Three dimensional structure memory

Abstract
A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 μm in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density interlayer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to stacked integrated circuit memory.


2. State of the Art


Manufacturing methods for increasing the performance and decreasing the cost of electronic circuits, nearly without exception, are methods that increase the integration of the circuit and decrease its physical size per equivalent number of circuit devices such as transistors or capacitors. These methods have produced as of 1996 microprocessors capable of over 100 million operations per second that cost less than $1,000 and 64 Mbit DRAM circuits that access data in less than 50 ns and cost less than $50. The physical size of such circuits is less than 2 cm2. Such manufacturing methods support to a large degree the economic standard of living in the major industrialized countries and will most certainly continue to have significant consequences in the daily lives of people all over the world.


Circuit manufacturing methods take two primary forms: process integration and assembly integration. Historically the line between these two manufacturing disciplines has been clear, but recently with the rise in the use of MCMs (Multi-Chip Modules) and flip-chip die attach, this clear separation may soon disappear. (The predominate use of the term Integrated Circuit (IC) herein is in reference to an Integrated Circuit in singulated die form as sawed from a circuit substrate such as s semiconductor wafer versus, for example, an Integrated Circuit in packaged form.) The majority of ICs when in initial die form are presently individually packaged, however, there is an increasing use of MCMs. Die in an MCM are normally attached to a circuit substrate in a planar fashion with conventional IC die I/O interconnect bonding methods such as wire bonding, DCA (Direct Chip Attach) or FCA (Flip-Chip Attach).


Integrated circuit memory such as DRAM, SRAM, flash EPROM, EEPROM, Ferroelectric, GMR (Giant MagnetoResistance), etc. have the common architectural or structural characteristic of being monolithic with the control circuitry integrated on the same die with the memory array circuitry. This established (standard or conventional) architecture or circuit layout structure creates a design trade-off constraint between control circuitry and memory array circuitry for large memory circuits. Reductions in the fabrication geometries of memory cell circuitry has resulted in denser and denser memory ICs, however, these higher memory densities have resulted in more sophisticated control circuitry at the expense of increased area of the IC. Increased IC area means at least higher fabrication costs per IC (fewer ICs per wafer) and lower IC yields (fewer working ICs per wafer), and in the worst case, an IC design that cannot be manufactured due to its non-competitive cost or unreliable operation.


As memory density increases and the individual memory cell size decreases more control circuitry is required. The control circuitry of a memory IC as a percentage of IC area in some cases such as DRAMs approaches or exceeds 40%. One portion of the control circuitry is the sense amp which senses the state, potential or charge of a memory cell in the memory array circuitry during a read operation. The sense amp circuitry is a significant portion of the control circuitry and it is a constant challenge to the IC memory designer to improve sense amp sensitivity in order to sense ever smaller memory cells while preventing the area used by the sense amp from becoming too large.


If this design constraint or trade-off between control and memory circuits did not exist, the control circuitry could be made to perform numerous additional functions, such as sensing multiple storage states per memory cell, faster memory access through larger more sensitive sense amps, caching, refresh, address translation, etc. But this trade-off is the physical and economic reality for memory ICs as they are presently made by all manufacturers.


The capacity of DRAM circuits increase by a factor of four from one generation to the next; e.g. 1 Mbit, 4 Mbit, 16 Mbit and 64 Mbit DRAMs. This four times increase in circuit memory capacity per generation has resulted in larger and larger DRAM circuit areas. Upon introduction of a new DRAM generation the circuit yields are too low and, therefore, not cost effective for high volume manufacture. It is normally several years between the date prototype samples of a new DRAM generation are shown and the date such circuits are in volume production.


Assembling die in a stacked or three dimensional (3D) manner is disclosed in U.S. Pat. No. 5,354,695 of the present inventor, incorporated herein by reference. Furthermore, assembling die in a 3D manner has been attempted with regard to memory. Texas Instruments of Dallas Tex., Irvine Sensors of Costa Mesa Calif. and Cubic Memory Corporation of Scotts Valley Calif., have all attempted to produce stacked or 3D DRAM products. In all three cases, conventional DRAM circuits in die form were stacked and the interconnect between each DRAM in the stack was formed along the outside surface of the circuit stack. These products have been available for the past several years and have proved to be too expensive for commercial applications, but have found some use in space and military applications due to their small physical size or footprint.


The DRAM circuit type is referred to and often used as an example in this specification, however, this invention is clearly not limited to the DRAM type of circuit. Undoubtedly memory cell types such as EEPROMs (Electrically Erasable Programmable Read Only Memories), flash EPROM, Ferroelectric, or combinations (intra or inter) of such memory cells can also be used with the present Three Dimensional Structure (3DS) methods to form 3DS memory devices.


The present invention furthers, among others, the following objectives:


1. Several-fold lower fabrication cost per megabyte of memory than circuits conventionally made solely with monolithic circuit integration methods.


2. Several-fold higher performance than conventionally made memory circuits.


3. Many-fold higher memory density per IC than conventionally made memory circuits.


4. Greater designer control of circuit area size, and therefore, cost.


5. Circuit dynamic and static self-test of memory cells by an internal controller.


6. Dynamic error recovery and reconfiguration.


7. Multi-level storage per memory cell.


8. Virtual address translation, address windowing, various address functions such as indirect addressing or content addressing, analog circuit functions and various graphics acceleration and microprocessor functions.


SUMMARY OF THE INVENTION

The present 3DS memory technology is a stacked or 3D circuit assembly technology. Features include:


1. Physical separation of the memory circuits and the control logic circuit onto different layers;


2. The use of one control logic circuit for several memory circuits;


3. Thinning of the memory circuit to less than about 50 μm in thickness forming a substantially flexible substrate with planar processed bond surfaces and bonding the circuit to the circuit stack while still in wafer substrate form; and


4. The use of fine-grain high density inter layer vertical bus connections.


The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques. Using the DRAM circuit as an example, a 64 Mbit DRAM made with a 0.25 μm process could have a die size of 84 mm2, a memory area to die size ratio of 40% and a access time of about 50 ns for 8 Mbytes of storage; a 3DS DRAM IC made with the same 0.25 μm process would have a die size of 18.6 mm2, use 17 DRAM array circuit layers, a memory area to die size ratio of 94.4% and an expected access time of less than 10 ns for 64 Mbytes of storage. The 3DS DRAM IC manufacturing method represents a scalable, many-fold reduction in the cost per megabyte versus that of conventional DRAM IC manufacturing methods. In other words, the 3DS memory manufacturing method represents, at the infrastructure level, a fundamental cost savings that is independent of the process fabrication technology used.





BRIEF DESCRIPTION OF THE DRAWING

The present invention may be further understood from the following description in conjunction with the appended drawing. In the drawing:



FIG. 1
a is a pictorial view of a 3DS DRAM IC manufactured with Method A or Method B and demonstrating the same physical appearance of I/O bond pads as a conventional IC die;



FIG. 1
b is a cross-sectional view of a 3DS memory IC showing the metal bonding interconnect between several thinned circuit layers;



FIG. 1
c is a pictorial view of a 3DS DRAM IC stack bonded and interconnected face-down onto a larger conventional IC or another 3DS IC;



FIG. 2
a is a diagram showing the physical layout of a 3DS DRAM array circuit block with one data-line set of bus lines, i.e one port;



FIG. 2
b is a diagram showing the physical layout of a 3DS DRAM array circuit block with two sets of data-line bus lines, i.e. two ports;



FIG. 2
c is a diagram showing the physical layout of a portion of an exemplary memory controller circuit;



FIG. 3 is a diagram showing the physical layout of a 3DS DRAM array circuit showing partitions for sixty-four (64) 3DS DRAM array blocks;



FIG. 4 is a cross-sectional view of a generic 3DS vertical interconnection or feed-through in a thinned substrate;



FIG. 5 is a diagram showing the layout of a 3DS memory multiplexer for down-selecting gate-line read or write selection.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring to FIG. 1a and FIG. 1b, the 3DS (Three Dimensional Structure) memory device 100 is a stack of integrated circuit layers with fine-grain vertical interconnect between all circuit layers. The term fine-grain inter-layer vertical interconnect is used to mean electrical conductors that pass through a circuit layer with or without an intervening device element and have a pitch of nominally less than 100 μm and more typically less than 10 μm, but not limited to a pitch of less than 2 μm, as best seen in FIG. 2a and FIG. 2b. The fine-grain inter-layer vertical interconnect also functions to bond together the various circuit layers. As shown in FIG. 1b, although the bond and interconnect layers 105a, 105b, etc., are preferably metal, other material may also be used as described more fully hereinafter.


The pattern 107a, 107b, etc. in the bond and interconnect layers 105a, 105b, etc. defines the vertical interconnect contacts between the integrated circuit layers and serves to electrically isolate these contacts from each other and the remaining bond material; this pattern takes the form of either voids or dielectric filled spaces in the bond layers.


The 3DS memory stack is typically organized as a controller circuit 101 and some number of memory array circuit layers 103, typically between nine (9) and thirty-two (32), but there is no particular limit to the number of layers. The controller circuit is of nominal circuit thickness (typically 0.5 mm or greater), but each memory array circuit layer is a thinned and substantially flexible circuit with net low stress, less than 50 μm and typically less than 10 μm in thickness. Conventional I/O bond pads are formed on a final memory array circuit layer for use with conventional packaging methods. Other metal patterns may be used such as insertion interconnection (disclosed in U.S. Pat. Nos. 5,323,035 and 5,453,404 of the present inventor), DCA (Direct Chip Attach) or FCA (Flip-Chip Attach) methods.


Further, the fine grain inter-layer vertical interconnect can be used for direct singulated die bonding between a 3DS memory die and a conventional die (wherein the conventional die could be the controller circuit as shown in FIG. 1c) or a 3DS memory die and another 3DS memory die; it should be assumed that the areas (sizes) of the respective dice to be bonded together can vary and need not be the same. Referring more particularly to FIG. 1c, a 3DS DRAM IC stack 100 is bonded and interconnected face-down onto a larger conventional IC or another 3DS IC 107. Optionally the 3DS stack 100 can be composed of only DRAM array circuits with the DRAM controller circuitry as part of the larger die. If the DRAM controller circuitry is part of the larger die, then fine-grain vertical bus interconnect would be required (at the face 109 of the 3DS DRAM IC stack 100) to connect the 3DS DRAM array circuit to the DRAM controller, otherwise larger grain conventional interconnection could be incorporated (patterned) into the planarized bond layer.


As shown in FIG. 3, each memory array circuit layer includes a memory array circuit 300 composed of memory array blocks 301 (nominally less than 5 mm2 in area) and each block is composed of memory cells (in much the same manner as the cell array of a DRAM or EEPROM circuit), busing electrodes, and—at the option of the designer—enabling gates for selection of specific rows or columns of the memory array. The controller circuit is composed of sense amps, address, control and drive logic that would normally be found at the periphery of a typical memory circuit of monolithic design such as in a conventional DRAM.


Fine-grain busing vertically connects the controller independently to each memory array layer such that the controller can provide drive (power) or enable signals to any one layer without affecting the state of any of the other layers. This allows the controller to test, read or write independently each of the memory circuit layers.



FIG. 2
a and FIG. 2b show examples of layouts of possible blocks of a memory array such as the block 301 of FIG. 3. Although only a portion of the block is shown, in the illustrated embodiment, the blocks exhibit bilateral symmetry such that the layout of the complete block may be ascertained from the illustrated portion. Abbreviations “T”, “L”, and “TL” are used following various reference numerals to indicate “Top”, “Left” and “Top-Left,” respectively, implying corresponding elements not shown in the figure.


Referring to FIG. 2a, a core portion 200 of the block is composed of a “sea” of memory cells. Logically, the aggregation of memory cells may be subdivided into “macrocells” 201 each containing some number of memory cells, e.g. an 8×8 array of 64 memory cells. At the periphery of the core is formed fine-grain vertical interconnect comprising inter-layer bond and bus contact metallizations 400, described in greater detail hereinafter with reference to FIG. 4. The fine-grain vertical interconnect includes I/O power and ground bus lines 203TL, memory circuit layer selects 205T, memory macro cell column selects 207T, data lines 209L, and gate-line multiplexer (“mux”) selects 209TL. Gate-line multiplexers 211T are, in the illustrated embodiment, 4:1 multiplexers used to select one of four columns within an eight-wide memory macro cell column. Corresponding bottom-side 4:1 multiplexers combine with the topside multiplexers 211T to form equivalent 8:1 multiplexers for selecting a single gate-line from an eight-gate-line-wide memory macro cell column.


One implementation of a 4:1 gate-line bus muliplexer 500 is shown in FIG. 5. Gate-line enables 209TL′ (formed in a Metal-1 layer, for example) control transistors 501a through 501d, respectively. Coupled to the transistors are respective gate lines 503a through 503d. Also partly visible are gate-lines 505a through 505d which are coupled to a corresponding 4:1 multiplexer (not shown). When one of the gate-line enables is active, the corresponding gate-line is coupled to an output line 507 of the multiplexer (formed in a Metal-2 layer, for example). The output line is connected to one or more vertical bus connects through a line 509 (formed in a Metal-3 layer and corresponding to metal contact 400 of vertical bus interconnect, for example) and tungsten plugs 511 and 513. The tungsten plug 513 joins the line 509 to a vertical interconnect (not shown).


Referring again to FIG. 2a, in the case of a memory circuit layer, the layer may also include output line enables (gates) from controller layer enable signals 205T, for which I/O enables (gates) 213 may be provided.


Note that at the memory layer level, each memory block 301 is electrically isolated from every other memory block 301. Accordingly, the yield probability for each memory block is independent.


Additional read/write ports can be added as can additional gate-line vertical interconnections; additional vertical interconnection can be used in a redundant manner to improve vertical interconnect yield. The 3DS memory circuit can be designed to have one or more data read and write bus port interconnections. Referring to FIG. 2b, a memory block 301′ is shown as having a port P0, (209L) and a further port P1 (209L′). The only limitation on the number of vertical interconnections is the overhead such vertical interconnections impose on the cost of the circuit The fine-grain vertical interconnect method allows thousands of interconnects per block at an increase in die area of only a few percent.


As an example, the overhead of the vertical interconnect shown in FIG. 2b for a DRAM memory block of 4 Mbits with two read/write ports and implemented in 0.35 μm or 0.15 μm design rules consists of approximately 5,000 connections and is less than 6% of the total area of the memory array block. Therefore, the vertical interconnect overhead for each memory array circuit layer in the 3DS DRAM circuit is less than 6%. This is significantly less than that presently experienced in monolithic DRAM circuit designs where the percentage of non-memory cell area can exceed 40%. In a completed 3DS DRAM circuit the percentage of non-memory cell area is typically less than 10% of the total area of all circuits in the stacked structure.


The 3DS memory device decouples control functions that normally would be found adjacent the memory cells of monolithic memory circuits and segregates them to the controller circuit. The control functions, rather than occurring on each memory array layer as in conventional memory ICs, occur only once in the controller circuit. This creates an economy by which several memory array layers share the same controller logic, and therefore, lowers the net cost per memory cell by as much as a factor of two versus conventional memory design.


The segregation of the control functions to a separate controller circuit allows more area for such functions (i.e., an area equal to the area one or several of the memory array blocks). This physical segregation by function also allows fabrication process segregation of the two very different fabrication technologies used for the control logic and the memory array, again realizing additional fabrication cost savings versus the more complicated combined logic/memory fabrication process used for conventional memory. The memory array can also be fabricated in a process technology without consideration of the process requirements of control logic functions. This results in the ability to design higher performance controller functions at lower cost than is the case with present memory circuits. Furthermore, the memory array circuit can also be fabricated with fewer process steps and nominally reduce memory circuit fabrication costs by 30% to 40% (e.g., in the case of a DRAM array, the process technology can be limited to NMOS or PMOS transistors versus CMOS).


Hence, although bonding of sufficiently planar surfaces of a memory controller substrate and a memory array substrate using thermal diffusion metal bonding is preferred, in the broader aspects of the present invention, the invention contemplates bonding of separate memory controller and memory array substrates by any of various conventional surface bonding methods, such as anisotropically conductive epoxy adhesive, to form interconnects between the two to provide random access data storage.


Referring to FIG. 2c, the layout of a portion of an exemplary memory controller circuit is shown. The inter-layer bond and bus contact metallization has the same pattern as previously described in relation to FIG. 2a. Instead of a sea of memory cells, however, there is provided memory controller circuitry including, for example, sense amps and data line buffers 215. Because of the increased availability of die area, multi-level logic may be provided in conjunction with the sense amps and data line buffers 215. Also shown are address decode, gate-line and DRAM layer select logic 217, refresh and self-test logic 219, ECC logic 221, windowing logic 223, etc. Note that self-test logic, ECC logic, and windowing logic are provided in addition to functions normally found within a DRAM memory controller circuit. Depending on die size or the number of controller circuit layers used, any of numerous other functions may also be provided including, for example, virtual memory management, address functions such as indirect addressing or content addressing, data compression, data decompression, audio encoding, audio decoding, video encoding, video decoding, voice recognition, handwriting recognition, power management, database processing, graphics acceleration functions, microprocessor functions (including adding a microprocessor substrate), etc.


The size of the 3DS memory circuit die is not dependent on the present constraint of containing the necessary number of memory cells and control function logic on one monolithic layer. This allows the circuit designer to reduce the 3DS circuit die size or choose a die size that is more optimal for the yield of the circuit. 3DS memory circuit die size is primarily a function of the size and number of memory array blocks and the number of memory array layers used to fabricate the final 3DS memory circuit. (The yield of a nineteen (19) layer, 0.25 μm process 3DS DRAM memory circuit may be shown to be greater than 90% as described below.) This advantage of selecting the 3DS circuit die size enables an earlier first production use of a more advanced process technology than would normally be possible for conventional monolithic circuit designs. This, of course, implies additional cost reductions and greater performance over the conventional memory circuits.


3DS Memory Device Fabrication Methods


There are two principal fabrication methods for 3DS memory circuits. The two 3DS memory fabrication methods, however, have a common objective which is the thermal diffusion metal bonding (also referred to as thermal compression bonding) of a number of circuit substrates onto a rigid supporting or common substrate which itself may optionally also be a circuit component layer.


The supporting or common substrate can be a standard semiconductor wafer, a quartz wafer or a substrate of any material composition that is compatible with the processing steps of the 3DS circuit, the operation of the circuit and the processing equipment used. The size and shape of the supporting substrate is a choice that best optimizes available manufacturing equipment and methods. Circuit substrates are bonded to the supporting substrate and then thinned through various methods. Circuit substrates may be formed on standard single crystal semiconductor substrates or as polysilicon circuits formed on an appropriate substrate such as silicon or quartz.


Polysilicon transistor circuits have the important cost saving option of incorporating a parting layer (film) that allows the substrate upon which the polysilicon circuits are formed to be released and reused. Polysilicon transistor or TFTs (Thin Film Transistor) devices are widely used, and need not be made solely from silicon.


The various circuit layers of the 3DS memory circuit are bonded together by use of thermal diffusion of two metal surfaces, typically aluminum. The surface of the circuits to be bonded are smooth and sufficiently planar as is the case with the surface of an unprocessed semiconductor wafer or a processed semiconductor wafer that has been planarized with the CMP (Chemical Mechanical Processing) method with a surface planarity of less than 1 μm and preferably less than 1,000 Å over at least the area of the surface of the circuit (formed on the substrate) to be bonded. The metal bonding material on the surfaces of the circuits to be bonded are patterned to be mirror images of each other and to define the various vertical interconnect contacts as indicated in FIG. 2a, FIG. 2b, FIG. 2c and FIG. 5. The step of bonding two circuit substrates results in simultaneously forming the vertical interconnection between the two respective circuit layers or substrates.


The thermal diffusion bonding of the circuit layers takes place preferably in an equipment chamber with controlled pressure and atmospheric components such as N2 with little H2O and O2 content. The bonding equipment aligns the patterns of the substrates to be bonded, presses them together with a set of programmed pressures and at one or more temperatures for a period of time as required by the type of metal used as the bonding material. The thickness of the bonding material is nominally in a range of 500 Å to 15,000 Å or greater with a preferred thickness of 1,500 Å. The initial bonding of the substrates is preferably done at lower than standard pressure such as a negative pressure between 1 torr and 740 torr depending on the design of the bond pattern. This can leave an interior negative pressure between the bonding surfaces once external atmospheric pressure is returned which further assists in the formation of the bond and enhances the reliability of the bond.


The preferred bonding material is pure aluminum or an alloy of aluminum, but it is not limited to aluminum and may include, for example, such metals as Sn, Ti, In, Pb, Zn, Ni, Cu, Pt, Au or alloys of such metals that provide acceptable surface bond diffusion capabilities at acceptable temperatures and forming periods. The bonding material is not limited to metal, and could be a combination of bonding materials, such as highly conductive polysilicon, some of which are non-conducting such as silicon dioxide, and the foregoing exemplary types of bond material choices should not be considered to be limitations on how the circuit layers can be bonded.


In the case where metal bond materials form a native surface oxide that either inhibits the forming of a satisfactory bond or may increase the resistance in the vertical interconnections formed by the bond, the oxide should be removed. The bonding equipment provides an oxide reduction capability such that bonding surfaces of the bond material are rendered without native surface oxide. The methods of forming gas atmospheres for the reduction of surface oxides are well known, and there are other methods for removing the native oxide such as sputter etching, plasma etching or ion mill etching. In the case where aluminum is used as the bonding material, it is preferred that the thin native aluminum oxide film of approximately 40 Å on the bonding surfaces be removed prior to bonding.


The thinned (substantially flexible) substrate circuit layers of the 3DS memory circuit are typically memory array circuits, however, the thinned substrate circuit layers are not limited to memory circuits. Other circuit layer types can be controller circuits, non-volatile memory such as EEPROM, additional logic circuitry including microprocessor logic and application specific logic functions such as those that support graphic or database processing, etc. The selection of such circuit layer types follows from the functional requirements of the design of the circuit and is not limited by the 3DS memory fabrication process.


The thinned (substantially flexible) substrate circuit layers are preferably made with dielectrics in low stress (less than 5×108 dynes/cm2) such as low stress silicon dioxide and silicon nitride dielectrics as opposed to the more commonly used higher stress dielectrics of silicon oxide and silicon nitride used in conventional memory circuit fabrication. Such low stress dielectrics are discussed at length in U.S. Pat. No. 5,354,695 of the present inventor, incorporated herein by reference. The use of dielectrics with conventional stress levels could be used in the assembly of a 3DS DRAM circuit, however, if more than a few layers comprise the stacked assembly, each layer in the assembly will have to be stress balanced so that the net stress of the deposited films of a layer is less than 5×108 dynes/cm2. The use of intrinsically low stress deposited films is the preferred method of fabrication versus the use of the method where the stress of individually deposited films are not equal but are deposited to create a net balanced lower stress.


Method A, 3DS Memory Device Fabrication Sequence


This fabrication sequence assumes that several circuit layers will be bonded to a common or support substrate and subsequently thinned in place. An example of a resulting 3DS memory circuit is shown in FIG. 1a.


1. Align and bond to the common substrate the topside of a second circuit substrate.


2A. Grind the backside or exposed surface of the second circuit substrate to a thickness of less than 50 μm and then polish or smooth the surface. The thinned substrate is now a substantially flexible substrate.


Optionally an etch stop may be incorporated in the second substrate from less than a micron to several microns below the semiconductor surface prior to device fabrication. This etch stop can be an epitaxially formed film such as GeB (described in U.S. Pat. Nos. 5,354,695 and 5,323,035 of the present inventor, incorporated herein by reference) or a low density implanted layer of O2 or N2 to form a buried oxide or nitride barrier etch stop layer just below the device layer on the topside of the second substrate. After a preliminary grinding of a significant portion of the backside of the substrate, the remaining portion of the backside of the second substrate is then selectively etched in a chemical bath which stops on the surface of the eptiaxial or implanted layer. Subsequent polishing and RIE steps as necessary can then be used to complete the thinning of the second substrate.


Alternately, a parting layer such as H2 implanted into the topside surface of the second substrate prior to device fabrication can be used with a thermal step to crack off the majority of the backside of the second substrate, allowing its reuse.


2B. The second substrate may alternatively be a circuit formed of polysilicon transistors or TFTs over a parting layer such as aluminum, titanium, AlAs, KBr, etc. which can be activated by a specific chemical release agent. The backside of the second substrate is then removed upon activating (dissolving) the release layer and followed as needed by interconnect semiconductor processing steps.


3. Process the thinned backside of the second substrate to form vertical interconnections such as that shown in FIG. 4 with the bonded surface side of the second substrate. The backside processing typically comprises conventional semiconductor processing steps of dielectric and metal deposition, lithography and RIE, the order of which can vary to a great degree. The completion of the backside processing will also result in a patterned metal layer that is similar to the topside bond material pattern to facilitate the subsequent bonding of an additional circuit substrate, a terminal pattern such as a conventional I/O IC bond pad (wire bonding) pattern, a pattern for thermal diffusion bonding of the 3DS memory circuit to another die (either another 3DS circuit or a conventional die), or a pattern for insertion interconnection, conventional DCA (Direct Chip Attach) or FCA (Flip-Chip Attach).


Referring more particularly to FIG. 4, during the fabrication of active circuit devices, an oxide mask 401 is thermally grown or deposited. Vertical bus contacts 403 are then formed, for example from highly-doped polysilicon coincident with a polysilicon gate forming step. Alternatively, contact 403 may be formed of metal. Conventional DRAM interconnect structures 410 are then formed using conventional processing. The DRAM interconnect may include an internal pad 405. The “DRAM processed” portion 420 of the wafer includes various dielectric and metal layers. A final passivation layer 407 is deposited, after which vias 409 are formed. Conventional CMP processing is then used to obtain a planar surface 411. Contacts 413 and bond surfaces not shown are then patterned in a top-most metal layer (e.g, Metal-3).


After bonding and thinning of the backside of the second substrate to about 1-8 μm of silicon (or other semiconductor) substrate 415, feed-throughs 417 are then formed in registration with the contacts 403. A passivation layer 419 and contacts 421 are then formed. The contacts 421 may be formed so as to form a mirror image of the contacts 413, allowing for the bonding of further wafers.


4. If another circuit layer is to be bonded to the 3DS circuit stack, steps 1-3 are repeated.


5A. The circuits of the finished 3DS memory substrate are then conventionally sawed into die (singulated), resulting in a circuit of the type shown in FIG. 1a, and packaged as would be the case with conventional integrated circuits.


5B. The circuits of the finished 3DS memory substrate are then conventionally sawed and then individually aligned and thermal diffusion bonded (metal pattern down) to the surface of a second (conventional IC) die or MCM substrate in a manner similar to that used in the bonding of the circuit substrates of step 1 above. (The conventional die or MCM substrate may have a larger area than the 3DS memory substrate and may include a graphics controller, video controller or microprocessor, such that the 3DS becomes embedded as part of another circuit.) This final bonding step typically incorporates a fine-grain interconnect between the 3DS memory circuit and the die or MCM substrate, but could also use a conventional interconnect pattern. Further, a 3DS memory circuit can be bonded face up to a conventional IC in die form or MCM substrate and wire bonding used to form conventional I/O interconnections.


Method B, 3DS Memory Device Fabrication Sequence


This fabrication sequence assumes that a circuit substrate will first be bonded to a transfer substrate, thinned and then bonded to a common substrate as a layer of the circuit stack. The transfer substrate is then released. This method has the advantage over Method A of allowing substrates to be thinned prior to being bonded to the final circuit stack and allows for simultaneous thinning and vertical interconnect processing of substrate circuit layers.


1. Bond to a transfer substrate a second circuit substrate using a release or parting layer. A transfer substrate may have high tolerance parallel surfaces (TTV or Total Thickness Variance of less than 1 μm) and may be perforated with an array of small holes to assist the parting process. The parting layer can be a blanket deposition of a bonding metal. Precise alignment of the surfaces is not required.


2. Perform step 2A or 2B of Method A.


3. Process the backside of the second substrate to form interconnections with the bonded topside surface of the second substrate as shown in FIG. 4. The backside processing typically comprises conventional semiconductor processing steps of dielectric and metal deposition, lithography and RIE, the order of which can vary to great degree. The completion of the backside processing will also result in a patterned metal layer that is similar to the bond material pattern of the common substrate to facilitate the subsequent bonding of an additional circuit layer.


4. Bond the second circuit to a common or support substrate (3DS stack) and release the transfer substrate by activating the parting layer between it and the second circuit.


5. Process the now exposed topside of the second substrate to form interconnections for subsequent substrate bonding or a terminal pattern for conventional I/O bonding (wire bonding) pad pattern, a pattern for thermal diffusion bonding of the 3DS memory circuit to another die (either another 3DS circuit or a conventional die), or a pattern for conventional insertion interconnect, DCA (Direct Chip Attach) or FCA (Flip-Chip Attach). If another circuit layer is to be bonded to the 3DS circuit stack, steps 1 through 4 are repeated.


6. Perform step 5A or 5B of Method A.


3DS Memory Device Yield Enhancement Methods


The 3DS circuit may be considered a vertically assembled MCM (Multi-Chip Module) and as with an MCM the final yield is the product of the yield probabilities of each component circuit (layer) in the completed 3DS circuit. The 3DS circuit uses several yield enhancement methods that are synergistic in their combined usage within a single memory IC. The yield enhancement methods used in the 3DS memory circuit include small memory array block size, memory array block electrical isolation through physically unique or separate vertical bus interconnections, intra memory array block gate-line sparing, memory array layer sparing (inter-block gate-line sparing), controller sparing and ECC (Error Correcting Codes). The term sparing is used to mean substitution by a redundant element The selected size of the memory array block is the first component in the yield equation for the 3DS memory circuit. Each memory array block is individually (uniquely) accessed and powered by the controller circuit and is physically independent of each and every other memory array block including those on the same memory array layer in addition to those on a different memory array layer. The size of the memory array block is typically less than 5 mm2 and preferably less than 3 mm2, but is not limited to a specific size. The size of memory array block, the simplicity of its NMOS or PMOS fabrication process and its physical independence from each of the other memory array blocks, for nearly all production IC processes, provides a conservatively stated nominal yield of greater than 99.5%. This yield assumes that most point defects in the memory array block such as open or shorted interconnect lines or failed memory cells can be spared (replaced) from the intra-block or inter-block set of redundant gate-lines. Major defects in a memory array block which render the complete memory array block unusable result in the complete sparing of the block from a redundant memory array layer or the rejection of the 3DS circuit.


In the example of a 3DS DRAM circuit the yield of a stack of memory array blocks is calculated from the yield equation Ys=((1−(1−Py)2)n)b, where n is the number DRAM array layers, b is the number of blocks per DRAM array and Py is the effective yield (probability) of a DRAM array block less than 3 mm2 in area. Assuming a DRAM array block redundancy of 4% for gate-lines in the DRAM array block lines and one redundant DRAM array layer, and assuming further that the number of blocks per layer is 64, the number of memory array layers in the stack is 17 and the effective value for Py is 0.995, then the stack yield Ys for the complete memory array (including all memory array block stacks) is 97.47%.


The Ys memory array stack yield is then multiplied by the yield of the controller Yc. Assuming a die size of less than 50 mm2, a reasonable Yc for a controller fabricated from a 0.5 μm BiCMOS or mixed signal process would be between 65% and 85%, giving a net 3DS memory circuit yield of between 63.4% and 82.8%. If a redundant controller circuit layer is added to the 3DS memory stack, the yield probabilities would be between 85.7% and 95.2%.


The effective yield of a memory array block can be further increased by the optional use of ECC logic. ECC logic corrects data bit errors for some group size of data bits. The syndrome bits necessary for the operation of ECC logic would be stored on redundant gate-lines of any of the memory array layers in a vertically associated block stack. Further, if necessary, in order to accommodate the storage of ECC syndrome bits, additional memory array layers could be added to the circuit.


Advantageous 3DS Memory Device Controller Capabilities


As compared to a conventional memory circuit, the 3DS memory controller circuit can have various advantageous capabilities due the additional area available for controller circuitry and the availability of various mixed signal process fabrication technologies. Some of these capabilities are self-test of memory cells with dynamic gate-line address assignment, virtual address translation, programmable address windowing or mapping, ECC, data compression and multi-level storage.


Dynamic gate-line address assignment is the use of programmable gates to enable the layer and gate-line for a read/write operation. This allows the physical order of memory storage to be separate or different from the logical order of stored memory.


The testing of each generation of memory devices has resulted in significantly increased test costs. The 3DS memory controller reduces the cost of testing by incorporating sufficient control logic to perform an internal test (self-test) of the various memory array blocks. Circuit testing in the conventional ATE manner is required only for verification of controller circuit functions. The scope of the internal test is further extended to the programmable (dynamic) assignment of unique addresses corresponding to the various gate-lines of each memory array block on each layer. Self-test capability of the 3DS controller circuit can be used anytime during the life of the 3DS memory circuit as a diagnostic tool and as a means to increase circuit reliability by reconfiguring (sparing) the addresses of gate-lines that fail after the 3DS memory circuit is in use in a product.


ECC is a circuit capability that, if included in the controller circuit, can be enabled or disabled by a programming signal or made a dedicated function.


Data compression logic will allow the total amount of data that can be stored in the 3DS memory array to be increased. There are various generally known data compression methods available for this purpose.


Larger sense amps allow greater dynamic performance and enable higher speed read operations from the memory cells. Larger sense amps are expected to provide the capability to store more than one bit (multi-level storage) of information in each memory cell; this capability has already been demonstrated in nonvolatile memory circuits such as flash EPROM. Multi-level storage has also been proposed for use in the 4 Gbit DRAM generation circuits.


It will be appreciated by those of ordinary skill in the art that the invention can be embodied in other specific forms without departing from the spirit or essential character thereof. The presently disclosed embodiments are therefore considered in all respects to be illustrative and not restrictive. The scope of the invention is indicated by the appended claims rather than the foregoing description, and all changes which come within the meaning and range of equivalents thereof are intended to be embraced therein.

Claims
  • 1. A stacked integrated circuit comprising: a first thinned substantially flexible integrated circuit layer having a bottom-side surface;a second thinned substantially flexible integrated circuit layer having a top-side surface, wherein the first integrated circuit layer overlies the second integrated circuit layer such that the bottom-side surface overlies at least part of the top-side surface, and wherein at least one of the first and second thinned substantially flexible integrated circuit layers comprises a low stress dielectric layer; andan inter-layer stacked between the bottom-side surface of the first integrated circuit layer and the top-side surface of the second integrated circuit layer, wherein the inter-layer includes at least a first inter-layer portion and a second inter-layer portion that is electrically isolated from at least the first inter-layer portion, wherein each one of the first and second inter-layer portions forms a bond between the bottom-side surface of the first integrated circuit layer and the top-side surface of the second integrated circuit layer, and wherein only one of the first and second inter-layer portions forms at least one interconnection electrically coupling the first integrated circuit layer to the second integrated circuit layer for the transfer of information, wherein the at least one interconnection between the first and second integrated circuit layers is formed only on the bottom-side and top-side surfaces.
  • 2. The apparatus of claim 1, wherein at least one of the first integrated circuit layer and the second integrated circuit layer has a thickness of 50 microns or less.
  • 3. The apparatus of claim 1, wherein the at least one interconnection electrically coupling the first integrated circuit layer and second integrated circuit layer is a vertical interconnection.
  • 4. The apparatus of claim 1, wherein the first integrated circuit layer and the second integrated circuit layer comprise a single crystal semiconductor material or a polycrystalline semiconductor material.
  • 5. The apparatus of claim 1, wherein the first integrated circuit layer and the second integrated circuit layer comprise a logic integrated circuit or a memory integrated circuit.
  • 6. The apparatus of claim 5, wherein the logic integrated circuit is a microprocessor integrated circuit.
  • 7. The apparatus of claim 1, wherein the at least one interconnection connects circuitry on the first integrated circuit layer with circuitry on the second integrated circuit layer.
  • 8. The apparatus of claim 1, wherein the first integrated circuit layer and the second integrated circuit layer comprise logic integrated circuits.
  • 9. The apparatus of claim 1, further comprising: a third thinned substantially flexible substrate having circuitry thereon, wherein the second thinned substantially flexible substrate overlies the third thinned substantially flexible substrate; anda second plurality of interconnections electrically coupling the circuitry on the third thinned substantially flexible substrate with the circuitry on the second substantially flexible substrate.
  • 10. The apparatus of claim 1, wherein the low stress dielectric layer is at least one of a silicon dioxide dielectric, an oxide of silicon dielectric and caused to have stress of about 5×108 dynes/cm2 or less.
  • 11. The apparatus of claim 1, wherein at least one of the first and second integrated circuit layers comprises a substrate formed of a single crystal semiconductor.
  • 12. The apparatus of claim 1, wherein at least one of the following is true: (i) the first and second integrated circuit layers are bonded together by at least one thermal diffusion bond, and (ii) the first and second integrated circuit layers are bonded together by at least one metal thermal diffusion bond that is not an electrical coupling.
  • 13. The integrated circuit of claim 1, wherein the at least one of the first and second thinned substantially flexible integrated circuit layers that comprises a low stress dielectric layer further comprises an oxide layer adjacent to the low stress dielectric layer.
  • 14. The integrated circuit of claim 13, wherein the at least one of the first and second thinned substantially flexible integrated circuit layers that comprises a low stress dielectric layer further comprises a passivation layer and a substrate layer, wherein the passivation layer is adjacent to the low stress dielectric layer and nonadjacent to the substrate layer.
  • 15. The integrated circuit of claim 1, wherein the inter-layer comprises at least one patterned metal layer.
  • 16. The integrated circuit of claim 15, wherein the at least one patterned metal layer includes at least one isolation void between the first inter-layer portion and the second inter-layer portion.
  • 17. A stacked integrated circuit comprising: a first thinned substantially flexible substrate having circuitry and a bottom-side surface;a second thinned substantially flexible substrate having circuitry and a top-side surface, wherein the first thinned substantially flexible substrate overlies the second thinned substantially flexible substrate, such that the bottom-side surface overlies at least part of said top-side surface; andan inter-layer stacked between the bottom-side surface of the first thinned substantially flexible substrate and the top-side surface of the second thinned substantially flexible substrate, wherein the inter-layer includes at least a first inter-layer portion and a second inter-layer portion that is electrically isolated from at least the first inter-layer portion, wherein each one of the first and second inter-layer portions forms a bond between the bottom-side surface of the first thinned substantially flexible substrate and the top-side surface of the second thinned substantially flexible substrate, and wherein only one of the first and second inter-layer portions forms at least one interconnection electrically coupling the circuitry on the first substantially flexible substrate and the circuitry on the second substantially flexible substrate.
  • 18. The apparatus of claim 17, wherein the first thinned substantially flexible substrate has a thickness of 50 microns or less.
  • 19. The apparatus of claim 17, wherein the second thinned substantially flexible substrate has a thickness of 50 microns or less.
  • 20. The apparatus of claim 17, wherein the at least one interconnection is a vertical interconnection.
  • 21. The apparatus of claim 17, wherein the first and second thinned substantially flexible substrates comprise a single crystal semiconductor material or one of a polycrystalline semiconductor material.
  • 22. The apparatus of claim 17, wherein the circuitry of one of the first and second thinned substantially flexible substrates comprise logic circuitry or memory circuitry.
  • 23. The apparatus of claim 22, wherein the logic circuitry is a microprocessor integrated circuit.
  • 24. The apparatus of claim 17, wherein the first substrate is a non-semiconductor material.
  • 25. The apparatus of claim 17, wherein the circuitry of the first and second thinned substantially flexible substrates comprises logic circuitry.
  • 26. The apparatus of claim 17, further comprising: a third thinned substantially flexible substrate having circuitry thereon, wherein the second thinned substantially flexible substrate overlies the third thinned substantially flexible substrate; anda second plurality of interconnections electrically coupling the circuitry on the third thinned substantially flexible substrate with the circuitry on the first substantially flexible substrate.
  • 27. The apparatus of claim 17, wherein at least one of the first and second substrates is formed of a single crystal semiconductor.
  • 28. The apparatus of claim 17, wherein at least one of the following is true: (i) the first and second substrates are bonded together by at least one thermal diffusion bond, and (ii) the first and second substrates are bonded together by at least one thermal diffusion bond that is not an electrical coupling.
  • 29. The integrated circuit of claim 17, wherein at least one of the first and second thinned substantially flexible substrates comprises a low stress dielectric layer.
  • 30. The integrated circuit of claim 17, wherein the at least one interconnection is formed only on the bottom-side surface of the first thinned substantially flexible substrate and the top-side surface of the second thinned substantially flexible substrate.
  • 31. The apparatus of claim 29, wherein the low stress dielectric layer is at least one of a silicon dioxide dielectric, an oxide of silicon dielectric and caused to have stress of about 5×108 dynes/cm2 or less.
  • 32. The integrated circuit of claim 29, wherein the at least one of the first and second thinned substantially flexible substrates that comprises a low stress dielectric layer further comprises an oxide layer adjacent to the low stress dielectric layer.
  • 33. The integrated circuit of claim 32, wherein the at least one of the first and second thinned substantially flexible substrates that comprises a low stress dielectric layer further comprises a passivation layer and a substrate layer, wherein the passivation layer is adjacent to the low stress dielectric layer and nonadjacent to the substrate layer.
  • 34. The integrated circuit of claim 17, wherein the inter-layer comprises at least one patterned metal layer.
  • 35. The integrated circuit of claim 34, wherein the at least one patterned metal layer includes at least one isolation void between the first inter-layer portion and the second inter-layer portion.
  • 36. A stacked integrated circuit, comprising: a first thinned substantially flexible substrate having circuitry and a first facing surface;a second thinned substantially flexible substrate having circuitry and a second facing surface, wherein the first thinned substantially flexible substrate overlies the second thinned substantially flexible substrate, such that a region of the first facing surface overlies and faces the second facing surface; andan inter-layer between the region of the first facing surface and the second facing surface, wherein the inter-layer includes at least a first inter-layer portion and a second inter-layer portion, wherein each one of the first and second inter-layer portions forms a bond between the region of the first facing surface and the second facing surface, and wherein only one of the first and second inter-layer portions forms at least one conductive path between the circuitry of the first thinned substantially flexible substrate and the circuitry of the second thinned substantially flexible substrate.
  • 37. The apparatus of claim 36, wherein the first thinned substantially flexible substrate has a thickness of 50 microns or less.
  • 38. The apparatus of claim 36, wherein the second thinned substantially flexible substrate has a thickness of 50 microns or less.
  • 39. The apparatus of claim 36, wherein the first and second thinned substantially flexible substrates comprise a single crystal semiconductor material or a polycrystalline semiconductor material.
  • 40. The apparatus of claim 36, wherein the circuitry of one of the first and second thinned substantially flexible substrates is logic circuitry or memory circuitry.
  • 41. The apparatus of claim 40, wherein the logic circuitry is a microprocessor integrated circuit.
  • 42. The apparatus of claim 36, wherein the first substrate is a non-semiconductor material.
  • 43. The apparatus of claim 36, wherein the circuitry of the first and second thinned substantially flexible substrates is of logic circuitry.
  • 44. The apparatus of claim 36, wherein at least one of the first and second substrates is formed of a single crystal semiconductor.
  • 45. The apparatus of claim 36, wherein at least one of the following is true: (i) the first and second substrates are bonded together by at least one thermal diffusion bond, and (ii) the first and second substrates are bonded together by at least one thermal diffusion bond that is not an electrical coupling.
  • 46. The integrated circuit of claim 36, wherein at least one of the first and second thinned substantially flexible substrates comprises a low stress dielectric layer.
  • 47. The apparatus of claim 46, wherein the low stress dielectric layer is at least one of a silicon dioxide dielectric, an oxide of silicon dielectric and caused to have stress of about 5×108 dynes/cm2 or less.
  • 48. The integrated circuit of claim 46, wherein the at least one of the first and second thinned substantially flexible substrates that comprises a low stress dielectric layer further comprises an oxide layer adjacent to the low stress dielectric layer.
  • 49. The integrated circuit of claim 48, wherein the at least one of the first and second thinned substantially flexible substrates that comprises a low stress dielectric layer further comprises a passivation layer and a substrate layer, wherein the passivation layer is adjacent to the low stress dielectric layer and nonadjacent to the substrate layer.
  • 50. The integrated circuit of claim 36, wherein the inter-layer comprises at least one patterned metal layer.
  • 51. The integrated circuit of claim 36, wherein the second inter-layer portion is electrically isolated from at least the first inter-layer portion.
  • 52. The integrated circuit of claim 50, wherein the at least one patterned metal layer includes at least one isolation void between the first inter-layer portion and the second inter-layer portion.
  • 53. A stacked integrated circuit, comprising: a first substrate having circuitry formed thereon and a first facing surface;a second substrate having circuitry thereon and a second facing surface, wherein the second substrate overlies the first substrate, such that a region of the second facing surface overlies and faces a region of the first facing surface; andan inter-layer between the region of the first facing surface and the region of the second facing surface, wherein the inter-layer includes at least a first inter-layer portion and a second inter-layer portion, wherein each one of the first and second inter-layer portions forms a bond between the region of the first facing surface and the region of the second facing surface, and wherein only one of the first and second inter-layer portions forms at least one conductive path between the circuitry of the first substrate and the circuitry of the second substrate.
  • 54. The apparatus of claim 53, wherein the second substrate has a thickness of 50 microns or less.
  • 55. The apparatus of claim 53, wherein the first substrate and second substrate comprise a single crystal semiconductor material or a polycrystalline semiconductor material.
  • 56. The apparatus of claim 53, wherein the circuitry of one of the first substrate and second substrate is logic circuitry or memory circuitry.
  • 57. The apparatus of claim 56, wherein the logic circuitry is a microprocessor integrated circuit.
  • 58. The apparatus of claim 53, wherein the circuitry of the first substrate and second substrate is of logic circuitry.
  • 59. The apparatus of claim 58, wherein the logic circuitry is a microprocessor integrated circuit.
  • 60. The apparatus of claim 53, wherein at least one of the first and second substrates is formed of a single crystal semiconductor.
  • 61. The apparatus of claim 53, wherein at least one of the following is true: (i) the first and second substrates are bonded together by at least one thermal diffusion bond, and (ii) the first and second substrates are bonded together by at least one thermal diffusion bond that is not an electrical coupling.
  • 62. The integrated circuit of claim 53, wherein at least one of the first and second substrates comprises a low stress dielectric layer.
  • 63. The apparatus of claim 62, wherein the low stress dielectric layer is at least one of a silicon dioxide dielectric, an oxide of silicon dielectric and caused to have stress of about 5×108 dynes/cm2 or less.
  • 64. The integrated circuit of claim 62, wherein the at least one of the first and second substrates that comprises a low stress dielectric layer further comprises an oxide layer adjacent to the low stress dielectric layer.
  • 65. The integrated circuit of claim 64, wherein the at least one of the first and second substrates that comprises a low stress dielectric layer further comprises a passivation layer and a substrate layer, wherein the passivation layer is adjacent to the low stress dielectric layer and nonadjacent to the substrate layer.
  • 66. The integrated circuit of claim 53, wherein the inter-layer comprises at least one patterned metal layer.
  • 67. The integrated circuit of claim 53, wherein the second inter-layer portion is electrically isolated from at least the first inter-layer portion.
  • 68. The integrated circuit of claim 66, wherein the at least one patterned metal layer includes at least one isolation void between the first inter-layer portion and the second inter-layer portion.
Parent Case Info

This is a division of patent application Ser. No. 09/776,885, filed on Feb. 6, 2001 now U.S. Pat. No. 6,551,857; which is a continuation of application Ser. No. 09/607,363, filed on Jun. 30, 2000 now U.S. Pat. No. 6,632,706; which is a continuation of application Ser. No. 08/971,565, filed on Nov. 17, 1997 (now U.S. Pat. No. 6,133,640); and which is a division of application Ser. No. 08/835,190, filed on Apr. 4, 1997 (now U.S. Pat. No. 5,915,167), all of which are incorporated herein by reference.

US Referenced Citations (232)
Number Name Date Kind
2915722 Foster Dec 1959 A
3202948 Farrand Aug 1965 A
3430835 Patzer et al. Mar 1969 A
3559282 Lesk Feb 1971 A
3560364 Burkhardt Feb 1971 A
3602982 Emmasingel Sep 1971 A
3615901 Medicus Oct 1971 A
3636358 Groschwitz Jan 1972 A
3716429 Napoli et al. Feb 1973 A
3777227 Krishna et al. Dec 1973 A
3868565 Kuipers Feb 1975 A
3922705 Yerman Nov 1975 A
3932932 Goodman Jan 1976 A
3997381 Wanlass Dec 1976 A
4028547 Eisenberger Jun 1977 A
4070230 Stein Jan 1978 A
4131985 Greenwood et al. Jan 1979 A
4142004 Hauser, Jr. et al. Feb 1979 A
4196232 Schnable et al. Apr 1980 A
4251909 Hoeberechts Feb 1981 A
4262631 Kubacki Apr 1981 A
4393127 Greschner et al. Jul 1983 A
4394401 Shioya et al. Jul 1983 A
4401986 Trenkler et al. Aug 1983 A
4416054 Thomas et al. Nov 1983 A
4500905 Shibata Feb 1985 A
4528072 Kurosawa et al. Jul 1985 A
4539068 Takagi et al. Sep 1985 A
4566037 Takatsu et al. Jan 1986 A
4585991 Reid et al. Apr 1986 A
4604162 Sobczak Aug 1986 A
4612083 Yasumoto et al. Sep 1986 A
4617160 Belanger et al. Oct 1986 A
4618397 Shimizu et al. Oct 1986 A
4618763 Schmitz Oct 1986 A
4622632 Tanimoto et al. Nov 1986 A
4663559 Christensen May 1987 A
4684436 Burns et al. Aug 1987 A
4693770 Hatada Sep 1987 A
4702336 Seibert et al. Oct 1987 A
4702936 Maeda et al. Oct 1987 A
4706166 Go Nov 1987 A
4721938 Stevenson Jan 1988 A
4724328 Lischke Feb 1988 A
4761681 Reid Aug 1988 A
4784721 Holmen et al. Nov 1988 A
4810673 Freeman Mar 1989 A
4810889 Yokomatsu et al. Mar 1989 A
4825277 Mattox et al. Apr 1989 A
4835765 Bergmans et al. May 1989 A
4849857 Butt et al. Jul 1989 A
4857481 Tam et al. Aug 1989 A
4892753 Wang et al. Jan 1990 A
4897708 Clements Jan 1990 A
4919749 Mauger et al. Apr 1990 A
4924589 Leedy May 1990 A
4928058 Williamson May 1990 A
4934799 Chu Jun 1990 A
4939568 Kato et al. Jul 1990 A
4940916 Borel et al. Jul 1990 A
4950987 Vranish et al. Aug 1990 A
4952446 Lee et al. Aug 1990 A
4954865 Rokos Sep 1990 A
4954875 Clements Sep 1990 A
4957882 Shinomiya Sep 1990 A
4965415 Young et al. Oct 1990 A
4966663 Mauger Oct 1990 A
4983251 Haisma et al. Jan 1991 A
4990462 Sliwa Feb 1991 A
4994336 Benecke et al. Feb 1991 A
4994735 Leedy Feb 1991 A
5000113 Wang et al. Mar 1991 A
5008619 Keogh et al. Apr 1991 A
5010024 Allen et al. Apr 1991 A
5020219 Leedy Jun 1991 A
5034685 Leedy Jul 1991 A
5051326 Celler et al. Sep 1991 A
5062689 Koehler Nov 1991 A
5070026 Greenwald et al. Dec 1991 A
5071510 Findler et al. Dec 1991 A
5098865 Machado et al. Mar 1992 A
5103557 Leedy Apr 1992 A
5110373 Mauger May 1992 A
5110712 Kessler et al. May 1992 A
5111278 Eichelberger May 1992 A
5116777 Chan et al. May 1992 A
5117282 Salatino May 1992 A
5119164 Sliwa et al. Jun 1992 A
5130894 Miller Jul 1992 A
5132244 Roy Jul 1992 A
5144142 Fueki et al. Sep 1992 A
5151775 Hadwin Sep 1992 A
5156909 Henager, Jr. et al. Oct 1992 A
5166962 Murooka et al. Nov 1992 A
5169805 Mok et al. Dec 1992 A
5188706 Hori et al. Feb 1993 A
5203731 Zimmerman Apr 1993 A
5225771 Leedy Jul 1993 A
5236118 Bower et al. Aug 1993 A
5240458 Linglain et al. Aug 1993 A
5245277 Nguyen Sep 1993 A
5259247 Bantien Nov 1993 A
5262341 Fueki et al. Nov 1993 A
5262351 Bureau et al. Nov 1993 A
5270261 Bertin et al. Dec 1993 A
5273940 Sanders Dec 1993 A
5274270 Tuckerman Dec 1993 A
5279865 Chebi et al. Jan 1994 A
5283107 Bayer et al. Feb 1994 A
5284796 Nakanishi et al. Feb 1994 A
5284804 Moslehi Feb 1994 A
5293457 Arima et al. Mar 1994 A
5323035 Leedy Jun 1994 A
5324687 Wojnarowski Jun 1994 A
5354695 Leedy Oct 1994 A
5358909 Hashiguchi et al. Oct 1994 A
5363021 MacDonald Nov 1994 A
5385632 Goossen Jan 1995 A
5385909 Nelson et al. Jan 1995 A
5399505 Dasse et al. Mar 1995 A
RE34893 Fujii et al. Apr 1995 E
5420458 Shimoji May 1995 A
5424920 Miyake Jun 1995 A
5426072 Finnila Jun 1995 A
5426363 Akagi et al. Jun 1995 A
5432444 Yasohama et al. Jul 1995 A
5432729 Carson et al. Jul 1995 A
5432999 Capps et al. Jul 1995 A
5434500 Hauck et al. Jul 1995 A
5450603 Davies Sep 1995 A
5451489 Leedy Sep 1995 A
5453404 Leedy Sep 1995 A
5457879 Gurtler et al. Oct 1995 A
5470693 Sachdev et al. Nov 1995 A
5480842 Clifton et al. Jan 1996 A
5481133 Hsu Jan 1996 A
5489554 Gates Feb 1996 A
5502667 Bertin et al. Mar 1996 A
5512397 Leedy Apr 1996 A
5514628 Enomoto et al. May 1996 A
5517457 Sakui et al. May 1996 A
5527645 Pati et al. Jun 1996 A
5529829 Koskenmaki et al. Jun 1996 A
5534465 Frye et al. Jul 1996 A
5555212 Toshiaki et al. Sep 1996 A
5563084 Ramm et al. Oct 1996 A
5571741 Leedy Nov 1996 A
5572689 Gallup et al. Nov 1996 A
5577050 Bair et al. Nov 1996 A
5580687 Leedy Dec 1996 A
5581498 Ludwig et al. Dec 1996 A
5582939 Pierrat Dec 1996 A
5583688 Hornbeck Dec 1996 A
5592007 Leedy Jan 1997 A
5592018 Leedy Jan 1997 A
5595933 Heijboer Jan 1997 A
5606186 Noda Feb 1997 A
5615163 Sakui et al. Mar 1997 A
5620915 Chen et al. Apr 1997 A
5627112 Tennant et al. May 1997 A
5629137 Leedy May 1997 A
5633209 Leedy May 1997 A
5637536 Val Jun 1997 A
5637907 Leedy Jun 1997 A
5654127 Leedy Aug 1997 A
5654220 Leedy Aug 1997 A
5656552 Hudak et al. Aug 1997 A
5675185 Chen et al. Oct 1997 A
5694588 Ohara et al. Dec 1997 A
5725995 Leedy Mar 1998 A
5733814 Flesher et al. Mar 1998 A
5745673 Di Zenzo et al. Apr 1998 A
5750211 Weise et al. May 1998 A
5753536 Sugiyama et al. May 1998 A
5760478 Bozso et al. Jun 1998 A
5773152 Okonogi Jun 1998 A
5786116 Rolfson Jul 1998 A
5786629 Faris Jul 1998 A
5787445 Daberko Jul 1998 A
5793115 Zavracky et al. Aug 1998 A
5818748 Bertin et al. Oct 1998 A
5831280 Ray Nov 1998 A
5834334 Leedy Nov 1998 A
5840593 Leedy Nov 1998 A
5856695 Ito et al. Jan 1999 A
5868949 Sotokawa et al. Feb 1999 A
5869354 Leedy Feb 1999 A
5870176 Sweatt et al. Feb 1999 A
5880010 Davidson Mar 1999 A
5882532 Field et al. Mar 1999 A
5902118 Hübner May 1999 A
5915167 Leedy Jun 1999 A
5946559 Leedy Aug 1999 A
5985693 Leedy Nov 1999 A
5998069 Cutter Dec 1999 A
6008126 Leedy Dec 1999 A
6017658 Rhee et al. Jan 2000 A
6020257 Leedy Feb 2000 A
RE36623 Wang et al. Mar 2000 E
6045625 Houston Apr 2000 A
6084284 Adamic, Jr. Jul 2000 A
6087284 Brix et al. Jul 2000 A
6092174 Roussakov Jul 2000 A
6097096 Gardner et al. Aug 2000 A
6133640 Leedy Oct 2000 A
6154809 Ikenaga et al. Nov 2000 A
6194245 Tayanaka Feb 2001 B1
6197456 Aleshin et al. Mar 2001 B1
6208545 Leedy Mar 2001 B1
6230233 Lofgren et al. May 2001 B1
6236602 Patti May 2001 B1
6261728 Lin Jul 2001 B1
6288561 Leedy Sep 2001 B1
6294909 Leedy Sep 2001 B1
6300935 Sobel et al. Oct 2001 B1
6301653 Mohamed et al. Oct 2001 B1
6320593 Sobel et al. Nov 2001 B1
6355976 Faris Mar 2002 B1
RE37637 Clifton et al. Apr 2002 E
6445006 Brandes et al. Sep 2002 B1
6518073 Momohara Feb 2003 B2
6563224 Leedy May 2003 B2
6682981 Leedy Jan 2004 B2
6713327 Leedy Mar 2004 B2
6714625 Leedy Mar 2004 B1
6765279 Leedy Jul 2004 B2
6838896 Leedy Jan 2005 B2
6891387 Leedy May 2005 B2
6894392 Gudesen et al. May 2005 B1
20030218182 Leedy Nov 2003 A1
20030223535 Leedy Dec 2003 A1
20050023656 Leedy Feb 2005 A1
Foreign Referenced Citations (55)
Number Date Country
32 33 195 Mar 1983 DE
3233195 Mar 1983 DE
0 189 976 Aug 1986 EP
0 201 380 Dec 1986 EP
0 224 418 Jun 1987 EP
0238089 Sep 1987 EP
0 314 437 May 1989 EP
0 419 898 Apr 1991 EP
0 455 455 Nov 1991 EP
0 487 302 May 1992 EP
0 503 816 Sep 1992 EP
0 518 283 Dec 1992 EP
0 518 774 Dec 1992 EP
0 526 551 Feb 1993 EP
0 554 063 Aug 1993 EP
0 555 252 Aug 1993 EP
0703618 Mar 1996 EP
0703619 Mar 1996 EP
0731525 Sep 1996 EP
2641129 Jun 1990 FR
2125168 Feb 1984 GB
2215168 Sep 1989 GB
60-74643 Apr 1985 JP
S60-126871 Jul 1985 JP
61-30059 Feb 1986 JP
62-272556 Nov 1987 JP
S63-076484 Apr 1988 JP
H01-199476 Sep 1988 JP
S63-229862 Sep 1988 JP
01-157561 Jun 1989 JP
402027600 Jan 1990 JP
02-037655 Feb 1990 JP
02-082564 Mar 1990 JP
03-127816 May 1991 JP
03-174715 Jul 1991 JP
H03-284871 Dec 1991 JP
04-042957 Feb 1992 JP
04-076946 Mar 1992 JP
04-083371 Mar 1992 JP
04107964 Apr 1992 JP
04196263 Jul 1992 JP
05-109977 Apr 1993 JP
05-283607 Oct 1993 JP
08-504060 Apr 1996 JP
09-152979 Jun 1997 JP
10-107065 Apr 1998 JP
10-209371 Aug 1998 JP
WO 89 10255 Nov 1989 WO
WO 90 09093 Aug 1990 WO
WO9105366 Apr 1991 WO
WO 9203848 Mar 1992 WO
WO 92 17901 Oct 1992 WO
WO 9819337 May 1998 WO
WO0105366 Jan 2001 WO
WO 03078305 Sep 2003 WO
Related Publications (1)
Number Date Country
20030057564 A1 Mar 2003 US
Divisions (2)
Number Date Country
Parent 09776885 Feb 2001 US
Child 10222816 US
Parent 08835190 Apr 1997 US
Child 08971565 US
Continuations (2)
Number Date Country
Parent 09607363 Jun 2000 US
Child 09776885 US
Parent 08971565 Nov 1997 US
Child 09607363 US