure 410-450 can comprise a portion of a respective plurality of source line. The memory cell array 400 will be further explained with reference to FIG. 5, which illustrates a schematic representation of the memory cell array.


Referring now to FIG. 5, the memory cell array 500 can include a plurality of MTJ cells 410-450, a plurality of bit lines 490, a plurality of source lines 505-520, a plurality of word lines 525, 530, and a plurality of select transistor 535, 540. The MTJ cells arranged along columns 410, 420 can be coupled by a corresponding select transistor 535, 540 to a respective source line 505. The gate of the select transistors 535, 540 can be coupled to a respective word line 525, 530. In one implementation, a logic ‘0’ state can be written to a given memory cell 410 by biasing the respective bit line 490 at a bit line write potential (e.g., VBLW), biasing the respective source line 505 at a ground potential, and driving the respective word line 525 at a word line write potential (e.g., VWLW=VHi). The word lines 530 for the cells that are not being written to can be biased at a ground potential. In addition, the other source lines 510-520 can be biased at a high potential or held in a high impedance state. The high potential can be equal to the bit line write potential or some portion thereof. A logic ‘1’ state can be written to the given memory cell 410 by biasing the respective bit line 490 at a ground potential, biasing the respective source line 505 at a source line write potential (e.g., VSLW), and driving the respective word line 525 at the word line write potential (e.g.., VWLW=VHi). The word lines 530 for the cells that are not being written to can be biased at ground potential. In addition, the other source lines 510-520 can be biased at a low potential or held in a high impedance state. The state of the given memory cell 410 can be read by biasing the respective bit line 490 at a bit line read potential (e.g., VBLR), biasing the respective source line 505 at a ground potential, driving the respective word line 525 at a word line read potential (VWLR=VHi), and sensing the resulting current on the respective source line 505. The word lines 530 for the cells that are not being read can be biased at a ground potential. In addition, the other source lines 510-520 can be biased at a high potential or held in a high impedance state. The high potential can be equal to the hit line read potential or some portion thereof.


Referring now to FIG. 6, a memory cell array, in accordance with aspects of the present technology, is shown. The memory cell array can include a plurality of MTJ cells as described above in more detail with respect to FIG. 4. The memory cell array can further include a plurality of insulator regions 610 disposed between portions 620, 630 of the planar reference magnetic layer along columns of the annular structures 640, 650 and 660, 670.


Referring now to FIG. 7, a memory device, in accordance with aspects of the present technology, is shown. The memory device 700 can include a plurality of memory cell array blocks 705-720. Each memory cell array block 705-720 can include a plurality of MTJ cells as described above in more tail with respect to FIGS. 4 and 6. Two or more bit lines 730, 735 of the memory cell array blocks 710, 715 arranged in respective columns can be coupled together by a corresponding global bit line 740. In addition, the source lines 745 of the memory cell array blocks 710, 715 arranged in respective columns can be coupled together. Likewise, the word lines 750 of the memory cell array blocks 715, 725 arranged in respective rows can be coupled together. The memory device 700 will be further explained with reference to FIG. 8, which illustrates a schematic representation of the memory device.


Referring now to FIG. 8, the memory device 700 can include a plurality of memory cell array blocks 705-720. Each memory cell array block can include a plurality of MTJ cells 810, a plurality of bit lines 730, a plurality of source lines 745, a plurality of word lines 750, and a plurality of select transistor 820. The MTJ cells arranged along columns 810420 can be coupled by a corresponding select transistor 820 to a respective source line 745. The gate of the select transistors can be coupled to a respective word line 750. Two or more hit lines 730, 735 of the memory cell array blocks 710, 715 arranged in respective columns can be coupled together by a corresponding global bit line 740. In addition, the source lines 745 of the memory cell array blocks 710, 715 arranged in respective columns can be coupled together. Likewise, the word lines 750 of the memory cell array blocks 715, 725 arranged in respective rows can be coupled together.


In one implementation, logic ‘0’ and ‘1’ states can be written to a given memory cell 810 by biasing the global bit line 740 which also biases the respective bit line 730 at a bit line write potential (e.g., VBLW), biasing the respective source line 745 at a ground potential, and driving the respective word line 525 at a word line write potential (e.g., VWLW=VHi). The word lines for the cells that are not being written to can be biased at a ground potential. In addition, the other source lines can be biased at a high potential or held in a high impedance state. The high potential can be equal to the bit line write potential or some portion thereof. A logic ‘1’ state can be written to the given memory cell 810 by biasing the global bit line 740 which also biases the respective bit line 730 at a ground potential, biasing the respective source line 745 at a source line write potential (e,g., VSLW), and driving the respective word line 750 at the word line write potential (e.g., VWLW=VHi). The word lines for the cells that are not being written to can be biased at ground potential. In addition, the other source lines can be biased at a low potential or held in a high impedance state. The state of the given memory cell 810 can be read by biasing the global bit line 740 which also biases the respective bit line 730 at a bit line read potential (e.g., VBLR), biasing the respective source line 745 at a ground potential, driving the respective word line 750 at a word line read potential (VWLR=VHi), and sensing the resulting current on the respective source line 745. The word lines for the cells that are not being read can be biased at a ground potential. In addition, the other source lines can be biased at a high potential or held in a high impedance state. The high, potential can be equal to the bit line read potential or some portion thereof.


Referring now to FIG, 9, a memory device, in accordance with aspects of the present technology, is shown. In one implementation, the memory device can be a Magnetoresistive Random Access Memory (MRAM). The memory device 900 can include a plurality of memory cell array blocks 710-725, one or more word line decoders 905, 910, one or more sense amplifier circuits 915, 920, and peripheral circuits 925. The memory device 900 can include other well-known circuits that are not necessary for an understanding of the present technology and therefore are not discussed herein.


Each memory cell array block 710-725 can include can include a plurality of MTJ cells 810, a plurality of bit lines 730, a plurality of source lines 745, a plurality of word lines 750, and a plurality of select transistor 820 as described in more detail above with reference to FIGS. 7 and 8. The peripheral circuits 925, the word line decoders 905, 910 and sense amplifier circuits 915, 920 can map a given memory address to a particular row of MTJ memory cells in a particular memory cell array block 710-725. The output of the word line drivers 905, 910 can drive the word lines to select a given word line of the array. The sense amplifier circuits 915, 920 utilize the source lines and bit lines of the array to read from and write to memory cells of a selected word line in a selected memory cell array block 710-725.


In one aspect, the peripheral circuits 925 and the word line decoders 905, 910 can be configured to apply appropriate write voltages to bit lines, source lines and, word lines to write data to cells in a selected word. The magnetic polarity, and corresponding logic state, of the free layer of the MTJ cell can be changed to one of two states depending upon the direction of current flowing through the MTJ cell. For read operations, the peripheral circuits 925, the word line decoders 905, 910 and sense amplifier circuits 915, 920 can be configured to apply appropriate read voltages to the bit lines, sources lines and word lines to cause, a current to flow in the source lines that can be sensed by the sense amplifier circuits 915, 920 to read data from cells in a selected word.


Referring now to FIG. 10 a device including a string of MTJs, in accordance with aspects of the present technology, is shown. The device can include a first annular structure 1005-1015 including an annular free magnetic layer 1005 disposed about an annular conductive layer 1010, and an annular tunnel insulator 1015 disposed about the annular free magnetic layer 1005. The annular structure can optionally include an annular non-magnetic layer (not shown) disposed between the annular conductive layer 1010 and the annular free magnetic layer 1005. A first planar reference magnetic layer 1020 can be disposed about the first annular structure 1005-1015 and separated from the free magnetic layer 1005 of the first annular structure by the annular tunnel barrier layer 1015 of the first annular structure. A first non-magnetic insulator layer 1025 can be disposed about the first annular structure and on a first side of the first planar reference magnetic layer 1020. A second non-magnetic insulator layer 1030 Can be disposed about the first annular structure and on a second side of the first planar reference magnetic layer 1020.


The device can further include a second annular structure 1015-1045. The second annular structure 1035-1045 can be axially aligned with the first annular structure 1005-1015. The second annular structure can include an annular free magnetic layer 1035 disposed about an annular conductive layer 1040, and an annular tunnel insulator 1045 disposed about the annular free magnetic layer 1035. The second annular structure can optionally include an annular non-magnetic layer (not shown) disposed between the annular conductive layer 1040 and the annular free magnetic layer 1035. A second planar reference magnetic layer 1050 can be disposed about the second annular structure 1035-1045 and separated from the free magnetic layer 1035 of the second annular structure by the annular tunnel barrier layer 1045 of the second annular structure. A third non-magnetic insulator layer 1055 can be disposed about the second annular structure, and between the second non-magnetic insulator layer 1030 and a first side of the second planar reference magnetic layer 1050. A fourth non-magnetic insulator layer 1060 can be disposed about the second annular structure and on a second side of the second planar reference magnet cc layer 1050.


Each annular structure and the portions of the planar reference magnetic layer and the non-magnetic insulator layers proximate the respective annular structure can comprise a MTJ cell. The device can include any number of MTJ cells coupled together in a string. For example, a Nth level string of MTJ cells can include a Nth annular structure 1065-1075. The Nth annular structure 1065-1075 can be axially aligned with the first and second annular structures 1005-1015, 1035-1045. The Nth annular structure can include an annular free magnetic layer 1065 disposed about an annular conductive layer 1070, and an annular tunnel insulator 1075 disposed about the annular free magnetic layer 1065. The Nth annular structure can optionally include an annular non-magnetic layer (not shown) disposed between the annular conductive layer 1070 and the annular free magnetic layer 1065. A Nth planar reference magnetic layer 1080 can be disposed about the Nth annular structure 1065-1075 and separated from the free magnetic layer 1065 of the Nth annular structure by the annular tunnel barrier layer 1075 of the Nth annular structure. A (N−1)th non-magnetic insulator layer 1085 can be disposed about the Nth annular structure, and between the non-magnetic insulator layer of an adjacent cell and a first side of the second planar reference magnetic layer 1080. A Nth non-magnetic insulator layer 1090 can be disposed about the Nth annular structure and on a second side of the N planar reference magnetic layer 1080.


The device can optionally include a non-magnetic metal layer 1092 disposed between adjacent MTJ cells, as illustrated in FIG. 11. For example, a non-magnetic metal layer 1092 can be disposed between the second non-magnetic insulator layer 1030 and the third non-magnetic insulator layer 1055 and between the first annular structure 1005-1015 and the second annular structure 1035-1045. Alternatively, the device can optionally include a non-magnetic insulator layer 1094 and a non-magnetic metal plug 1096 disposed between adjacent MTJ cells, as illustrated in FIG. 12. For example, an additional non-magnetic insulator layer 1094 can be disposed between the second non-magnetic insulator layer 1030 and the third non-magnetic insulator layer 1055 and one or more portions of the first and second annular structures 1005-1015, 1035-1045. A non-magnetic metal plug 1096 can be disposed between respective ones of the annular conductive layer 1010 of the first annular structure 1005-1015 and the annular conductive layer 1040 of the second annular structure 1035-1045.


In one implementation, the annual structures 1005-1015, 1035-1045, 1065-1075 can be substantially cylindrical structures with tapered sidewalk, herein referred to as conical structures. In one implementation, the conical structures can have a taper of approximately 10-45 degrees from a first side of the planar reference magnetic layers 1020, 1050, 1080 to a second side of the planar reference magnetic layers 1020, 1050, 1080. In another expression, the wall angle measured from the normal axis to the horizontal direction of the planar reference magnetic layers 1020, 1050, 1080 can be approximately 10-45 degrees. In one implementation, the annular tunnel insulators 1015, 1045, 1075 and the annular free magnetic layer 1005, 1035, 1065 can be concentric regions each bounded by inner and outer respective tapered cylinders having substantially the same axis, disposed about a solid tapered cylindrical region of the annular conductive layers 1010, 1040, 1070. In one implementation, the taper angle of the sidewalk can provide for separating the annular free magnetic layers 1005, 1035, 1065 of the annual structures 1005-1015, 1035-1045, 1065-1075 from each other, while the annular conductive layers 1010, 100, 1070 are coupled together along the string.


In aspects, the magnetic field of the planar reference magnetic layers 1020, 1050, 1080 can have a fixed polarization substantially perpendicular to a major planar orientation of the planar reference magnetic layer 1020, 1050, 1080. The magnetic field of the annular free magnetic layers 1005, 1035, 1065 can have a polarization substantially perpendicular to the motor planar orientation of the planar reference magnetic layers 1020, 1050, 1080 and selectively switchable between being substantially parallel and substantially antiparallel to the magnetic field of the planar reference layers 1020, 1050, 1080. In one implementation, the magnetic field of the annular free magnetic layers 1005, 1035, 1065 can be configured to switch to being substantially parallel to the magnetic field of the planar reference layer 1020, 1050, 1080 in response to a current flow in a first direction through the conductive annular layer 1010, 1040, 1070 and to switch to being substantially anti-parallel to the magnetic field of the planar reference layer 1020, 1050. 1080 in response to a current flow in a second direction through the conductive annular layer 1010, 1040, 1070.


Referring now to FIG. 13, a memory device, in accordance with aspect of the present technology, is shown. The memory device can include an array of MTJ cells arranged in cell columns and cell rows in a plurality of cell levels. The MTJ cells in a given corresponding cell column position and cell row position in the plurality of cell levels can be coupled together in a cell string as described above with reference to FIGS. 10-12 in more detail.


Each MTJ cell can include an annular structure including an annular non-magnetic layer disposed about an annular conductive layer, an annular free magnetic layer disposed about the annular non-magnetic layer, and an annular tunnel insulator disposed about the annular free magnetic layer. Each eels can thither include a portion of a respective planar reference magnetic layer disposed about the annular structure, a portion of a respective planar non-magnetic insulator layer disposed on a first side of the planar reference magnetic layer and about the annular structure, and a portion of another respective planar non-magnetic insulator layer disposed on a second side of the planar reference magnetic layer and about the annular structure.


For example, the MTJ cells in a first level 1305 can include a first plurality of annular structures 1310-1330 arranged in columns and rows. Each annular structure can include an annular non-magnetic layer disposed about an annular conductive layer, an annular free magnetic layer disposed about the annular non-magnetic layer, and an annular tunnel insulator disposed about the annular free magnetic layer. A first planar reference magnetic layer 1335 can be disposed about the first plurality of annular structures 1310-1330 and separated from the free magnetic layers of the first plurality of annular structures 1310-1330 by the annular tunnel barrier layers of the first plurality of annular structures 1310-1330. A first non-magnetic insulator layer 1340 can be disposed about the first plurality of annular structures 1310-1330 and on a first side of the first planar reference magnetic layer 1335. A second non-magnetic insulator layer 1345 can be disposed about the first plurality of annular structures 1310-1330 and on a second side of the first planar reference magnetic layer 1335.


The MTJ cells in a second level 1350 can include a second plurality of annular structures axially aligned with respective ones the first plurality of annular structures 1310-1330. A second planar reference magnetic layer 1355 can be disposed about the second plurality of annular structures and separated from the free magnetic layer of the second plurality of annular structures by the annular tunnel barrier layers of the second plurality of annular structures. A third non-magnetic insulator layer 1360 can be disposed about the second plurality of annular structures and between the second non-magnetic insulator layer 1345 and a first side of the second planar reference magnetic layer 1355. A fourth non-magnetic insulator layer 1365 can be disposed about the second plurality of annular structures and on a second side of the second planar reference magnetic layer 1355.


The memory device can further include MTJ cells in any number of levels. The memory device can optionally include a non-magnetic metal layer disposed between adjacent levels 1305, 1350, as described above with reference to FIG. 11. Alternatively, the memory device can optionally include a non-magnetic insulator layer and a non-magnetic metal plug disposed between adjacent levels 1305, 1355, as described above with reference to FIG. 12. The memory device can also optionally include a plurality of insulator regions disposed between portions of the planar reference magnetic layers along columns of the annular structures, as described above with reference to FIG. 6.


The memory device can also include a plurality of bit lines 1370, 1375, a plurality of source lines, a plurality of word lures, and a plurality of select transistors. The plurality of bit lines 1370, 1375 can be coupled to respective planar reference magnetic layers 1335, 1355. The annular conductive layer of each annular structure coupled together in a string can comprise a portion of a respective source line. The device 1300 will be further explained with reference to FIG. 14, which illustrates a schematic representation of the memory device.


Referring now to FIG. 14, the memory cell array 1300 can include a plurality of MTJ cells 1405-1420, a plurality of bit lines 1425, 1430, a plurality of source lines 1435-1445, a plurality of word lines 1450, 1455 and a plurality of select transistor 1460, 1465. The MTJ cells arranged along a string 1405, 1410 can be coupled by a corresponding select transistor 1460 to a respective source line 1435. The MTJ cells arranged along a second string 1415, 1420 in the same column can be coupled by another corresponding select transistor 1465 to the same respective source line 1435. The gate of the select transistors 1460, 1465 can be coupled to a respective word line 1450. 14550. The memory device can further include a plurality of memory cell array blocks, as described above with reference to FIGS. 7 and 8.


In one implementation, a logic ‘0’ state can be written to a given memory cell 1405 by biasing the respective bit line 1420 at a bit time write potential (e.g., VBLW), biasing the respective source line 1435 at a ground potential, and driving the respective word line 1455 at a word line write potential (e.g., VWLW=VHi). The word lines for the cells that are not being written to can be biased at a ground potential. In addition, the other source lines 1440, 1445 can be biased at a high potential or held in a high impedance state. The high potential can be equal to the hit line write potential or sonic portion thereof. A logic ‘1’ state can be written to the given memory cell 1405 by biasing the respective bit line 1420 at a ground potential, biasing the respective source line 1435 at a source line write potential (e.g., VSLW), and driving the respective word line 1455 at the word line write potential (e.g.., VWLW=VHi). The word lines for the cells that are not being written to can be biased at ground potential. In addition, the other source lines 1440, 1445 can be biased at a low potential or held in a high impedance state. The state of the given memory cell 1405 can be read by biasing the respective hit line 1420 at a bit line read potential (e.g., VBLR), biasing the respective source line 1435 at a ground potential, driving the respective word line 1455 at a word line read potential (VWLR=VHi), and sensing the resulting current on the respective source line 1435. The word lines for the cells that are not being read can be biased at a ground potential. In addition, the other source lines 1440, 1445 can be biased at a high potential or held in a high impedance state. The high potential can be equal to the bit line read potential or some portion thereof.


Referring now to FIG. 15, two MTJ cells coupled in a string, in accordance with aspects of the present technology, is shown. When writing a ‘0’ to a first MTJ cell 1405, the hit line 1420 can be biased at VBLW and the source line can be biased at ground resulting in a current that flows from the bit line 1420 and out through the source line 1435. However, the bit lines of the second mu cells in the same string 1410 can be biased at ground, which will result in half the current that flows into the bit line 1420 of the first MTJ cell 1405 flowing out the source line 1435 and half the current leaking out through the bit line 1425 of the second MTJ cell. By increasing the potential voltage on the bit line 1420 of the second MTJ cell 1410 or holding the bit line 1420 of the second MTJ cell 1410 in a high impedance state (e.g,, floating), the leakage current can be reduced. For example, if the potential on the bit line 1425 of the second MTJ cell 1410 is increased to one half (½) of the applied to the bit line 1420 of the first MTJ cell 1405, the leakage current out through the second MTJ cell 1410 can be reduced to 25%. Similar leakage paths can be present when writing a ‘1’ to a given MTJ cell in a string. By decreasing the potential applied to the bit lines of the other MTJ cells in the string or holding the bit lines of the other strings in a high impedance state, leakage currents through the other MTJ cells can be also be decreased.


Referring now to FIG. 16, a device including a string of MTJs, in accordance with aspects, of the present technology. The device can include one or more annular structures 1605-1635 including a plurality of annular free magnetic layers 1605-1615 disposed about the annular non-magnetic layer 1620. The plurality of annular free magnetic layers 1605-1615 can be separated from each other by non-magnetic separator layers 1625, 1630. The one or more annular structures 1605-1635 can further include an annular tunnel insulator 1635 disposed about the plurality of annular free magnetic layers 1605-1615 and the one or more non-magnetic separator layers 1625, 1630. The one or more annular structures 1605-1635 can optionally include an annular non-magnetic layer (not shown) disposed between the annular conductive layer 1620 and the combination of the plurality of annular free magnetic layers 1605-1635 and one or more non-magnetic separator layers 1625, 1630.


A first planar reference magnetic layer 1640 can be disposed about the one or more annular structures 1605-1635. The first planar reference magnetic layer 1640 can be separated from the free magnetic layers 1605-1615 of the annular structures 1605-1635 by the annular tunnel barrier layer 1635. The first planar reference magnetic layer 1640 can be aligned with a first annular free magnetic layer 1605. A first non-magnetic insulator layer 1645 can be disposed about the one or more annular structures 1605-1635 and on a first side of the first planar reference magnetic layer 1640. A second non-magnetic insulator layer 1650 can be disposed about the one or more annular structures 1605-1635 and on a second side of the first planar reference magnetic layer 1640. A second planar reference magnetic layer 1655 can be disposed about the one or more annular structures 1605-1635. The second planar reference magnetic layer 1655 can be separated from the free magnetic layers 1605-1615 by the annular tunnel barrier layer 1635. The second planar reference magnetic layer 1655 can be aligned with a second annular five magnetic layer 1610. A third non-magnetic insulator layer 1660 can be disposed about the one or more annular structures 1605-1635 and on a first side of the second planar reference magnetic layer 1655. A fourth non-magnetic insulator layer 1665 can be disposed about the one or more annular structures 1605-1635 and on a second side of the second planar reference magnetic layer 1655. An optional non-magnetic metal layer 1670 can be disposed between the second non-magnetic insulator layer 1650 and the third non-magnetic insulator layer 1660.


The device can include any number of annular free magnetic layers disposed about the annular non-magnetic layer and corresponding set of planar reference magnetic layers and non-magnetic insulator layers. For example, the device can include a third planar reference magnetic layer 1675 that can be disposed about the one or more annular structures 1605-1635. The third planar reference magnetic layer 1675 can be separated from the free magnetic layers 1605-1615 of the annular structures 1605-1635 by the annular tunnel barrier layer 1635. The third planar reference magnetic layer 1675 can be aligned with a third annular free magnetic layer 1615. A fifth non-magnetic insulator layer 1680 can be disposed about the one or more annular structures 1605-1635 and on a first side of the third planar reference magnetic layer 1675. A sixth non-magnetic insulator layer 1685 can be disposed about the one or more annular structures 1605-1635 and on a second side of the third planar reference magnetic layer 1675. An optional non-magnetic metal layer can also be disposed between the fourth non-magnetic insulator layer 1665 and the filth non-magnetic insulator layer 1680.


In one implementation, the annular structure 1605-1635 can be substantially cylindrical structures with tapered sidewalls, herein referred to as conical structures. In one implementation, the conical structures can have a taper of approximately 10-45 degrees from a first side of the planar reference magnetic layers 1640, 1655, 1675 to a second side of the planar reference magnetic layers 1640, 1655, 1675. In another expression, the wall angle measured from the normal axis to the horizontal direction of the, planar reference magnetic layers 1640, 1655, 1675 can be approximately 10-45 degrees. In one implementation, the annular tunnel insulator 1635, and the annular free magnetic layer 1605, 1610, 1615 can be concentric regions each bounded by inner and outer respective tapered cylinders having substantially the same axis, disposed about a solid tapered cylindrical region of the annular conductive layer 1620.


In one implementation, the planar reference magnetic layers 1640, 1655, 1675 can include one or more layers of a Cobalt-Iron-Boron (Co—Fe—B) alloy, a Cobalt-Iron (CoFe) alloy, a Cobalt-Iron-Nickle (CoFeNi) alloy, an Iron-Nickle (FeNi) alloy, an Iron-Boron (FeB) alloy, a multilayer of Cobalt-Platinum (CoPt) and Cobalt Paradium (CoPd), a Heusler Alloy selected from Cobalt-Manganese-Silicon (CoMnSi), Cobalt-Manganese-Germanium (CoMnGe), Cobalt-Manganese-Aluminum (CoMnAl), Cobalt-Manganese-Iron-Silicon (CoMnFeSi), Cobalt-Iron-Silicon (CoFeSi), Cobalt-Iron-Aluminium (CoFeAl), Cobalt-Chromium-Iron-Aluminum (CoCrFeAl), Cobalt-Iron-Aluminum-Silicon (CoFeAlSi), or compounds thereof, with a thickness of approximately 1-20 nm, preferably 1 to 10 nm, more preferably 1 to 5 nm, The annular tunnel insulator layer 1635 can include one or more layers of Magnesium Oxide (MgO), Silicon Oxide (SiOx), Aluminum Oxide (AlOx), Titanium Oxide (TiOx), or combination of these oxide materials with a thickness of approximately 0.1-3 nm. The annular free magnetic layers 1605-1615 can include one or more layers of a Cobalt-Iron-Boron (Co—Fe—B), Cobalt Nickle Iron (CoNiFe), Nickle Iron (NiFe) alloy or their multilayer combinations with a thickness of approximately 0.5-5 nm. The non-magnetic separator layers 1625, 1630 can include an oxide alloy of Cobalt-Iron-Boron (Co—Fe—B), CoNiFe, NiFe or their multilayer combinations that also includes a non-magnetic material such as Copper (Cu), Aluminum (Al), and Ruthenium (Ru), Gallium (Ga), or Silicon (Si). The optional annular non-magnetic layer can include one or more layers of metal protecting layers that can include one or more elements of a Tantalum (Ta), Chromium (Cr), W, V, Pt, Ru, Pd, Cu, Ag, Rh or their alloy, with a thickness of approximately 1 to 10 nm. The annular conductive layer 1620 can include one or more layers of Copper (Cu), Aluminum (Al), Ruthenium (Ru), and/or one or more alloys thereof with a thickness of approximately 5-20 nm. The non-magnetic insulator layers 1645, 1650, 1660, 1665, 1680, 1685 can include one or more layers of MgO, SiOx AlOx. are alloys thereof with a thickness of the first and second additional layers in the range of 5 to 20 nm, preferably 5 to 10 nm. The optional, non-magnetic metal layers 1670 can include Nitrogen (N), Hydrogen (H), and Boron (B).


Each portion of the annular structure 1605-1635 including an annular free magnetic layer and corresponding portions of a planar reference magnetic layer and non-magnetic insulator layers aligned with the annular free magnetic layer can comprise a MTJ cell. In aspects, the magnetic field of the planar reference magnetic layers 1640, 1655, 1675 can have a fixed polarization substantially perpendicular to a major planar orientation of the planar reference magnetic layers 1640, 1655, 1675. The magnetic field of the annular free magnetic layers 1605, 1610, 1615 can have a polarization substantially perpendicular to the major planar orientation of the planar reference magnetic layers 1640, 1655, 1675 and selectively switchable between being substantially parallel and substantially antiparallel to the magnetic field of the planar reference layers 1640, 1655, 1675. In one implementation, the magnetic field of the annular free magnetic layers 1605, 1610, 1615 can be configured to switch to being substantially parallel to the magnetic field of the planar reference layers 1640, 1655, 1675 in response to a current flow in a first direction through the conductive annular layer 1620 and to switch to being substantially anti-parallel to the magnetic field of the planar reference layers 1640, 1655, 1675 in response to a current flow in a second direction through the conductive annular layer 1620.


The MTJ cells of a plurality of annular structures 1605-1635 can be arranged in cell columns and cell rows in a plurality of cell levels of a memory device similar to as described above in FIGS. 13 and 14. The memory device can also include a plurality of bit lines, a plurality of source lines, a plurality of word lines and a plurality of select transistors. The plurality of hit lines can be coupled to respective planar reference magnetic layers 1640, 1655, 1675. The annular conductive layer of each annular structure can comprise a portion of a respective source line. The MTJ cells arranged along an annular structure can be coupled to a corresponding select transistor 1460 to a respective source line 1435. The MTJ cells arranged along a second annular structure in the same column can be coupled by another corresponding select transistor 1465 to the same respective source line 1435. The gate of the select transistors 1460, 1465 can be coupled to a respective word line 1450, 1455. The memory device can also include a plurality of insulator regions disposed in the plurality of planar reference magnetic layers 1640, 1655, 1675 between respective pairs of columns of the plurality of annular structures 1605-1635 similar to as described above with reference to FIGS. 6 and 7. The memory device can further include a plurality of memory cell array blocks similar to as described above with reference to FIGS. 7 and 8.


Referring now to FIGS. 17A and 17B, a memory device, in accordance with aspect of the present technology, is shown. FIGS. 17A and 17B show a top view and a right-side view of the memory device shown in FIG. 13. The memory device can include an array of MTJ cells arranged in cell columns and cell rows in a plurality of cell levels. The MTJ cells in a given corresponding cell column position and cell row position in the plurality of cell levels can be coupled together in a cell string as described above with reference to FIGS. 10-12. Alternatively, the MTJ cells can be arranged in cell columns and cell rows in a plurality of levels, wherein the MTJ cells in corresponding cell columns and cell row positions in the plurality of cell levels are coupled together in cell strings as described above with reference to FIG. 16.


In one implementation, the MTJ cells in a first level can include a first plurality of annular structures 1310-1330 arranged in columns and rows. Each annular structure can include an annular non-magnetic layer disposed about an annular conductive layer, an annular free magnetic layer disposed about the annular non-magnetic layer, and an annular tunnel insulator disposed about the annular free magnetic layer. A first planar reference magnetic layer 1335 can be disposed about the first plurality of annular structures 1310-1330 and can be separated from the free magnetic layers of the first plurality of annular structures 1310-1330 by the annular tunnel barrier layers of the first plurality of annular structures 1310-1330. A first non-magnetic insulator layer 1340 can be disposed about the first plurality of annular structures 1310-1330 and on a first side of the first planar reference magnetic layer 1335. A second non-magnetic insulator layer 1345 can be disposed about the first plurality of annular structures 1310-1330 and on a second side of the first planar reference magnetic layer 1335.


The MTJ cells in a second level can include a second plurality of annular structures axially aligned with respective ones the first plurality of annular structures 1310-1330. A second planar reference magnetic layer 1355 can be disposed about the second plurality of annular structures and can be separated from the free magnetic layer of the second plurality of annular structures by the annular tunnel barrier layers of the second plurality of annular structures. A third non-magnetic insulator layer 1360 can be disposed about the second plurality of annular structures and between the second non-magnetic insulator layer 1345 and a first side of the second planar reference magnetic layer 1355. A fourth non-magnetic insulator layer 1365 can be disposed about the second plurality of annular structures and on a second side of the second planar reference magnetic layer 1355.


The multiple levels of MTJ cell array can be disposed on one or more additional layers 1710 that can include word lines, source lines, select elements, and or the like. The memory device can optionally include a non-magnetic metal layer disposed between adjacent levels 1305, 1350, as described above with reference to FIG. 11. Alternatively, the memory device can optionally include a non-magnetic insulator layer and a non-magnetic metal plug disposed between adjacent levels 1305, 1355, as described above with reference to FIG. 12. The memory device can also optionally include a plurality of insulator regions disposed between portions of the planar reference magnetic layers along columns of the annular structures, as described above with reference to FIG. 6.


In another implementation, one annular structures can include a plurality of annular free magnetic layers disposed about the annular non-magnetic layer. The plurality of annular free magnetic layers can be separated from each other by non-magnetic separator layers. The one or more annular structures can further include an annular tunnel Sculptor disposed about the plurality of annular free magnetic layers and the one or more non-magnetic separator layers. The one or more annular structures can optionally include an annular non-magnetic layer (not shown) disposed between the annular conductive layer and the combination of the plurality of annular tree magnetic layers and one or more a non-magnetic separator layers.


A first planar reference magnetic layer can be disposed about the one or more annular structures. The first planar reference magnetic layer can be separated from the free magnetic layers of the annular structures by the annular tunnel barrier layer. The first planar reference magnetic layer con be aligned with a first annular from magnetic layer. A first non-magnetic insulator layer can be disposed about the one or more annular structures and on a first side of the first planar reference magnetic layer. A second non-magnetic insulator layer can be disposed about the one or more annular structures and concept as second side of the first planar reference magnetic layer. A second planar reference magnetic layer can be disposed about the one or more annular structures. The second planar reference magnetic layer can be separated from the free magnetic layers by the annular tunnel barrier layer. The second planar reference magnetic layer can be aligned with a second annular free magnetic layer. A third non-magnetic insulator layer can be disposed about the one or more annular structures and on a first side of the second planar reference magnetic layer. A fourth non-magnetic insulator layer can be disposed about the one or more annular structures and on a second side of the second planar reference magnetic layer. An optional non-magnetic metal layer can be disposed between the second non-magnetic insulator layer and the third non-magnetic insulator layer.


Each portion of the annular structure including an annular free magnetic layer and corresponding portions of a planar reference magnetic layer and non-magnetic insulator layers aligned with the annular free magnetic layer can comprise a MTJ cell, as described above with reference to FIG. 16. The memory device can also optionally include a plurality of insulator regions disposed between portions of the planar reference magnetic layers along columns of the annular structures, as described above with reference to FIG. 6.


The memory device can also include a plurality of bit lines 1370, 1375 disposed on and electrically coupled to respective'planar reference magnetic layers 1335, 13550. For example, a first bit line 1370 can be disposed on and coupled to a first planar reference magnetic layer 1335, and a second bit line 1375 can be disposed on and coupled to a second planar reference magnetic layer 1355. In aspect, the plurality of bit lines 1370, 1375 can be disposed at a periphery of the plurality of planar reference magnetic layers 1335, 1375.


The memory device, can optionally include a plurality of memory cell array blocks, as described above with reference to FIGS. 7-9. The same planar reference layer arranged in respective rows of the memory cell array blocks can be coupled together by a respective bit line. For example, the first bit line 1370 can be electrically coupled to the first planar reference magnetic layer 1335 of each block in a respective row, of the memory cell array blocks. The second bit line 1375 can be electrically coupled to the second planar reference magnetic layer 1355 of each block in a respective row of the memory cell array blocks. In addition, two or more hit lines arranged in respective columns of the memory cell array blocks can be coupled together by a corresponding global bit line 1720. For example the first bit line 1370 can be coupled by a first global bit line 1720 to other corresponding bit lines in a respective column of the memory cell array blocks.


The device can be extended to include any number of planar reference magnetic layers disposed about the columns and rows of annular structures to implement strings or layers of any number of MTJ cells. For example, a memory device including strings or layers of three MTJ cells, in accordance with aspect of the present technology, is shown in FIGS. 18A and 18B. In one implementation, the MTJ cells in corresponding cell column and cell row positions in a plurality of cell levels can be coupled together in cell strings. Each MTJ cell can include an annular structure 1810, 1815 that includes an annular non-magnetic layer disposed about the annular non-magnetic layer, and an annular tunnel insulator disposed about the annular free magnetic layer. Portion of respective planar reference magnetic layers 1820, 1825, 1830 can be disposed about the annular structures 1810, 1815. Respective planar non-magnetic insulator layers 1835, 1840, 1845 can be disposed on a first side of the planar reference magnetic layers 1820, 1825, 1830 and about the annular structures 1810, 1815. Respective planar non-magnetic insulator layers 1850, 1855, 1860 can also be disposed on a second side of the planar reference magnetic layers 1820-1830 and about the annular structures 1810, 1815. The array of MTJ cells can also include a plurality of bit lines 1865, 1870, 1875 and a plurality of select elements. Respective bit lines 1865, 1870, 1875 can be disposed on and electrically coupled to respective planar magnetic layers 1820. 1825, 1830 of respective cell levels. For example, a first bit line 1865 can be disposed on and electrically coupled to a first planar reference magnetic layer 1820, a second hit line 1870 can be disposed on and electrically coupled to a second planar reference magnetic layer 1825, and a third bit line 1875 can be disposed on and electrically coupled to a third planar reference magnetic layer 1830 of each block in a respective row of memory call array blocks. In addition, two or more bit lines arranged in respective columns of the memory cell array blocks can be coupled together by a corresponding global bit line 1880, 1885, 1890 as described above with reference to FIGS, 8 and 9. For example, the first bit line 1865 can be coupled by a first global bit line 1880 to other corresponding bit lines in a respective column of the memory cell array blocks. The second bit line 1870 can be coupled by a via 1892 to a second global bit line 1885 and similarly to other corresponding hit lines in a respective column of the memory cell array blocks.. The third bit line 1875 can be coupled by a via 1894 to a third global bit line 1890 and similarly to other corresponding bit lines in a respective column of the memory cell array blocks.


In another implementation, the MTJ cells in each cell string can include an annular structure 1810, 1815 that includes an annular non-magnetic layer disposed about an annular conductive layer, a plurality of annular free magnetic layers disposed about the annular non-magnetic layer, the annular free magnetic layer separated front each other by corresponding ones of a plurality of non-magnetic separator layers, and an annular tunnel insulator disposed about the annular free magnetic layer. A portion of corresponding ones of planar reference magnetic layers 1820, 1825, 1830 can be disposed about the annular structures 1810, 1815 and aligned with corresponding ones of the plurality of portions of the free magnetic layer. Planar non-magnetic insulator layers 1835, 1840, 1845 can be disposed on a first side of each of the plurality of planar reference magnetic layers 1820, 1825, 1830 and about the annular structure 1810, 18150. Other planar non-magnetic insulator layers 1850, 1855, 1860 can be disposed on a second side of each of the plurality of planar reference magnetic layers 1820, 1825, 1830 and about the annular structure 1810, 1815. The array of MTJ cells can also include a plurality of bit lines 1865, 1870, 1875 and a plurality of select elements. Respective bit lines 1865, 1870, 1875 can be disposed on and electrically coupled to respective planar magnetic layers 1820, 1825, 1830 of respective cell levels. Again, for example, a first bit line 1865 can be disposed on and electrically coupled to a first planar reference at layer 1820, a second bit line 1870 can be disposed on and electrically coupled to a second planar reference magnetic layer 1825, and a third bit line 1875 can be disposed cm and electrically coupled to a third planar reference magnetic layer 1830 of each block in a respective row of memory cell array blocks. In addition, two or more bit lines arranged in respective columns of the memory cell array blocks can be coupled together by a corresponding global bit line 1880, 1885, 1890 as described above with reference to FIGS, 8 and 9. For example, the first bit line 1865 can be coupled by a first global bit line 1880 to other corresponding bit lines in a respective column of the memory cell array blocks. The second bit line 1870 can be coupled by a via 1892 to a second global bit line 1885 and similarly to other corresponding bit times in a respective column of the memory cell array blocks. The third bit line 1875 can be coupled by a via 1894 to a third global bit line 1890 and similarly to other corresponding bit lines in a respective column of the memory cell array blocks.


Referring now to FIGS. 19A-19B, a method of fabricating a Magnetic Tunnel Junction (MTJ) in accordance aspects of the present technology, is shown. The method of fabrication can include forming one or more planar non-magnetic insulator layers, at 1905. In one implementation, one or more layers of Magnesium Oxide (MgO), Silicon Oxide (SiOx), Aluminum Oxide (AlOx) or alloys thereof can be deposited on a substrate or other integrated circuit layer. At 1910, one or more planar reference magnetic layers can be deposited on the one or more planar non-magnetic insulator layers. In one implementation, one or more layers Cobalt-Iron-Boron (Co—Fe—B) alloy, a Cobalt-Iron (CoFe) alloy, a Cobalt-Iron-Nickle (CoFeNi) alloy, an Iron-Nickle (FeNi) alloy, an Iron-Boron (FeB) alloy, a multilayer of Cobalt-Platinum (CoPt) and Cobalt Paradium (CoPd), a Heusler Alloy selected from Cobalt-Manganese-Silicon (CoMnSi), Cobalt-Manganese-Germanium (CoMnGe), Cobalt-Manganese-Aluminum (CoMnAl), Cobalt-Manganese-Iron-Silicon (CoMnFeSi). Cobalt-Iron-Silicon (CoFeSi), Cobalt-Iron-Aluminum (CoFeAl), Cobalt-Chromium-Iron-Aluminum (CoCrFeAl), Cobalt-Iron-Aluminum-Silicon (CoFeAl), or compounds thereof can be deposited on the one or more planar non-magnetic insulator layers. At 1915, one or more planar non-magnetic insulator layers can be deposited on the one or more planar reference magnetic layers. In one implementation, one or more layers of MgO, SiOx, AlOx or alloys thereof can be deposited on the one or more planar reference magnetic layers. Accordingly, one or more planar non-magnetic insulator layers 2005 can be disposed on a first side of the one or more planar reference magnetic layer 2010, and one or more other planar non-magnetic insulator layers 2015 can be disposed on a second side of the one or more planar reference magnetic layers 2010 as illustrated in FIG. 20A. The magnetic field of the planar reference magnetic layer 2010 can have, a fixed polarization substantially perpendicular to a major planar orientation of the planar reference magnetic layer 2010.


At 1920, one or more annular openings can be formed through the planar non-magnetic insulator layers and the planar reference magnetic layer. The annular openings 2020 can be substantially cylindrical with tapered sidewalls, as illustrated in FIG. 20B. The annular openings can have a taper of approximately 10-45 degrees from a first side of the planar reference magnetic layer to a second side of the planar reference magnetic layer. In another expression, the wall angle measured from the normal axis to the horizontal direction of the planar reference magnetic layer can be approximately 10-45 degrees.


At 1925, an annular tunnel insulator can be formed on the walls of the one or more annular openings. At 1930, an annular free magnetic layer can be formed on the annular tunnel insulator inside the one or more annular openings. At 1935, an annular non-magnetic layer can be formed on the annular free magnetic layer inside the one or more annular openings. In one implementation, an annular tunnel insulator layer 2025 can be deposited on the surface of the planar non-magnetic insulator layer 2015 and the sidewalls the one or more annular openings 2020, as illustrated in FIG. 20C. The annular tunnel insulator layer can include one or more layers of a Magnesium Oxide (MgO), Silicon Oxide (SiOx), Aluminum Oxide (AlOx), Titanium Oxide (TiOx) or a combination of these oxide materials. An annular free magnetic layer 2030 can be deposited on the surface of the annular tunnel insulator layer 2025 inside and outside the one or more annular openings 2020. The annular free magnetic layer can include one or more layers of a Cobalt-Iron-Boron (Co—Fe—B), Cobalt-Nickle-Iron (CoNiFe), Nickle-Iron (NiFe) alloy or their multilayer combinations. The magnetic field of the annular free magnetic layer can have a polarization substantially perpendicular to the major planar orientation of the planar reference magnetic layer and selectively switchable between being substantially parallel and substantially antiparallel to the magnetic field of the planar reference layer. An annular non-magnetic layer 2035 can be deposited on the surface of the annular free magnetic layer 2030 inside outside of the one or more annular openings 2020. The annular non-magnetic layer can include one or more layers of that can include one or more elements of a Tantalum (Ta), Chromium (Cr) W, V, Pt, Ru, Pd Cu, Ag, Rh, or their alloy. The materials of the annular tunnel insulator 2025, the annular free magnetic layer 2030 and the annular non-magnetic layer 2035 can be deposited by an angular deposition process 2040 to improve deposition in the annular openings, as illustrated in FIG. 20C. The portions of the annular tunnel insulator layer 2025, the annular free magnetic layer 2030 and the annular non-magnetic layer 2035 at the bottom of the one or more annular openings 2020 and on top of the planar non-magnetic insular layer 2015 can be removed by one or more selective etching, milling or the like processes 2045, as illustrated in FIG. 20D. Alternatively, the portions of the annular tunnel insulator layer, the annular free magnetic layer and the annular non-magnetic layer at bottom of the one or more annular openings and on top of the planar non-magnetic insular layers can be removed by successive etching, milling or the like processes before the subsequent layer is deposited.


At 1940, an annular conductive core can be formed inside the annular non-magnetic layers in the one or more annular openings. In one implementation, an annular conductive core layer 2040 can be deposited on the surface of the annular magnetic layer 2015 inside and outside of the one or, more annular openings 2020, as illustrated in FIG. 20E. The annular conductive core can include one or more layers of Copper (Cu), Aluminum (Al), Ruthenium (Ru), and/or one or more alloys thereof. Excess material of the annular conductive core layer 2050 can be removed by Chemical Mechanical Polishing (CMP) or other similar process to form annular conductive cores 2050 in the one or more annular openings 2020, as illustrated in FIG. 20F. The processes of 1905 through 1940 can optionally be repeated a plurality of times to form a string of MTJ as illustrated in FIG. 10.


Referring now to FIGS. 21A-21C, a method of fabricating a memory cell array, in accordance with aspects of the present technology, is shown. The method of fabrication can include forming an array of selectors on a substrate, at 2105. There a numerous selectors and methods of fabrication that can be utilized for the array of selectors. The specific selector and processes are not germane to an understanding of aspects of the present technology and therefore will not be described in further detail.


At 2010, a plurality of word lines can be formed on a substrate and coupled to the selectors in respective rows. In one implementation, a conductive layer can be deposited on a substrate. A word line pattern mask can be formed on the conductive layer and a selective etching process can be performed to remove the portions of the conductive layer exposed by the word line pattern mask to form the plurality of word lines coupled to the selectors. In another embodiment, a word line can be formed by electro-plating on to the framed photo-resist pattern that has a vacancy for word line portions. The word lines can be disposed as a plurality of substantially parallel traces in a first direction (e.g., rows) of the substrate. There are numerous conductive materials that can be utilized for the word lines, and there are numerous deposition, masking, etching, photoresist-framing, and electro-plating process that can be utilized for forming the plurality of word lines. The specific materials and processes are not germane to an understanding of aspects of the present technology and therefore will not be described in further detail.


At 2115, a plurality of source lines can be formed on the substrate and coupled to the selectors in respective columns. In one implementation, an insulator layer can be formed over the plurality of word lines, and a second conductive layer can be deposited over the insulator layer. A source line pattern mask can be formed on the second conductive layer and a selective etching process can be performed to remove the portions of the second conductive layer exposed by the word line pattern mask to form the plurality of source lines. The source lines can be disposed as a plurality of substantially parallel traces in a second direction (e.g., columns) on the substrate that is perpendicular to the first direction of the word lines. There are numerous conductive materials that can be utilized for the source lines, and there are numerous deposition, masking, etching, photoresist-framing, and electro-plating process that can be utilized for forming the plurality of source lines. The specific materials and processes are not germane to an understanding of aspects of the present technology and therefore will not be described in further detail.


At 2120, one or more planar non-magnetic insulator layers can be deposited on the plurality of selectors. In one implementation, one or more layers of Magnesium Oxide (MgO), Silicon Oxide (SiOx), Aluminum Oxide (AlOx) or alloys thereof can be deposited on the plurality of selectors. At 2425, one or more planar reference magnetic layers can be deposited on the one or more planar non-magnetic insulator layers. In one implementation, one or more layers Cobalt-Iron-Boron (Co—Fe—B) alloy, a Cobalt-Iron (CoFe) alloy, a Cobalt-Iron-Nickle (CoFeNi) alloy, an Iron-Nickle (FeNi) alloy, an Iron-Boron (FeB) alloy, a multilayer of Cobalt-Platinum (CoPt) and Cobalt Paradium (CoPd), at Heusler Alloy selected from Cobalt-Manganese-Silicon (CoMnSi), Cobalt-Manganese-Germanium (CoMnGe), Cobalt-Manganese-Aluminum (CoMnAl), Cobalt-Manganese-Iron-Silicon (CoMnFeSi), Cobalt-Iron-Silicon (CoFeSi), Cobalt-Iron-Aluminum (CoFeAl), Cobalt-Chromium-Iron-Aluminum (CoCrFeAl), Cobalt-Iron-Aluminum-Silicon (CoFeAlSi)., or compounds thereof can be deposited on the one or more planar non-magnetic insulator layers. At 2130, one or more planar non-magnetic insulator layers can be deposited on the one or more planar reference magnetic layers. In one implementation, one or more layers of MgO, SiOx, AlOx or alloys thereof can be deposited on the one or more planar reference magnetic layers. Accordingly, one or more planar non-magnetic insulator layers 2005 can be disposed on a first side of the one or more planar reference magnetic layer 2010, and one or more other planar non-magnetic insulator layers 2015 can be disposed on a second side of the one or more planar reference magnetic layers 2010 as illustrated in FIG. 20A. The magnetic field of the planar reference magnetic layer 2010 can have a fixed polarization substantially perpendicular to a major planar orientation of the planar reference magnetic layer 2010.


At 2135, an array of annular openings can be formed through the planar non-magnetic insulator layers and the planar reference magnetic layer. The array of annular openings can be aligned with the array of selectors. The annular openings 2020 can be substantially cylindrical with tapered sidewalls, as illustrated in FIG. 20B . The annular openings can have a taper of approximately 10-45 degrees from a first side of the planar reference magnetic layer to a second side of the planar reference magnetic layer. In another expression, the wall angle measured from the normal axis to the horizontal direction of the planar reference magnetic layer can be approximately 10-45 degrees.


At 2140, an annular tunnel insulator can be formed on the walls of the array of annular openings. At 2145, an annular free magnetic layer can be formed on the annular tunnel insulator inside the array of annular openings. At 2150, an annular non-magnetic layer can be formed on the annular free magnetic layer inside the array of annular openings. In one implementation, an annular tunnel insulator layer 2025 can be deposited on the surface of the planar non-magnetic insulator layer 2015 and the sidewalk of the array of annular openings 2020, as illustrated in FIG. 20C. The annular tunnel insulator layer can include one or more layers of a Magnesium Oxide (MgO), Silicon Oxide (SiOx), Aluminum Oxide (AlOx), Titanium Oxide (TiOx) or a combination of these oxide materials. An annular free magnetic layer 2050 can be deposited on the surface of the annular tunnel insulator layer 2025 inside and outside the array of annular openings 2020. The annular free magnetic layer include one or more layers of a Cobalt-Iron-Boron (Co—Fe—B), Cobalt-Nickle-Iron (CoNiFe), Nickle-Iron(NiFe) alloy or their multilayer combinations. The magnetic field of the annular free magnetic layer can have a polarization substantially perpendicular to the major planar orientation of the planar reference magnetic layer and selectively switchable between being substantially parallel and substantially antiparallel to the magnetic field of the planar reference layer. An annular non-magnetic layer 2035 can be deposited on the surface of the annular free magnetic layer 2030 inside and outside of the array of annular openings 2020. The annular non-magnetic layer can include one or more layers of that can include one or more elements of a Tantalum (Ta), Chromium (Cr), W, V, Pt, Ru Pd, Cu, Ag, Rh, or their alloy. The materials of the annular tunnel it insulator 2025, the annular free magnetic layer 2030 and the annular non-magnetic layer 20 can be deposited by an angular deposition process 2040 to improve deposition in the annular openings, as illustrated in FIG. 20C. The portions of the annular tunnel insulator layer 2025, the annular free magnetic layer 2030 and the annular non-magnetic layer 2035 at the bottom of the array of annular openings 2020 and on top of the planar non-magnetic insular layer 2015 can be removed by one or more selective etching, milling or the like processes 2045, as illustrated in FIG. 20D. Alternatively, the portions of the annular tunnel insulator layer, the annular free magnetic layer and the annular non-magnetic layer at the bottom of the array of annular openings and on top of the planar non-magnetic insular layers can be removed by successive etching, milling or the like processes before the subsequent layer is deposited.


At 2155, an annular conductive core can be formed inside the annular non-magnetic layers in the array of annular openings. The annular conductive cores in the array of annular openings can be coupled to a corresponding select transistor. In one implementation, an annular conductive core layer 2050 can be deposited on the surface of the lar magnetic layer 2015 inside and outside of the array of annular openings 2020, as illustrated in FIG. 20E. The annular conductive core can include one or more layers of Copper (Cu), Aluminum (Al), Ruthenium (Ru), and/or one or more alloys thereof. Excess material of the annular conductive core layer 2050 can be removed by Chemical Mechanical Polishing (CMP) or other similar process to form annular conductive cores 2050 in the array of annular openings 2020, as illustrated in FIG. 20F. The processes of 2120 through 2155 can optionally be repeated a plurality of times to form a string of MTJ is as illustrated in FIG. 10.


At 2160, portions of one or more planar non-magnetic insulator layers and one or more planar reference magnetic layers can be removed in a periphery region to expose each planar reference magnetic layer. The periphery region can be outside the array of annular openings. In one implementation, a series of one or more etching, milling or the like processes can be used to step down through the planar non-magnetic insulator layers and the planar reference magnetic layers. At 2165, a bit line can be formed on each planar reference magnetic layer. In one implementation, a conductive layer can be deposited. A bit line pattern mask can be formed on the conductive layer and a selective etching process can be performed to remove the portions of the conductive layer exposed by the bit line pattern mask to form the plurality of bit lines on corresponding ones of the planar reference magnetic layers. In another implementation, a photo-resist frame is made by photo process before depositing a bit line material. The photo-resist frame has an opening to form a bit line inside. The electric-plating process is used to form a metal bit line inside the photo-resist frame. After the electrical plating process, the photo-resist frame is removed. The bit lines can be disposed as a plurality of substantially parallel traces in a first direction (e.g., rows) on respective planar reference magnetic layers, as illustrated in FIG. 13.


At 2170, one or more bit line vias can optionally be formed. The one or more bit line vias can be coupled to respective bit lines, as illustrated in FIGS. 18A and 18B. There are numerous conductive materials that can be utilized for the bit line vias, and there are numerous deposition, masking, and etching process that can be utilized for forming the plurality of bit line vias. The specific materials and processes are not germane to an understanding of aspects of the present technology and therefore will not be described in further detail.


At 2175, one or more global bit lines can be formed. The one or more global bit lines can be coupled to corresponding bit lines or bit line vias, as illustrated in FIGS. 7, 18A and 18B. In one implementation, two or more bit lines arranged in respective columns can be coupled together by a corresponding global bit line. There are numerous conductive materials that can be utilized for the global bit lines, and there are numerous deposition, masking, and etching process that can be utilized for forming the plurality of global bit lines. The specific materials and processes are not germane to an understanding of aspects of the present technology and therefore will not be described in further detail.


Referring now to FIGS.22A-22C, a method of fabricating a memory cell array, in accordance with aspects of the present technology, is shown. The method of fabrication can include forming an array of selectors on a substrate, at 2205. There a numerous selectors and methods of fabrication that can be utilized for the array of selectors. The specific selector and processes are not germane to an understanding of aspects of the present technology and therefore will not be described in further detail.


At 2210, a plurality of word lines can be formed on the substrate and coupled to the selectors in respective rows. In one implementation, a conductive layer can be deposited on a substrate. A word line pattern mask can be formed on the conductive layer and a selective etching process can be performed to remove the portions of the conductive layer exposed by the word line pattern mask to form the plurality of word lines. In another embodiment, a word line can be formed by electro-plating to the framed photo-resist pattern that has a vacancy for word line portion. The word lines can be disposed as a plurality of substantially parallel traces in a first direction (e.g., rows) of the substrate. There are numerous conductive materials that can be utilized for the word lines, and there are numerous deposition, masking, and etching process that can be utilized for forming the plurality of word lines. The specific materials and processes are not germane to an understanding of aspects of the present technology and therefore will not be described in further detail.


At 2215, a plurality of source lines can be formed on the substrate and coupled to the selectors in respective rows. In one implementation, an insulator layer can be formed over the plurality of word lines, and a second conductive layer can be deposited over the insulator layer. A source line pattern mask can be formed on the second conductive layer a selective etching process can be performed to remove the portions of the second conductive layer exposed by the word line pattern mask to form the plurality of source lines. The source lines can be disposed as a plurality of substantially parallel traces in a second direction (e.g., columns) on the substrate that is perpendicular to the first direction of the word lines. There are numerous conductive materials that can be utilized for the source lines, and there are numerous deposition, masking, and etching process that can be utilized for forming the plurality of source lines. The specific materials and processes are not germane to an understanding of aspects of the present technology and therefore will not be described in further detail.


At 2220, one or more planar non-magnetic insulator layers can be deposited on the plurality of selectors. In one implementation, one or more layers of Magnesium Oxide (MgO), Silicon Oxide (SiOx), Aluminum Oxide (AlOx) or alloys thereof can be deposited on the plurality of selectors. At 2225, one or more planar reference magnetic layers can be deposited on the one or more planar non-magnetic insulator layers, in one implementation, one or more layers Cobalt-Iron-Boron (Co—Fe—B) alloy, a Cobalt-Iron (CoFe) alloy, a Cobalt-Iron-Nickle (CoFeNi) alloy, an Iron-Nickle (FeNi) alloy, an Iron-Boron (FeB) alloy, a multilayer of Cobalt-Platinum (CoPt) and Cobalt Paradium (CoPd), a Heusler Alloy selected from Cobalt-Manganese-Silicon(CoMnSi), Cobalt-Manganese-Germanium (CoMnGe), Cobalt-Manganese-Aluminum (CoMnAl), Cobalt-Manganese-Iron-Silicon (CoMnFeSi), Cobalt-Iron-Silicon (CoFeSi), Cobalt-Iron-Aluminum (CoFeAl), Cobalt-Chromium-Iron-Aluminum (CoCrFeAl), Cobalt-Iron-Aluminum-Silicon (CoFeAlSi), or compounds thereof can be deposited on the one or more planar non-magnetic insulator layers. At 2230, one or more planar non-magnetic insulator layers can be deposited on the one or more planar reference magnetic layers. In one implementation, one or more layers of MgO, SiOx, AlOx or alloys thereof can be deposited on the one or more planar reference magnetic layers. The processes of 2220 through 2230 can be repeated a plurality of times to form a string of MTJs, as illustrated in FIG. 23A. Accordingly, one or more planar non-magnetic insulator layers 2105, 2310, 2315 can be disposed on a first side of the one or more planar reference magnetic layers 2320, 2325, 2330, and one or more other planar non-magnetic insulator layers 2335, 2340, 2345 can be disposed on a second side of the one or more planar reference magnetic layers 2320, 2325, 2330, as illustrated in FIG. 23A. The magnetic field of the planar reference magnetic layer can have a fixed polarization substantially perpendicular to a major planar orientation of the planar reference magnetic layer.


At 2235, an array of annular openings can be formed through the plurality of stacks of planar non-magnetic insulator layers and the planar reference magnetic layer. The array of annular openings can be aligned with the array of selectors. The annular openings 2350 can be substantially cylindrical with tapered sidewalk, as illustrated in FIG. 23B. The annular openings can have a taper of approximately 10-45 degrees from a first side of the planar reference magnetic layer to a second side of the planar reference magnetic layer. In another expression, the wall angle measured from the normal axis to the horizontal direction of the planar reference magnetic layer can be approximately 10-45 degrees.


At 2240, an annular tunnel insulator can be formed on the wall of the array of annular openings. At 2245, an annular free magnetic layer can be formed on the annular tunnel insulator inside the array of annular openings. At 2250, an annular non-magnetic layer can be formed on the annular free magnetic layer inside the array of annular openings. In one implementation. an annular tunnel insulator layer 2355 can be deposited on the surface of the planar non-magnetic insulator layer 2345 and the sidewalls of the array of annular openings 2350, as illustrated in. FIG, 23C. The annular tunnel insulator layer can include one or more layers of a Magnesium Oxide (MgO), Silicon Oxide (SiOx.), Aluminum Oxide (AlOx), Titanium Oxide (TiOx) or a combination of these oxide materials. An annular free magnetic layer 2360 can be deposited on the surface of the annular tunnel insulator layer 2355 inside and outside the array of annular openings 2350. The annular free magnetic layer can include one or more layers of a Cobalt-Iron-Boron (Co—Fe—B). Cobalt-Nickle-Iron (CoNiFe), Nickle-Iron (NiFe) alloy or their multilayer combinations. An annular non-magnetic layer 2365 can be deposited on the surface of the annular free magnetic 2360 inside and outside of the array of annular openings 2350. The magnetic field of the annular free magnetic layer can have a polarization substantially perpendicular to the major planar orientation of the planar reference magnetic layer and selectively switchable between being substantially parallel and substantially antiparallel to the magnetic field of the planar reference layer. The materials of the annular tunnel insulator 2355, the annular free magnetic layer 2360 and the annular non-magnetic layer 2365 can be deposited by an angular deposition process 2370 to improve deposition in the annular openings, as illustrated in FIG. 23C. The portions of the annular tunnel insulator layer 2355, the annular free magnetic layer 2360 and the annular non-magnetic layer 2365 at the bottom of the array of annular openings 2350 and on top of the planar non-magnetic insular layer 2345 can be removed by one or more selective etching, milling or the like processes 2375, as illustrated in FIG. 23D. Alternatively, the portions of the annular tunnel insulator layer, the annular free magnetic layer and the annular non-magnetic layer at the bottom of the array of annular openings and on top of the planar non-magnetic insular layers can be removed by successive etching, milling or the like processes before the subsequent layer is deposited. At 2255, non-magnetic regions can be formed in the annular free magnetic layer to separate the annular free magnetic layer into a plurality of portions aligned with the one or more planar reference magnetic layers. In one implementation, the non-magnetic regions 2380 in the annular free magnetic layer 2360 can be formed by forming metal diffusion layers 2385 between the adjacent planar non-magnetic insulator layers 2315, 2340. Metal from the metal diffusion 2385 can diffuse into the annular free magnetic layer 2360 during one or more fabrication processes. The diffused metal in the annular free magnetic layer 2360 can form the non-magnetic regions 2380 in the annular free magnetic layer 2360 such that the resulting portions of the annular free magnetic layer 2360 are aligned with the planar reference magnetic layers 2320, 2325, 2330. In another implementation, the metal may be implanted into the annular free magnetic layer between adjacent planar non-magnetic insulator layers to form the non-magnetic regions in the annular free magnetic layer.


At 2260, annular conductive cores can be formed inside the annular non-magnetic layers in the array of annular openings. Th annular conductive cores in the array of annular openings can be coupled to a corresponding select transistor. In one implementation, an annular conductive core layer 2390 can be deposited on the surface of the annular magnetic layer 2345 inside and outside of the array of annular openings 2350, as illustrated in FIG. 23E. The annular conductive core can include one or more layers of MgO, SiOx, AlOx, are alloys thereof. Excess material of the annular conductive core layer 2390 can be removed by Chemical Mechanical Polishing (CMP) or other similar process to form annular conductive cores 2390 in the array of annular openings 2350, as illustrated in FIG. 23F.


At 2265, portions of one or more planar non-magnetic insulator layers and one or more planar reference magnetic layers can be removed in a periphery region to expose each planar reference magnetic layer. The periphery region can be outside the array of annular openings. In one implementation, a series of one or more etching, milling or the like processes can be used to step down through the planar non-magnetic insulator layers and the planar reference magnetic layers. At 2270, a bit line can be formed on each planar reference magnetic layer. In one implementation, a conductive layer can be deposited. A bit line pattern mask can be formed on the conductive layer and a selective etching process can be performed to remove the portions of the conductive layer exposed by the bit line pattern mask to form the plurality of bit lines on corresponding ones of the planar reference magnetic layers. The bit lines can be disposed as a plurality of substantially parallel traces in a first direction (e.g., rows) on respective planar reference magnetic layers, as illustrated in FIG. 13.


At 2275, one or more bit line vias can optionally be formed. The one or more bit line vias can be coupled to respective bit lines, as illustrated in FIGS. 18A and 18B. There are numerous conductive materials that can be utilized for the bit line vias, and there are numerous deposition, masking, and etching process that can be utilized for forming the plurality of bit line vias. The specific materials and processes are not germane to an understanding of aspects of the present technology and therefore will not be described in further detail.


At 2280, one or more global bit lines can be formed. The one or more global bit lines can be coupled to corresponding bit lines or bit line vias, as illustrated in FIGS. 7, 18A and 18B. In one implementation, two or more bit lines arranged in respective columns can be coupled together by a corresponding global bit line. There are numerous conductive materials that can be utilized for the global bit lines, and there are numerous deposition, masking, and etching process that can be utilized for forming the plurality of global bit lines. The specific materials and processes are not germane to an understanding of aspects of the present technology and therefore will not he described in further detail.


The foregoing descriptions of specific embodiments or the present technology have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the present technology and its practical application, to thereby enable others skilled in the art to best utilize the present technology and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

Claims
  • 1. A device comprising: a plurality of annular structures, each annular structure including an annular non-magnetic layer disposed about an annular conductive layer, a first annular free magnetic layer and a second annular free magnetic. layer disposed about the annular non-magnetic layer, the first and second annular free magnetic layers separated by a non-magnetic separator layer and an annular tunnel insulator disposed about the first and second of annular free magnetic layers and the non-magnetic separator layer;a first planar reference magnetic layer disposed about the plurality of annular structures and separated from the respective first annular free magnetic layers of each of the plurality of annular structures by the respective annular tunnel insulator of each of the plurality of annular structures and the first planar reference magnetic layer aligned with the first annular free magnetic layer;a first non-magnetic insulator layer disposed about the plurality of annular structures and on a first side of the first planar reference magnetic layer;a second non-magnetic insulator layer disposed about the plurality of annular structures and on a second side of the first planar reference magnetic layers;a second planar reference magnetic layer disposed about the plurality of annular structures and separated from the respective second annular free magnetic layers of each of the plurality of annular structures by the respective annular tunnel insulator of each of the plurality of annular structures, and the second planar reference magnetic layer aligned with the second annular free magnetic layer;a third non-magnetic insulator layer disposed about the plurality of annular structures and between the second non-magnetic insulator layer and a first side of the second planar reference magnetic layer; anda fourth non-magnetic insulator layer disposed about the plurality of annular structures and on a second side of the second planar reference magnetic layer.
  • 2. The device of claim 1, further comprising: each of the plurality of annular structures including a third annular free magnetic layer disposed about the annular non-magnetic layer, the third annular free magnetic layer separated from the second annular free magnetic layer by a second non-magnetic separator layer;a third planar reference magnetic layer disposed about the plurality of annular structures and separated from the respective third annular free magnetic layers of each of the plurality of annular structures by the respective annular tunnel insulator of each of the plurality of annular structures, and the third planar reference magnetic layer aligned with the third annular free magnetic layer;a fifth non-magnetic insulator layer disposed about the plurality of annular structures and between the fourth non-magnetic insulator layer and a first side of the third planar reference magnetic layer; anda sixth non-magnetic insulator layer disposed about the plurality of annular structures and on a second side of the third planar reference magnetic layer.
  • 3. The device of claim 1, further comprising: a non-magnetic metal layer disposed between the second non-magnetic insulator layer and the third non-magnetic insulator layer.
  • 4. The device of claim 1, wherein the plurality of non-magnetic separator layers comprise an oxide alloy including Cobalt-Iron-Boron (Co—Fe—B) and a non-magnetic material selected from the group consisting of Copper (Cu), Aluminum (Al), and Ruthenium (Ru).
  • 5. The device of claim 1, wherein each annular structure comprises a conical structure including a conical non-magnetic layer disposed about a conical portion of the conductive layer, first and second conical free magnetic layers disposed about the conical non-magnetic layer, and a conical tunnel insulator disposed about the first and second conical free magnetic layers.
  • 6. The device of claim 5, wherein each conical structure has a taper of approximately 10-45 degrees.
  • 7. The device of claim 1, further comprising; the plurality of annular structures arranged in columns and rows in the first and second planar reference magnetic layers; anda plurality of insulator regions disposed in the first and second planar reference magnetic layers between a respective pair of columns of the plurality of annular structures.
  • 8. The device of claim 1, wherein, a magnetic field of the first and second planar reference magnetic layers has a fixed polarization substantially perpendicular to a major planar orientation of the first and second planar reference magnetic layers; anda magnetic field of the annular free magnetic layer of each of the plurality of annular structures has a polarization substantially perpendicular to the major planar orientation of the first and second planar reference magnetic layers and selectively switchable between being substantially parallel and substantially antiparallel to the magnetic field of the first and second planar reference layers.
  • 9. The device of claim 8, wherein, the magnetic field of the first and second annular free magnetic layers of each of the plurality of annular structures is configured to switch to being substantially parallel to the magnetic field of the first and second planar reference magnetic layers in response to a current flow in a first direction through the respective conductive annular layer of the plurality of annular structures and to switch to being substantially anti-parallel to the magnetic field of the first and second planar reference magnetic layers in response to a current flow in a second direction through the respective conductive annular layer of the plurality of annular structures.
  • 10. A memory device, comprising: an array of Magnetic Tunnel Junction (MJT) cells including; a plurality of annular structures arranged in columns and rows, each annular structure including an annular non-magnetic layer disposed about an annular conductive layer, a plurality of annular free magnetic layers disposed about the annular non-magnetic layer, the plurality of annular free magnetic layers separated from each other by corresponding ones of a plurality of non-magnetic separator layers, and an annular tunnel insulator disposed about the respective annular free magnetic layers;a plurality of planar reference magnetic layers disposed about the respective annular tunnel insulator of each of the plurality of annular structures and aligned with corresponding ones of the plurality of annular free magnetic layers;a first plurality of non-magnetic insulator layers disposed about the plurality of annular structures and on a first side of corresponding ones of the plurality of planar reference magnetic layers: anda second plurality of non-magnetic insulator layers disposed about the plurality of annular structures and on a second side of corresponding ones of the plurality of planar reference magnetic layers; anda planar non-magnetic conductive layer disposed between adjacent ones of the first plurality of non-magnetic insulator layers and the second plurality of non-magnetic insulator layers.
  • 11. The memory device of claim 10, wherein, a magnetic field of the plurality of planar reference magnetic layers has a fixed polarization substantially perpendicular to a major planar orientation of the plurality of planar reference magnetic layers; anda magnetic field of the plurality of annular free magnetic layers of each of the plurality of annular structures has a polarization substantially perpendicular to the major planar orientation of the plurality of planar reference magnetic layers and selectively switchable between being substantially parallel and substantially antiparallel to the magnetic field of the plurality of planar reference layers.
  • 12. The memory device of claim 11, wherein, the magnetic field of the plurality of annular free magnetic layers of each of the plurality of annular structures is configured to switch to being substantially parallel to the magnetic field of the plurality of planar reference layers in response to a current flow in a first direction through the respective conductive annular layer of the plurality of annular structures and to switch to being substantially anti-parallel to the magnetic field of the plurality of planar reference layers in response to a current flow in a second direction through the respective conductive annular layer of the first plurality of annular structures.
  • 13. The memory device of claim 10, further comprising: the plurality of annular structures arranged in columns and rows in the plurality of planar reference magnetic layers: anda plurality of insulator regions disposed in the plurality of planar reference magnetic layers between a respective pair of columns of the plurality of annular structures.
  • 14. A memory device comprising: an array of Magnetic Tunnel Junction (TS) cells arranged in cell columns and cell rows in a plurality of cell levels, wherein the MTJ cells in corresponding cell column and cell row positions in the plurality of cell levels are coupled together in cell strings, the MTJ cells in each cell string include; an annular structure including an annular non-magnetic layer disposed about an annular conductive layer, a plurality of annular free magnetic layers disposed about the annular non-magnetic layer, the annular free magnetic layer separated from each other by corresponding ones of a plurality of non-magnetic separator layers, and an annular tunnel insulator disposed about the plurality of annular free magnetic layers;a portion of corresponding ones of planar reference magnetic layers disposed about the annular structure and aligned with corresponding ones of the plurality of portions of the annular free magnetic layers;a portion of one or more planar non-magnetic insulator layers disposed on a first side of each of the plurality of planar reference magnetic layers and about the annular structure;a portion of one or more other planar non-magnetic insulator layers disposed on a second side of each of the plurality of planar reference magnetic layers and about the annular structure; anda plurality of select elements arranged in select columns and select rows, wherein respective select elements are coupled to respective strings of MTJ cells in corresponding cell column and cell row positions.
  • 15. The memory device of claim 14, further comprising: a plurality of blocks of the array of cells arranged in block columns and block rows.
  • 16. The memory device of claim 14, wherein the annular structure comprises a conical structure including a conical non-magnetic layer disposed about a conical portion of the conductive layer, a plurality of conical free magnetic layers disposed about the conical non-magnetic layer, and a conical tunnel insulator disposed about the plurality of conical free magnetic layers.
  • 17. The memory device of claim 14, wherein, a magnetic field of the planar reference magnetic layers have a fixed polarization substantially perpendicular to a major planar orientation of the planar reference magnetic layers; anda magnetic field of the plurality of annular free magnetic layers have a polarization substantially perpendicular to the major planar orientation of the planar reference magnetic layers and selectively switchable between being substantially parallel and substantially antiparallel to the magnetic field of the planar reference layers.
  • 18. The memory device of claim 17, wherein the magnetic field of the plurality of annular free magnetic layers is configured to switch to being substantially parallel to the magnetic field of the plurality of planar reference layers in response to a current flow in a first direction through the conductive annular layer and to switch to being substantially anti-parallel to the magnetic field of the plurality of planar reference layers in response to a current flow in a second direction through the conductive annular layer.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application No. 62/647,210 filed Mar. 23,2018, which is incorporated herein in its entirety.

US Referenced Citations (446)
Number Name Date Kind
4597487 Crosby et al. Jul 1986 A
5541868 Prinz Jul 1996 A
5559952 Fujimoto Sep 1996 A
5629549 Johnson May 1997 A
5640343 Gallagher et al. Jun 1997 A
5654566 Johnson Aug 1997 A
5691936 Sakakima et al. Nov 1997 A
5695846 Lange et al. Dec 1997 A
5695864 Slonczewski Dec 1997 A
5732016 Chen et al. Mar 1998 A
5751647 O'Toole May 1998 A
5856897 Mauri Jan 1999 A
5896252 Kanai Apr 1999 A
5966323 Chen et al. Oct 1999 A
6016269 Peterson et al. Jan 2000 A
6055179 Koganei et al. Apr 2000 A
6064948 West May 2000 A
6075941 Itoh Jun 2000 A
6097579 Gill Aug 2000 A
6112295 Bhamidipati et al. Aug 2000 A
6124711 Tanaka et al. Sep 2000 A
6134138 Lu et al. Oct 2000 A
6140838 Johnson Oct 2000 A
6154139 Kanai et al. Nov 2000 A
6154349 Kanai et al. Nov 2000 A
6172902 Wegrowe et al. Jan 2001 B1
6233172 Chen et al. May 2001 B1
6233690 Choi et al. May 2001 B1
6243288 Ishikawa et al. Jun 2001 B1
6252798 Satoh et al. Jun 2001 B1
6256223 Sun Jul 2001 B1
6292389 Chen et al. Sep 2001 B1
6347049 Childress et al. Feb 2002 B1
6376260 Chen et al. Apr 2002 B1
6385082 Abraham et al. May 2002 B1
6436526 Odagawa et al. Aug 2002 B1
6442681 Ryan et al. Aug 2002 B1
6458603 Kersch et al. Oct 2002 B1
6493197 Ito et al. Dec 2002 B2
6522137 Sun et al. Feb 2003 B1
6532164 Redon et al. Mar 2003 B2
6538918 Swanson et al. Mar 2003 B2
6545903 Savtchenko et al. Apr 2003 B1
6545906 Savtchenko et al. Apr 2003 B1
6563681 Sasaki et al. May 2003 B1
6566246 deFelipe et al. May 2003 B1
6603677 Redon et al. Aug 2003 B2
6653153 Doan et al. Nov 2003 B2
6654278 Engel et al. Nov 2003 B1
6677165 Lu et al. Jan 2004 B1
6710984 Yuasa et al. Mar 2004 B1
6713195 Wang et al. Mar 2004 B2
6714444 Huai et al. Mar 2004 B2
6731537 Kanamori May 2004 B2
6744086 Daughton et al. Jun 2004 B2
6750491 Sharma et al. Jun 2004 B2
6765824 Kishi et al. Jul 2004 B2
6772036 Eryurek et al. Aug 2004 B2
6773515 Li et al. Aug 2004 B2
6777730 Daughton et al. Aug 2004 B2
6785159 Tuttle Aug 2004 B2
6812437 Levy et al. Nov 2004 B2
6829161 Huai et al. Dec 2004 B2
6835423 Chen et al. Dec 2004 B2
6838740 Huai et al. Jan 2005 B2
6839821 Estakhri Jan 2005 B2
6842317 Sugita et al. Jan 2005 B2
6847547 Albert et al. Jan 2005 B2
6887719 Lu et al. May 2005 B2
6888742 Nguyen et al. May 2005 B1
6902807 Argoitia et al. Jun 2005 B1
6906369 Ross et al. Jun 2005 B2
6920063 Huai et al. Jul 2005 B2
6933155 Albert et al. Aug 2005 B2
6938142 Pawlowski Aug 2005 B2
6958927 Nguyen et al. Oct 2005 B1
6967863 Huai Nov 2005 B2
6980469 Kent et al. Dec 2005 B2
6985385 Nguyen et al. Jan 2006 B2
6992359 Nguyen et al. Jan 2006 B2
6995962 Saito et al. Feb 2006 B2
7002839 Kawabata et al. Feb 2006 B2
7005958 Wan Feb 2006 B2
7006371 Matsuoka Feb 2006 B2
7006375 Covington Feb 2006 B2
7009877 Huai et al. Mar 2006 B1
7041598 Sharma May 2006 B2
7045368 Hong et al. May 2006 B2
7057922 Fukumoto Jun 2006 B2
7170778 Kent et al. Jan 2007 B2
7187577 Wang Mar 2007 B1
7190611 Nguyen et al. Mar 2007 B2
7203129 Lin et al. Apr 2007 B2
7227773 Nguyen et al. Jun 2007 B1
7262941 Li et al. Aug 2007 B2
7307876 Kent et al. Dec 2007 B2
7324387 Bergemont et al. Jan 2008 B1
7335960 Han et al. Feb 2008 B2
7351594 Bae et al. Apr 2008 B2
7352021 Bae et al. Apr 2008 B2
7372722 Jeong May 2008 B2
7376006 Bednorz et al. May 2008 B2
7386765 Ellis Jun 2008 B2
7436699 Tanizaki Oct 2008 B2
7449345 Horng et al. Nov 2008 B2
7453719 Sakimura Nov 2008 B2
7476919 Hong et al. Jan 2009 B2
7502249 Ding Mar 2009 B1
7573737 Kent et al. Aug 2009 B2
7598555 Papworth-Parkin Oct 2009 B1
7619431 DeWilde et al. Nov 2009 B2
7642612 Izumi et al. Jan 2010 B2
7660161 Van Tran Feb 2010 B2
7733699 Roohparvar Jun 2010 B2
7773439 Do et al. Aug 2010 B2
7776665 Izumi et al. Aug 2010 B2
7852662 Yang Dec 2010 B2
7881095 Lu Feb 2011 B2
7911832 Kent et al. Mar 2011 B2
7936595 Han et al. May 2011 B2
7986544 Kent et al. Jul 2011 B2
8080365 Nozaki Dec 2011 B2
8088556 Nozaki Jan 2012 B2
8094480 Tonomura Jan 2012 B2
8144509 Lung Mar 2012 B2
8148970 Fuse Apr 2012 B2
8255742 Ipek Aug 2012 B2
8278996 Miki Oct 2012 B2
8279666 Dieny et al. Oct 2012 B2
8334213 Mao Dec 2012 B2
8349536 Nozaki Jan 2013 B2
8363465 Kent et al. Jan 2013 B2
8386836 Burger Feb 2013 B2
8432727 Ryu Apr 2013 B2
8441844 El Baraji May 2013 B2
8456883 Liu Jun 2013 B1
8456926 Ong Jun 2013 B2
8492881 Kuroiwa et al. Jul 2013 B2
8535952 Ranjan et al. Sep 2013 B2
8539303 Lu Sep 2013 B2
8549303 Fifield et al. Oct 2013 B2
8574928 Satoh et al. Nov 2013 B2
8582353 Lee Nov 2013 B2
8593868 Park Nov 2013 B2
8617408 Balamane Dec 2013 B2
8625339 Ong Jan 2014 B2
8634232 Oh Jan 2014 B2
8716817 Saida May 2014 B2
8737137 Choy et al. May 2014 B1
8780617 Kang Jul 2014 B2
8792269 Abedifard Jul 2014 B1
8852760 Wang et al. Oct 2014 B2
8902628 Ha Dec 2014 B2
8966345 Wilkerson Feb 2015 B2
9019754 Bedeschi Apr 2015 B1
9026888 Kwok May 2015 B2
9043674 Wu May 2015 B2
9082888 Kent et al. Jul 2015 B2
9104595 Sah Aug 2015 B2
9140747 Kim Sep 2015 B2
9165629 Chih Oct 2015 B2
9166155 Deshpande Oct 2015 B2
9229853 Khan Jan 2016 B2
9245608 Chen et al. Jan 2016 B2
9250990 Motwani Feb 2016 B2
9263667 Pinarbasi Feb 2016 B1
9298552 Leem et al. Mar 2016 B2
9299412 Naeimi Mar 2016 B2
9317429 Ramanujan Apr 2016 B2
9337412 Pinarbasi et al. May 2016 B2
9362486 Kim et al. Jun 2016 B2
9378817 Kawai Jun 2016 B2
9396991 Arvin et al. Jul 2016 B2
9401336 Arvin et al. Jul 2016 B2
9406876 Pinarbasi Aug 2016 B2
9418721 Bose Aug 2016 B2
9449720 Lung Sep 2016 B1
9450180 Annunziata Sep 2016 B1
9455013 Kim Sep 2016 B2
9472282 Lee Oct 2016 B2
9472748 Kuo et al. Oct 2016 B2
9484527 Han et al. Nov 2016 B2
9488416 Fujita et al. Nov 2016 B2
9508456 Shim Nov 2016 B1
9525126 Lin Dec 2016 B1
9548445 Lee et al. Jan 2017 B2
9553102 Wang Jan 2017 B2
9583167 Chung Feb 2017 B2
9728712 Kardasz et al. Aug 2017 B2
9741926 Pinarbasi et al. Aug 2017 B1
9772555 Park et al. Sep 2017 B2
9773974 Pinarbasi et al. Sep 2017 B2
9853006 Avin et al. Dec 2017 B2
9853206 Pinarbasi et al. Dec 2017 B2
9853292 Loveridge et al. Dec 2017 B2
9865806 Choi et al. Jan 2018 B2
10026609 Sreenivasan et al. Jul 2018 B2
10043851 Shen Aug 2018 B1
10115446 Louie et al. Oct 2018 B1
10163479 Yoha Dec 2018 B2
20020057593 Hidaka May 2002 A1
20020090533 Zhang et al. Jul 2002 A1
20020105823 Redon et al. Aug 2002 A1
20020132140 Igarashi et al. Sep 2002 A1
20030085186 Fujioka May 2003 A1
20030117840 Sharma et al. Jun 2003 A1
20030151944 Saito Aug 2003 A1
20030197984 Inomata et al. Oct 2003 A1
20030218903 Luo Nov 2003 A1
20040012994 Slaughter et al. Jan 2004 A1
20040026369 Ying Feb 2004 A1
20040047179 Chan Mar 2004 A1
20040061154 Huai et al. Apr 2004 A1
20040094785 Zhu et al. May 2004 A1
20040130936 Nguyen et al. Jul 2004 A1
20040173315 Leung Sep 2004 A1
20040197174 Van Den Berg Oct 2004 A1
20040221030 Huras Nov 2004 A1
20040257717 Sharma et al. Dec 2004 A1
20050022746 Lampe Feb 2005 A1
20050029551 Atwood et al. Feb 2005 A1
20050041342 Huai et al. Feb 2005 A1
20050051820 Stojakovic et al. Mar 2005 A1
20050063222 Huai et al. Mar 2005 A1
20050104101 Sun et al. May 2005 A1
20050128842 Wei Jun 2005 A1
20050136600 Huai Jun 2005 A1
20050158881 Sharma Jul 2005 A1
20050160205 Kuo Jul 2005 A1
20050174702 Gill Aug 2005 A1
20050180202 Huai et al. Aug 2005 A1
20050184839 Nguyen et al. Aug 2005 A1
20050201023 Huai et al. Sep 2005 A1
20050237787 Huai et al. Oct 2005 A1
20050251628 Jarvis et al. Nov 2005 A1
20050280058 Pakala et al. Dec 2005 A1
20050285176 Kim Dec 2005 A1
20060018057 Huai Jan 2006 A1
20060049472 Diao et al. Mar 2006 A1
20060077734 Fong Apr 2006 A1
20060087880 Mancoff et al. Apr 2006 A1
20060092696 Bessho May 2006 A1
20060132990 Morise et al. Jun 2006 A1
20060198202 Erez Sep 2006 A1
20060227465 Inokuchi et al. Oct 2006 A1
20060271755 Miura Nov 2006 A1
20060284183 Izumi et al. Dec 2006 A1
20060291305 Suzuki et al. Dec 2006 A1
20070019337 Apalkov et al. Jan 2007 A1
20070094573 Chen Apr 2007 A1
20070096229 Yoshikawa May 2007 A1
20070220935 Cernea Sep 2007 A1
20070226592 Radke Sep 2007 A1
20070242501 Hung et al. Oct 2007 A1
20070283313 Ogawa Dec 2007 A1
20070285972 Horii Dec 2007 A1
20080049487 Yoshimura Feb 2008 A1
20080049488 Rizzo Feb 2008 A1
20080079530 Weidman et al. Apr 2008 A1
20080112094 Kent et al. May 2008 A1
20080144376 Lee Jun 2008 A1
20080151614 Guo Jun 2008 A1
20080181009 Arai Jul 2008 A1
20080259508 Kent et al. Oct 2008 A2
20080294938 Kondo Nov 2008 A1
20080297292 Viala et al. Dec 2008 A1
20090040825 Adusumilli et al. Feb 2009 A1
20090046501 Ranjan et al. Feb 2009 A1
20090072185 Raksha et al. Mar 2009 A1
20090078927 Xiao Mar 2009 A1
20090080267 Bedeschi Mar 2009 A1
20090091037 Assefa et al. Apr 2009 A1
20090098413 Kanegae Apr 2009 A1
20090130779 U May 2009 A1
20090146231 Kuper et al. Jun 2009 A1
20090161421 Cho et al. Jun 2009 A1
20090209102 Zhong et al. Aug 2009 A1
20090231909 Dieny et al. Sep 2009 A1
20100039136 Chua-Eoan Feb 2010 A1
20100080040 Choi Apr 2010 A1
20100087048 Izumi et al. Apr 2010 A1
20100110803 Arai May 2010 A1
20100124091 Cowburn May 2010 A1
20100162065 Norman Jun 2010 A1
20100193891 Wang et al. Aug 2010 A1
20100195362 Norman Aug 2010 A1
20100195401 Jeong et al. Aug 2010 A1
20100227275 Nozaki Sep 2010 A1
20100232206 Li Sep 2010 A1
20100246254 Prejbeanu et al. Sep 2010 A1
20100248154 Nozaki Sep 2010 A1
20100254181 Chung Oct 2010 A1
20100271090 Rasmussen Oct 2010 A1
20100271870 Zheng et al. Oct 2010 A1
20100277976 Oh Nov 2010 A1
20100290275 Park et al. Nov 2010 A1
20100311243 Mao Dec 2010 A1
20110001108 Greene Jan 2011 A1
20110032645 Noel et al. Feb 2011 A1
20110058412 Zheng et al. Mar 2011 A1
20110061786 Mason Mar 2011 A1
20110076620 Nozaki Mar 2011 A1
20110089511 Keshtbod et al. Apr 2011 A1
20110133298 Chen et al. Jun 2011 A1
20110283135 Burger Nov 2011 A1
20110310691 Zhou et al. Dec 2011 A1
20110320696 Fee et al. Dec 2011 A1
20120028373 Belen Feb 2012 A1
20120052258 Op DeBeeck et al. Mar 2012 A1
20120069649 Ranjan et al. Mar 2012 A1
20120127804 Ong et al. May 2012 A1
20120155158 Higo Jun 2012 A1
20120163113 Hatano et al. Jun 2012 A1
20120280336 Watts Jun 2012 A1
20120181642 Prejbeanu et al. Jul 2012 A1
20120188818 Ranjan et al. Jul 2012 A1
20120221905 Burger Aug 2012 A1
20120228728 Ueki et al. Sep 2012 A1
20120239969 Dickens Sep 2012 A1
20120254636 Tsukamoto et al. Oct 2012 A1
20120280339 Zhang et al. Nov 2012 A1
20120294078 Kent et al. Nov 2012 A1
20120299133 Son et al. Nov 2012 A1
20120324274 Hori Dec 2012 A1
20130001506 Sato et al. Jan 2013 A1
20130001652 Yoshikawa et al. Jan 2013 A1
20130021841 Zhou et al. Jan 2013 A1
20130039119 Rao Feb 2013 A1
20130044537 Ishigaki Feb 2013 A1
20130075845 Chen et al. Mar 2013 A1
20130107633 Kim May 2013 A1
20130244344 Malmhall et al. Sep 2013 A1
20130267042 Satoh et al. Oct 2013 A1
20130270523 Wang et al. Oct 2013 A1
20130270661 Yi et al. Oct 2013 A1
20130275691 Chew Oct 2013 A1
20130307097 Yi et al. Nov 2013 A1
20130341801 Satoh et al. Dec 2013 A1
20140009994 Parkin et al. Jan 2014 A1
20140036573 Ishihara Feb 2014 A1
20140042571 Gan et al. Feb 2014 A1
20140048896 Huang et al. Feb 2014 A1
20140063949 Tokiwa Mar 2014 A1
20140070341 Beach et al. Mar 2014 A1
20140089762 Pangal et al. Mar 2014 A1
20140103469 Jan Apr 2014 A1
20140103472 Kent et al. Apr 2014 A1
20140136870 Breternitz et al. May 2014 A1
20140149827 Kim et al. May 2014 A1
20140151837 Ryu Jun 2014 A1
20140169085 Wang et al. Jun 2014 A1
20140177316 Otsuka et al. Jun 2014 A1
20140217531 Jan Aug 2014 A1
20140219034 Gomez et al. Aug 2014 A1
20140252439 Guo Sep 2014 A1
20140264671 Chepulskyy et al. Sep 2014 A1
20140269005 Kang Sep 2014 A1
20140281284 Block et al. Sep 2014 A1
20140289358 Lindamood Sep 2014 A1
20140321196 Ikeda Oct 2014 A1
20150056368 Wang et al. Feb 2015 A1
20150098287 Lee Apr 2015 A1
20150100848 Kalamatianos Apr 2015 A1
20150135039 Mekhanik et al. May 2015 A1
20150143343 Weiss May 2015 A1
20150154116 Dittrich Jun 2015 A1
20150171316 Park et al. Jun 2015 A1
20150206568 Bose et al. Jul 2015 A1
20150206569 Bose et al. Jul 2015 A1
20150242269 Pelley et al. Aug 2015 A1
20150262701 Takizawa Sep 2015 A1
20150278011 Kennel et al. Oct 2015 A1
20150279904 Pinarbasi et al. Oct 2015 A1
20150378814 Webb et al. Dec 2015 A1
20150380088 Naeimi et al. Dec 2015 A1
20160027525 Kim et al. Jan 2016 A1
20160027999 Pinarbasi Jan 2016 A1
20160043304 Chen Feb 2016 A1
20160056072 Arvin et al. Feb 2016 A1
20160085443 Tomishima et al. Mar 2016 A1
20160085621 Motwani Mar 2016 A1
20160086600 Bauer et al. Mar 2016 A1
20160087193 Pinarbasi et al. Mar 2016 A1
20160093798 Kim et al. Mar 2016 A1
20160111634 Lee et al. Apr 2016 A1
20160118249 Sreenivasan et al. Apr 2016 A1
20160124299 Yu et al. May 2016 A1
20160126201 Arvin et al. May 2016 A1
20160126452 Kuo et al. May 2016 A1
20160126453 Chen et al. May 2016 A1
20160148685 Roy May 2016 A1
20160163965 Han et al. Jun 2016 A1
20160163973 Pinarbasi Jun 2016 A1
20160181508 Lee et al. Jun 2016 A1
20160218278 Pinarbasi et al. Jul 2016 A1
20160260486 Tani Sep 2016 A1
20160268499 You Sep 2016 A1
20160283385 Boyd et al. Sep 2016 A1
20160284762 Wang et al. Sep 2016 A1
20160300615 Lee Oct 2016 A1
20160307860 Arvin et al. Oct 2016 A1
20160315118 Kardasz et al. Oct 2016 A1
20160315249 Kardasz et al. Oct 2016 A1
20160315259 Fennimore et al. Oct 2016 A1
20160085692 Kwok Dec 2016 A1
20160358778 Park et al. Dec 2016 A1
20160372656 Pinarbasi et al. Dec 2016 A1
20160378592 Ikegami et al. Dec 2016 A1
20170025472 Kim et al. Jan 2017 A1
20170033156 Gan et al. Feb 2017 A1
20170033283 Pinarbasi et al. Feb 2017 A1
20170047107 Berger et al. Feb 2017 A1
20170062519 Bandic Mar 2017 A1
20170062712 Choi et al. Mar 2017 A1
20170069837 Choi et al. Mar 2017 A1
20170084826 Zhou et al. Mar 2017 A1
20170123991 Sela et al. May 2017 A1
20170133104 Darbari et al. May 2017 A1
20170199459 Ryu et al. Jul 2017 A1
20170222132 Pinarbasi et al. Aug 2017 A1
20170270988 Ikegami Sep 2017 A1
20180018134 Kang Jan 2018 A1
20180019343 Asami Jan 2018 A1
20180033957 Zhang Feb 2018 A1
20180097175 Chuang Apr 2018 A1
20180114589 El-Baraji et al. Apr 2018 A1
20180119278 Kornmeyer May 2018 A1
20180121117 Berger et al. May 2018 A1
20180121355 Berger et al. May 2018 A1
20180121361 Berger et al. May 2018 A1
20180122446 Berger et al. May 2018 A1
20180122447 Berger et al. May 2018 A1
20180122448 Berger et al. May 2018 A1
20180122449 Berger et al. May 2018 A1
20180122450 Berger et al. May 2018 A1
20180122855 Chen May 2018 A1
20180130945 Choi et al. May 2018 A1
20180211821 Kogler Jul 2018 A1
20180233362 Glodde Aug 2018 A1
20180233363 Glodde Aug 2018 A1
20180248110 Kardasz et al. Aug 2018 A1
20180248113 Pinarbasi et al. Aug 2018 A1
20180331279 Shen Nov 2018 A1
20190036013 Mo Jan 2019 A1
20190273202 Nikitin Sep 2019 A1
20190280045 Aggarwal Sep 2019 A1
Foreign Referenced Citations (15)
Number Date Country
105706259 Jun 2016 CN
2910716 Jun 2008 FR
2005-044848 Feb 2005 JP
2005-150482 Jun 2005 JP
2005-535111 Nov 2005 JP
2006128579 May 2006 JP
2008-524830 Jul 2008 JP
2009-027177 Feb 2009 JP
2013-012546 Jan 2013 JP
2014-039061 Feb 2014 JP
5635666 Dec 2014 JP
10-2014-015246 Sep 2014 KR
2009-080636 Jul 2009 WO
2011-005484 Jan 2011 WO
2014-062681 Apr 2014 WO
Non-Patent Literature Citations (11)
Entry
US 7,026,672 B2, 04/2006, Grandis (withdrawn)
US 2016/0218273 A1, 06/2016, Pinarbasi (withdrawn)
Helia Naeimi, et al., “STTRAM Scaling and Retention Failure,” Intel Technology Journal, vol. 17, Issue 1, 2013, pp. 54-75 (22 pages).
S. Ikeda, et al., “A Perpendicular-Anisotropy CoFeB—MgO Magnetic Tunnel Junction”, Nature Materials, vol. 9, Sep. 2010, pp. 721-724 (4 pages).
R.H. Kock, et al., “Thermally Assisted Magnetization Reversal in Submicron-Sized Magnetic Thin Films”, Physical Review Letters, The American Physical Society, vol. 84, No, 23, Jun. 5, 2000, pp. 5419-5422 (4 pages).
K.J. Lee, et al., “Analytical Investigation of Spin-Transfer Dynamics Using a Perpendicular-to-Plane Polarizer”, Applied Physics Letters, American Insitute of Physics, vol. 86, (2005), pp. 022505-1 to 022505-3 (3 pages).
Kirsten Martens, et al., “Thermally Induced Magnetic Switching in Thin Ferromagnetic Annuli”, NSF grants PHY-0351964 (DLS), 2005, 11 pages.
Kristen Martens, et al., “Magnetic Reversal in Nanoscropic Ferromagnetic Rings”, NSF grants PHY-0351964 (DLS) 2006, 23 pages.
“Magnetic Technology Spintronics, Media and Interface”, Data Storage Institute, R&D Highlights, Sep. 2010, 3 pages.
Daniel Scott Matic, “A Magnetic Tunnel Junction Compact Model for STT-RAM and MeRAM”, Master Thesis University of California, Los Angeles, 2013, pp. 43.
Sabpreet Bhatti et al., Spintronics Based Random Access Memory: A Review, Materials Today, Nov. 2017, pp. 530-548, vol. 20, No. 9.
Related Publications (1)
Number Date Country
20190296221 A1 Sep 2019 US
Provisional Applications (1)
Number Date Country
62647210 Mar 2018 US