This invention belongs to the field of building construction, and relates to a pick and place machine to build a building from bricks or blocks.
The following discussion of the background art is intended to facilitate an understanding of the present invention only. It should be appreciated that the discussion is not an acknowledgement or admission that any of the material referred to was part of the common general knowledge as at the priority date of the application.
The inventor previously described a brick laying machine in U.S. Pat. No. 8,166,727. In practice, as described, this required a large road-going machine to implement.
An early prototype brick laying machine, based on that described in U.S. Pat. No. 8,166,727, and built by the inventor, used a chain conveyor with brick holding clamps attached to the chain. This chain moved from the base of the machine, out along a boom, to the laying head system. There was a small chain take up mechanism to take up variations in chain length due to changes in boom geometry. The take up mechanism also allowed some independence between the brick preparation and the laying, however the relatively short length of the take up mechanism meant that the brick preparation and the laying head needed to be synchronised at least some of the time. This meant that the slowest process limited the progress of bricks through the chain. Depending on the process of the current bricks being laid, either the brick preparation or the laying head could be the slowest process.
The chain followed a relatively complex path around the boom and telescopic stick so that as the telescopic stick was extended, the total chain length remained the same. The chain had brick griping clamps attached to it, so as it wrapped back and forth, it took up considerable space. If the telescopic stick had many stages, the amount of space taken up by the chain and grippers would greatly increase, making the boom and stick assembly larger than is desirable for road transport.
A brick conveyor using flat belts was investigated by the inventor. This required a substantially level orientation of the boom and telescopic stick and would require other means of moving the bricks vertically to accommodate for the change in laying height as the structure is built course by course. It was also determined that some cut bricks could be quite short compared to their height and would be unstable if transported on a flat belt conveyor. In the case of a telescopic stick and boom, dealing with excess belt length would encounter the same problems as the chain conveyor.
It is therefore an object of this invention to provide a brick laying machine that could be incorporated into a road-going vehicle, and would overcome at least some of the aforementioned problems, while maintaining the utility of the inventor's previously described machines.
Throughout the specification unless the context requires otherwise, the word “comprise” or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.
In this specification the word “brick” is intended to encompass any building element such as a brick or block, to be placed during the construction of a building or wall or the like.
In accordance with the invention, there is provided a brick laying machine incorporated in a vehicle, said machine having a foldable boom, foldable about at least one folding axis, said foldable boom being locatable in a folded stowed position longitudinally along said vehicle, and moveable to unfolded extended positions away from said vehicle; said boom having a near end arranged for pivotal movement about a first horizontal axis located on a turret, said turret being rotatable about a vertical axis; said foldable boom having first conveying apparatus to convey bricks therealong, to a brick laying and adhesive applying head located at a remote end of the foldable boom; and having fluid conveying apparatus to convey adhesive therealong, to an adhesive applicator located in said brick laying and adhesive applying head; said machine having a carousel extending at least partially around said turret near the base thereof, said turret having second conveying apparatus to convey bricks vertically from said carousel to said first conveying apparatus, said carousel being rotatable about a vertical axis to present a brick for access by said second conveying apparatus; said machine having at least one brick machining tool located beside said stowed position and having a loading bay to receive packs of bricks; said machine having programmable brick handling apparatus to convey bricks one by one from said loading bay to said carousel, optionally via said at least one brick machining tool, as pre-programmed.
Preferably said first conveying apparatus comprises at least one shuttle equipped with a clamp to releasably hold a brick, said shuttle running along a track extending along said boom.
Preferably said foldable boom comprises a first boom element and a second boom element pivotable about a said folding axis spaced from said first horizontal axis, and parallel therewith.
Preferably each boom element has a said track and at least one said shuttle.
Preferably at least one of said first boom element and said second boom element, has further elements arranged in telescoping interconnection.
Preferably both said first boom element and said second boom element have further elements arranged in telescoping interconnection.
Preferably said elements are tubular, preferably rectangular or square in cross-section.
Preferably each element has a said track and one said shuttle arranged to run along said track, between opposed ends of each said element.
Preferably said tracks are arranged located internally inside said elements, and said shuttles run inside their respective elements.
Preferably said track runs along one side of a said boom element, and runs along an opposite side of an immediately interconnecting said boom element, so that the shuttle located in the tracks of both boom elements can locate opposite each other in order to effect transfer of a brick from the clamp of one shuttle to the clamp of the other shuttle.
Preferably a said track runs along one side of a said boom element, and runs along the same side of an adjacent said boom element connected about a said folding axis, and a pivoting shuttle equipped with a clamp to hold a brick is provided, pivoting about said folding axis, to transfer a brick between shuttles in boom elements connected about said folding axis.
Preferably said tracks in the aforementioned arrangement run along the lengths of the boom elements on the side opposite to the side where the folding axis is located.
Preferably the distal telescoping element of said first boom element is smaller in cross sectional dimensions than the interconnected element of said second boom element connected about said folding axis, and said distal telescoping element is offset relative to said folding axis, to substantially centrally align the pathway through said elements at the folding axis, when the elements are interconnected about said folding axis substantially in a straight line.
Preferably, in the shuttle in the interconnected element of said second boom element connected about said folding axis, the clamp there of includes a deviation in its arms to provide clearance for the intruding part of the distal telescoping element of said first boom element, when the elements are interconnected about said folding axis substantially in a straight line.
Alternatively, the distal telescoping element of said first boom element is different in cross sectional dimensions from the interconnected element of said second boom element connected about said folding axis, and the smaller of the elements is offset relative to said folding axis, to substantially centrally align the pathway through said elements at the folding axis, when the elements are interconnected about said folding axis substantially in a straight line. Preferably, in the shuttles in the boom elements connected about said folding axis, the clamp of the shuttle contained in the boom element having a greater cross-sectional size includes a deviation in its arms to provide clearance for the intruding part of the boom element with the lesser cross-sectional size, when the boom elements are interconnected about said folding axis substantially in a straight line.
Preferably said track runs along one side of one element, and runs along an opposite side of an immediate interconnecting telescoping element, so that the shuttles located in the tracks of both elements can locate opposite each other in order to effect transfer of a brick from the clamp of one shuttle to the clamp of the other shuttle.
Preferably the internal interconnecting telescoping elements have a void at their near ends opposite said track therein to allow their shuttles to access shuttles of outer tubular elements to enable the clamps thereof to transfer a brick there-between.
It will be understood that where there are three or more telescoping elements, the track of the first third and fifth elements will be located on one side of these elements, while the tracks of the second and fourth elements will be located on the opposite side. The shuttles will run along the length of the elements, at least as far as they have been telescopingly extended, passing a brick from one said element to the next, and so on, to effect transfer of the brick along the extent of the telescoping part of the folding boom.
At the folding axis of the two boom elements, the folding axis extends horizontally on the underside of the boom elements, and a pivoting shuttle pivots about the same folding axis. The tracks run along the top of the boom elements that are connected about the folding axis, with the clamps of the shuttles extending down away from the tracks. The clamp on the pivoting shuttle extends upward away from the folding axis. The tracks of the boom elements that are connected about the folding axis overlap in the same manner, so that a shuttle arrives at the folding junction with a brick, the pivoting shuttle clamps the brick before the shuttle moves away, the pivoting shuttle pivots as necessary to align with the next boom element and presents the brick to the shuttle in the next boom element, to effect transfer of the brick between the shuttles of the elements at the folding intersection.
Preferably the second conveying apparatus comprises a turret track extending vertically along said turret, said turret track having a shuttle with a turret shuttle clamp to clamp a brick, the shuttle conveying the brick from the carousel to the shuttle in the near end of the foldable boom.
Preferably the turret supports a brick rotating mechanism having a clamp to clamp a brick presented by said turret shuttle clamp, said brick rotating mechanism being provided to rotate a brick so that its longitudinal extent aligns with the longitudinal extent of said first boom element, for presentation to a said at least one shuttle.
Preferably the brick rotating mechanism has a clamp to clamp a brick, and is mounted about said first horizontal axis.
Preferably the carousel has a carousel clamp to clamp a brick received from the programmable brick handling apparatus. In use, the carousel is rotated to align its clamp with the clamp of the shuttle on the turret track, so the brick can be transferred from the carousel clamp to the turret shuttle clamp, before the turret shuttle transfers the brick along the turret track to reach the first shuttle of the foldable boom. Preferably the carousel clamp can pivot from a first position in which it receives a brick from the programmable brick handling apparatus to a second position in which it presents the brick to the turret shuttle clamp.
Preferably said turret, said carousel and said stowed position are located along a central longitudinal axis of said vehicle.
Preferably said at least one brick machining tool comprises a first brick machining tool including a saw located to one side of the stowed position, and a second brick machining tool including a router located to the other side of the stowed position.
Preferably said first brick machining tool includes a clamp located to clamp a brick on a side of a saw cutting blade position.
Preferably said first brick machining tool includes a clamp configured to clamp a brick on each side of a saw cutting blade position. In this manner the brick and the waste portion thereof are secured to prevent damage during the cutting action, and the cut brick and saw blade can be separated before the clamp releases the cut brick portions.
Preferably said first brick machining tool is contained in an enclosure with a cover providing access for placement and removal of a brick by said programmable brick handling apparatus.
Preferably said second brick machining tool is contained in an enclosure with a cover providing access for placement and removal of a brick by said programmable brick handling apparatus.
Preferably the second brick machining tool includes a clamp to clamp a brick, and an orientation assembly to orient the clamped brick in space to present to the router, to route slots and notches in bricks in order to chase cabling, or to mill bricks to a predetermined required height.
Preferably the router in the second brick machining tool is mounted on a tri-axis motion assembly for moving the router in any combination of movement in three dimensions. This is preferably in the x and y axes across the brick, and in the z axis into the brick.
Preferably the second brick machining tool includes a tool storage magazine spaced away from the clamp and orientation assembly and accessible by said router at a predetermined position of said tri-axis motion assembly, to access or store a routing bit or milling bit. The tool storage magazine may store a number of different bits to allow different cuts to be made by the router.
Preferably said brick laying and adhesive applying head is pivotally mounted for controlled rotation to the remote end of the foldable boom about a second horizontal axis located on a clevis, said brick laying and adhesive applying head having associated therewith a pivotable clamp to receive and clamp a brick presented by said first conveying apparatus, said pivotable clamp being pivotally mounted about said second horizontal axis; said brick laying and adhesive applying head supporting said adhesive applicator to apply adhesive to a brick presented by said pivotable clamp; said brick laying and adhesive applying head having a brick laying head mounted thereto by a mount located in a position away from said clevis, said brick laying head having a brick laying clamp moveable between a position to receive and clamp a brick held by said pivotable clamp, to a position in which said brick is released and laid.
Preferably said brick laying and adhesive applying head is pivotally mounted for controlled rotation to the remote end of the foldable boom about a second horizontal axis located on a clevis, said brick laying and adhesive applying head having associated therewith a pivotable clamp to receive and clamp a brick presented by said first conveying apparatus, said pivotable clamp being pivotally mounted about said second horizontal axis; said brick laying and adhesive applying head supporting said adhesive applicator on a distal end of a tongue member, said tongue member being housed in a sheath for linear movement to extend said adhesive applicator across a brick presented by said pivotable clamp, and retract said tongue within said sheath to withdraw said adhesive applicator away from said pivotable clamp; said brick laying and adhesive applying head having a brick laying head mounted thereto by a mount located in a position away from said clevis, said brick laying head having a brick laying clamp moveable between a position to receive and clamp a brick held by said pivotable clamp, to a position in which said brick is released and laid; said sheath extending away from said second horizontal axis, and substantially along said clevis toward said mount, to provide clearance between said sheath and said brick laying head in order to allow operation without interference.
Preferably, said tongue is rigid when extended obliquely or horizontally and freely deflectable in only one dimension upwardly about horizontal axes away from said second horizontal axis only (i.e. freely deflectable upwardly but not from side to side, much in the same way as a human finger is moveable, palm facing up). This restriction in movement allows controlled application of adhesive to a surface, which typically will be disposed horizontally. Particularly it allows the adhesive applicator head to be moved linearly relative to the surface, in a controlled manner.
Preferably said sheath has a tip which is, in use located horizontally, so that said tongue extends horizontally from the tip of said sheath.
Preferably said sheath curves upwardly to extend between said mount and said second horizontal axis, and the tongue being freely deflectable about horizontal axes allows the tongue to move within said sheath.
Preferably said tongue is configured as a chain-link-type actuator, said chain-link-type actuator being linearly moveable by a driven sprocket to selectively extend and retract said tongue from said tip of said sheath.
Preferably said chain link type actuator comprises a chain having body portions attached to one side, said body portions having ends that contact ends of adjacent body portions preventing said chain folding about said horizontal axes in one direction away from a horizontal alignment of said chain.
Preferably said tongue comprises a plurality of body portions, each body portion having on a top surface at least one pivot mount with a transverse aperture extending horizontally there-through to provide a connection point for a chain link to an adjacent said pivot mount of an adjacent said body portion, each said body portion having opposed ends that contact ends of adjacent body portions, said tongue being foldable in one direction only about said transverse apertures, the opposed ends of adjacent body portions coming into contact preventing said tongue folding about said connection points in the opposite direction.
Preferably each said body portion has a channel extending longitudinally there-through, for routing services such as wiring and tubing for the transport of adhesive to said adhesive applicator. The channel may be an inverted u-channel with the pivot mounts being located on top of the web.
Preferably the channel is closed, to fully enclose said services extending longitudinally through said tongue.
Preferably there are two said pivot mounts located on top of each said body portion, one said pivot mount located near each opposed end of said body portion.
Preferably on each body portion, said pivot mounts are spaced apart from each other by the same longitudinal distance as the sum of the longitudinal distances from each to the closest end of said body portion. In this manner, the pivot mounts can form teeth of a cog on top of the assembled tongue, to be engaged by a driven sprocket to selectively extend and retract said tongue from said tip of said sheath.
Preferably the angle of the faces forming the ends of each said body portion relative to the longitudinal extent of the body portion add up to 180 degrees. Most preferably the face forming each end of each said body portion is at right angles relative to the longitudinal extent of the body portion. With either arrangement, the tongue can extend outward and be self supporting, and bendable upward only, about the chain links that interconnect them.
Preferably the pivotable clamp is mounted for rotation on the distal end of said second boom element.
Preferably said pivotable clamp is mounted on a linear sliding mount that has travel extending in a direction linearly through said second horizontal axis and normal thereto.
Preferably the brick laying head includes a robotic arm assembly with said brick laying clamp to grip and lay a brick.
Preferably the brick laying head includes a spherical geometry robot with said brick laying clamp to grip and lay a brick.
Preferably said brick laying head includes a linearly extendable arm depending downward, attached about a mount roll-axis to said mount, said mount roll-axis allowing controlled roll motion in said arm relative to said mount, said brick laying clamp being mounted for controlled motion to the end of said linearly extendible arm about a universal joint allowing controlled pitch motion and controlled roll motion in said brick laying clamp relative to said arm, and said brick laying clamp is mounted to said universal joint on a rotatable mount for controlled rotation about a yaw axis.
The mount roll-axis will normally be longitudinal relative to the extent of the boom that the brick laying and adhesive applying head is attached to, and disposed horizontally in normal operation, as controlled by a ram or the like that controls the pose of the brick laying and adhesive applying head relative to the remote end of the foldable boom.
Preferably said mount includes a mount pitch-axis allowing controlled pitch motion of said arm relative to said mount. The mount pitch-axis runs transverse to the longitudinal extent of the linearly extendable arm.
Preferably said universal joint has a first wrist-axis pivotable transverse to the longitudinal extent of said arm and a second wrist-axis disposed normal to said first wrist-axis, both wrist-axes being normal to said yaw axis.
Preferably said linearly extending arm includes a linear guide which connects with said mount for controlled linear movement to extend and retract said arm in order to move said brick laying clamp toward or away from said mount.
Preferably the brick laying clamp includes jaws that are independently moveable to clamp and unclamp a brick, and also selectively moveable in unison to offset the position of the jaws relative to the brick laying clamp. This allows the brick laying clamp to access a position to lay a brick, that may be up against an existing wall lying alongside one of the jaws of the brick laying clamp.
Preferably said brick laying machine includes a tracker component mounted to said brick laying and adhesive applying head, wherein said brick laying and adhesive applying head has said robotic arm assembly with said brick laying clamp to grip and lay a brick, and said brick laying machine uses a tracker system to measure the position of the tracker component and applies compensating movement to the robotic arm assembly to correct for variance between programmed tracker component position and measured tracker component position.
Preferably said brick laying machine includes a further tracker component supported on said brick laying clamp, and said brick laying machine uses a further tracker system to measure the position of the further tracker component and applies further compensating movement to the robotic arm assembly to correct for variance between programmed further tracker component position and measured further tracker component position
In accordance with another aspect of the invention, there is provided a machining tool for use in machining an item in an automated assembly line, said machining tool having a chassis on which a machine tool is supported, a clamp with at least one set of jaws to support an item to be machined, said at least one set of jaws being arranged for movement to adjust the position at which machining of said item takes place, an enclosure with at least one cover moveable between a closed position in which said enclosure is sealed to minimise egress of machining waste and noise and an open position in which said clamp may be accessed by a transfer arm with grippers to insert said item before a machining operation and to remove said item after said machining operation, and a dust extractor for debris removal from said enclosure, said dust extractor having an intake located in proximity to said machine tool and a suction hose to cause airflow entraining debris for removal.
Preferably said machine tool comprises a saw with a cutting blade, and said clamp is mounted on a table for sliding movement from said open position in which said clamp may be accessed by said transfer arm, through said cutting blade to cut said item.
Preferably said clamp is configured with two sets of jaws to clamp said item on each side of a saw cutting blade position. In this manner the item and the waste portion thereof are secured to prevent damage during the cutting action, and the cut item and saw blade can be separated before the clamp releases the cut brick portions.
Preferably said machine tool comprises a router mounted for sliding movement along three orthogonal axes, said clamp being located to clamp said item in proximity to said cover, and arranged to rotate said item about an axis normal to a spindle axis of said router.
Preferably said clamp is mounted to an orientation assembly to orient the clamped brick in space to present to the router, to route slots and notches in bricks in order to chase cabling, or to mill bricks to a predetermined required height.
Preferably said router is mounted on a tri-axis motion assembly for moving the router in any combination of movement in three dimensions, with one of the three axes being said spindle axis, and the other two axes being normal to each other and the spindle axis. These axes are preferably in the x and y axes across the brick, and in the z axis into the brick.
Preferably the machine tool includes a tool storage magazine spaced away from the clamp and orientation assembly and accessible by said router at a predetermined position.
Preferably said tool storage magazine is accessible by said router at a predetermined position of said tri-axis motion assembly, to access or store a routing bit or milling bit. The tool storage magazine may store a number of different bits to allow different cuts to be made by the router.
Preferably said tool storage magazine comprises a rotary magazine mounted about a horizontal axis and spaced to one side of said clamp.
The invention provides a truck mounted automated brick laying machine. In its most preferred form, the machine is configured so that the boom can be folded so that the truck is within standard road transport dimension limits for rigid body trucks, and so is able to drive on public roads without requiring any special arrangements such as wide vehicle escorts, special permits or the like.
In its most preferred form, the elements of the folded boom are telescoping, with the first boom element mounted to the truck having sufficient extension to reach the necessary elevation for the expected height of the building to be constructed, and the first boom element and second boom element preferably having sufficient combined extension to reach over the entire construction site.
When at the building site, the automated brick laying machine extends stabilising legs and unfolds the boom. A tracking system is then set up to measure the position and orientation of the laying robot on the end of the boom.
Optionally a laser scanning device fitted to the end of the boom can be moved over the slab in all areas where bricks will be laid. The scanning device scans the height and level of the slab to obtain a 3D profile. The control system compares the profile of the slab to the ideal designed shape of the slab, fits the designed slab position to the lowest measured level of the actual slab (discounting any small low areas that could be bridged by a brick) and calculates an amount and shape of material, if any, to be machined off each brick in the first course so that after being laid, the top of the bricks in the first course are level and at the correct height.
The boom tip is moved to automatically or semi automatically scan a concrete slab. The location of the automatic brick laying machine and the concrete slab is used to set working coordinate systems for the construction of a structure. The scan of the slab is also used to calculate machining of the bricks laid in the first course of the structure to correct for variations in the height, level and flatness of the slab.
Packs of bricks are loaded at the rear of the truck. Robotic equipment de-hacks (unpack) the bricks and moves them optionally to or from an automated saw, an automated 5 axis CNC router with automatic tool-changer or to a carousel that then transports the bricks to a slewing, articulated and telescopic foldable boom. The bricks are passed from one shuttle to another along the boom to an automated adhesive application robot that applies adhesive to the bricks.
A robotic flipper then inverts the brick and then a spherical geometry robot grasps the brick and lays it on a structure being built. The structure is built course by course. The automated brick laying machine uses a tracking system to measure the position of the tip of the boom and applies compensating movement to the spherical geometry robot so that the brick is laid in the correct 3D position.
The boom is provided with lifting hooks to assist with the manual placement of items such as lintels, door frames and window frames. Optionally the spherical geometry robot can automatically place items other than bricks such as lintels, door frames and window frames.
The router is used to rout grooves in bricks so that when the bricks are placed in the structure the grooves line up ready for the following insertion of pipes and or cables. The router may be used to sculpt bricks. The router may be used to machine the top or bottom of bricks to allow for height correction of a course or in particular to machine the first course bricks to correct for the variation of height, flatness and level in a slab or the footings.
The automated saw is used to cut bricks to length or to cut bevels. This allows the bricks to be laid in standard or intricate patterns.
A software control system is used to control the automated brick laying machine. The software control system is cognisant of which brick is being placed in which location, and the bricks are machined or cut according to their predetermined locations. Bricks can be machined in order to provide chasing for plumbing, electrical wiring and other services.
The automated brick laying machine has computerised vision systems and/or physical measuring probes to measure the bricks and check for quality, size and geometric shape, thereby allowing the machine to automatically reject damaged or sub-standard bricks and automatically apply corrections to accurately lay bricks of sightly varying tolerance of shape or dimension.
A preferred embodiment of the invention will now be explained in the following description made with reference to the drawings, in which:
Referring to
The end of the boom is fitted with a brick laying and adhesive applying head 32. The brick laying and adhesive applying head 32 mounts by pins (not shown) to element 20 of the stick, about an axis 33 which is disposed horizontally. The poise of the brick laying and adhesive applying head 32 about the axis 33 is adjusted by double acting hydraulic ram 35, and is set in use so that the base 811 of a clevis 813 of the robotic arm 36 mounts about a horizontal axis, and the tracker component 130 is disposed uppermost on the brick laying and adhesive applying head 32. The brick laying and adhesive applying head 32 applies adhesive to the brick and has a robot that lays the brick. Vision and laser scanning and tracking systems are provided to allow the measurement of as-built slabs, bricks, the monitoring and adjustment of the process and the monitoring of safety zones. The first, or any course of bricks can have the bricks pre machined by the router module 47 so that the top of the course is level once laid.
For ease of understanding, headings will be used in the following discussion.
Truck
Referring again to
Frame
A frame 3 forming a rigid chassis is mounted to the truck. The frame 3 supports a pair of forward legs 4 and a pair of aft legs 5, one of each pair on each side of the truck. The legs 4 and 5 can telescopically extend outwardly, and hydraulic rams then push down feet 6 to provide stability to the automated brick laying machine 2. In practice, the hydraulic rams will adjust by positioning the feet 6 so that the frame 3 and hence the rigid body truck 1 is positioned horizontally. This results in correct vertical alignment of the vertical axis 9 and the tower 10 which are described hereafter. It follows then, that this correct alignment ensures that, subject to deflection tolerances, the axis 33 at the end of the element 20 is horizontal, and then with correct adjustment of the poise of the brick laying and adhesive applying head 32 by the ram 35, the base 811 of a clevis 813 of the robotic arm 36 mounts about a horizontal axis, and the tracker component 130 is disposed uppermost on the brick laying and adhesive applying head 32.
An enclosure 7 forming an outer body is mounted to the frame 3. The enclosure 7 provides some weather protection, noise isolation and guarding of moving parts. Referring to
Referring to
Layout
Referring to
The invention could be arranged in a mirror image about the vertical centreline without deviating from the inventive concepts described.
Referring also to
Services
A large capacity electric generator (not shown) is mounted to the truck 1 chassis or the frame 3 and is driven by the IC engine (not shown) of the truck 1. The generator provides power to the electrical system of the automated brick laying machine 2.
Referring to
Scraper
Referring to
Each scraper 55, 56 has an extending arm 57 that moves out past the bricks on the fold down platform 8 and then is lowered and then the first scraper 55, drags the first pack of bricks from the fold down platform 8 into the first de-hacker bay 49.
Alternatively, a single scraper not shown could be provided with an arm that swings to a side or the opposite side to be able to drag bricks from either de-hacker bay.
Transfer Platform
The frame supports a transfer platform 51, immediately forward of the first de-hacker bay 49 and the second de-hacker bay 50. The transfer platform 51 is provided to temporarily place bricks for further processing.
De-Hacker
In typical operation, a first de-hacker bay 49 is loaded with external bricks 52 that may be used for the external walls of a structure being built. The second de-hacker bay 50 is loaded with internal bricks 53 that may be used for the internal walls of the structure being built, in a double brick style construction. Either de-hacker bay 49, 50 may be loaded with any type of bricks that are to be used for a structure being built, since the placement of the bricks is a matter for programming. In a single brick construction where internal framework is to be added manually afterwards, both de-hacker bays would accommodate the same type of brick. It should be noted that the present invention enables construction of brick walls significantly faster and usually at a cost below that of internal framed walls, so in most applications, the present invention would be used to build all of the walls of a structure.
Referring to
Each de-hacker robot 58 can pick up a row of bricks from a pack of bricks, or pick up a single brick, and move it to the transfer platform 51.
Transfer Robot
Referring to
Additionally, referring to
The transfer robot 64 may perform a number of operations. Most frequently the transfer robot 64 picks up a brick 65 from the transfer platform 51 and delivers it to a gripper mounted on a carousel 48 which can rotate around a slewing ring 11. Alternatively, the transfer robot 64 may pick up a brick 65 from the transfer platform 51 and deliver the brick 65 to the table 70 of the saw module 46. Alternatively, the transfer robot 64 may pick up a brick 65 from the transfer platform 51 and deliver it to the gripper 72 of the router module 47. Alternatively, the transfer robot 64 may pick up a cut brick 73 from the saw module 46 and transfer it to the gripper 74 of the carousel 48. Alternatively, the transfer robot 64 may pick up a brick 65 from the router 47 and move it to the gripper 74 of the carousel 48. Alternatively, the transfer robot 64 may pick up a brick off cut 75 or broken or damaged brick and deliver it to a brick rejection chute 76 (shown in
Saw
Refer to
Table
Referring to
Saw Blade
The base plate 300 supports a bracket 311 which supports a motor 312 which drives a pulley 313. The base plate supports a bearing housing 314. The bearing housing rotatably supports a shaft 315. The shaft 315 has a saw blade 93 fastened to it and a pulley 316 fitted to the opposite end of the shaft 315. A belt 317 wraps around pulleys 313 and 316. The motor 312 drives pulley 313 which drives belt 317 which drives pulley 316 which turns shaft 315 which rotates the saw blade 93. The saw blade 93 rotates about a horizontal axis 95 transverse to the truck 1.
The saw mechanism could be replaced with a band saw, reciprocating saw, a vibrating saw or a chain saw.
Clamp
Referring to
Servo motor 320 rotates pulley 321 which moves belt 327 to drive pulley 326 which rotates the leadscrew 323 to vertically move the clamp frame 332. Referring additionally to
Refer to
Cable Chains
Cable chains are used to route power and signals to the servo motors.
Column 318 supports a cable bracket 343. A cable chain 344 has its first end 348 fastened to the enclosure 100 (shown in
Enclosure
Referring to
The base plate 300 is provided with an enclosure 100. Enclosure 100, on its top, supports linear guide 348 and on its inner side it supports linear guide 349. Linear guide 348 slideably supports bearing cars 350, 351, (shown as hidden lines in
When the door 354 is in its closed position 361, the door 354 contains brick dust and noise within the enclosure 100. When the door is in an open position 362, it allows access for the transfer robot 64 to reach inside the saw 46 to place a brick 73 on the moving table 70. The saw blade 93 rotates partially within a guard and dust extraction hood 101 (also shown in
Router
Refer to
5 axis CNC routers and 5 axis CNC machining centers are known in engineering and manufacturing. The router module 47 of the embodiment has a layout that is particularly compact in relation to the size of the brick being machined and compact in relation to the travel of the spindle. The layout of the router 47 has the advantage that the tool magazine 391 is easily accessed from the side of the truck 1. The router has the advantage that the brick gripping mechanism 72 (see
Referring to
Referring to
Referring to
A detailed description of the router follows, with reference to
The router module 47 has a router base 363 supporting the tool change carousel in the form of the tool magazine 391 that can hold up to 24 router bit tools. The router module 47 has a tilting rotary table 366, shown generally in
Refer to
As can be seen in
Enclosure
A detailed description of the enclosure 364 follows. Refer to
Referring to
Referring to
Tool Magazine
Referring to
Referring to
Base 363 supports a servo motor/gearbox assembly with a small pulley (indicated generally at 400). Small pulley forms a reduction drive with a large toothed pulley 405 driven by a toothed belt 406. The large toothed pulley 405 is fixed to the wheel 396 of the tool magazine 391 so that the servo motor assembly 400 can move belt 406 which then rotates the wheel 396, thereby presenting different tool-holders 398 to a tool transfer position 407 (shown in
Orientation Assembly
Refer to
Referring to
Refer to
Refer to
Refer to
Refer to
Referring to
It can be seen that the orientation assembly 366 rotates the trunnion 414 and therefore a brick 180 degrees through the trunnion axis 454 to present three adjacent faces of the brick oriented 90 degrees apart, while the base 429 can rotate the gripper through 180 degrees.
3 Axis Motion Assembly
Refer to
The 3 axis motion assembly 365 has a moving column 463 which can move from side to side along the x-axis 709. The moving column 463 supports a carriage 480 which can move up and down along the y-axis 710. The moving carriage 480 supports a ram 487 which can move back and forth. The ram 487 supports the spindle motor 510, which holds and rotates the cutting tool 399. The described 3 axis motion assembly provides rigid support of the spindle motor 510 and a very compact arrangement relative to the travel.
A detailed description of the 3 axis motion assembly 365 follows, referring to
Referring to
Referring to
Refer to
Referring to
Cable Chains
Various servo motors and the spindle require the connection of pressurised air hoses, electrical power cables and signal cables. To support the hoses and cables, various cable chains are used. A detailed description of the support and routing of the cable chains follows.
Refer to
Refer to
Refer to
Vision System
A vision system is used to check that each brick handled by the transfer robot is of the correct size, shape, colour and texture and that any cuts, grooves or machining has been done correctly. The vision system also checks for cracks or large missing chips.
Refer to
Volume scanners 108, 109 (shown in
Carousel
Refer to
Referring to
Referring to
The frame 3 supports a cable guide 181. The cable guide 181 supports a cable chain 182. The cable chain 182 is connected at a first end 183 to the cable guide 181 and is therefore fixed relative to the frame 3. The cable chain 182 has a second end 184 attached to the cable duct 185. Electric current carrying cables (not shown) that carry power and control signals and sensor signals from the electric control cabinet 82, are routed via the frame 3, through the cable chain 182 to the cable duct 185 and then to the servo motors 173, 177, 179.
The carousel 48 can move the gripper 74 from a pickup position where it receives a brick from the gripper 66 mounted on the transfer robot 64, and rotate to a drop off position where it deposits a brick to the gripper jaws 207, 208 on the tower shuttle 186 (shown on
Tower
Refer to
Refer to
Refer to
Boom
Refer to
The foldable boom 732 allows motion through a big envelope free of singularities and poles. A pole is a position within a robot's envelope that requires rapid rotation of one or more robot joints to maintain consistent orientation of the end effector, for the end effector to pass along a trajectory that passes through the pole. A singularity is a position or orientation, or a set of positions and orientations within the envelope that cannot be reached, or where the joints of the robot become poorly behaved, unstable, or the joint positions are difficult to calculate. Normal industrial robots typically complete the same task over and over so that it is possible to design, or alter the trajectory and robot pose to be free and clear of poles and singularities or to pass through a pole with specified rotation of the pole axis. The automated brick laying machine however must be able to complete a variety of tasks and any particular structure will require the boom to move through a large portion of its envelope, thus making a pole and singularity free working envelope desirable.
Shuttles within each section of the boom transport a brick along the inside of the boom. Shuttles pass a brick from a previous shuttle to the next. Rotators at each articulated joint of the boom move a brick from one boom element to the next, passing the brick from a previous adjacent shuttle to the next adjacent shuttle.
The bricks are passed by the shuttles, through the inside of the boom. The bricks are moved through the inside of the boom so that the boom structure contains the bricks and/or debris, in the unlikely event that a brick, or debris from a brick becomes loose from a shuttle. The boom structure provides convenient support to mount shuttles opposite each other. In the present invention within the telescoping elements of the boom and within the telescoping elements of the stick, the shuttles are alternately mounted above or below the brick, so that adjacent shuttles may move so that the grippers on the shuttles can both grasp a brick simultaneously and thereby transfer a brick from one shuttle to the next, without letting go of the brick.
First Boom Element
Referring to
Second Boom Element
Referring to
A sliding second stick 17 is telescopically able to slide within the first stick 15. A sliding third stick 18 is telescopically able to slide within the second stick 17. A sliding fourth stick 19 is telescopically able to slide within the third stick 18. A sliding fifth stick 20 is telescopically able to slide within the fourth stick 19. Collectively first stick 15, second stick 17, third stick 18, fourth stick 19 and fifth stick 20 form a stick assembly 744 also referred to as the second boom element.
The number of telescopic booms 12, 14 or sticks 15, 17, 18, 19, 20 could be altered without deviating from the inventive concepts described. Collectively the tower 10, booms 12, 14 and sticks 15, 17, 18, 19, 20 form a foldable boom assembly 732.
First boom 12 has a first near end 269 and a second distal end 270 shown in
Lug 209 on the tower 10 is connected to the rod end of ram 22 by a pin (not shown). Ram 22 supports a trunnion mount 215 located a short distance along the first boom 12 from the near end 269. The trunnion mount 215 provides boom lift lugs 216, 217. The articulated joint 21 of the tower 10 to the boom 12 about axis 13 is moved by ram 22 powered by electricity or hydraulics.
Rotator
Refer to
A detailed description of the T-B1-rotator follows.
Referring to
Bearing reducer 278 supports an arm 282 having a plate 283 depending therefrom at right angles. Plate 283 supports linear guides 284, 285. Linear guides 284, 285 respectively support bearing cars 286, 287 which respectively support jaws 288, 289 provided to clamp a brick. Jaws 288, 289 respectively are fitted with lead screw nuts 296, 297 shown as hidden lines. Leadscrew nuts 296, 297 engage with leadscrew 293.
Arm 282 supports a servo motor 291 (not shown clearly in
As can be seen in the drawings, and particularly in the sequence of
First Boom
Refer to
Shuttle
A shuttle grips a brick and is moved along the inside of the boom from the near end of the boom, nearly to the distal end of the boom, by toothed belts driven by servo motors fitted to the boom. The servo motors are fitted to the boom to minimise the size and weight of the moving shuttle and also to avoid having to use cable chains or slip tracks to transfer electrical power and signals to and from the shuttles. One servo motor 256 moves the shuttle and the other servo motor 255 moves the jaws of the shuttle. A detailed description follows.
Refer to
Servo motor 256 drives a pulley 257. Drive assembly 254 has a shaft 262 that supports a large pulley 263 and a small pulley 264, forming part of a reduction drive. An endless toothed belt 258 wraps around pulley 257 and large pulley 263. A belt 266 wraps around pulley 264 and idler pulley assembly 265 at the near end 269 of first boom. Belt 266, running the length of first boom 12 is driven by pulley 264.
Refer to
It will be seen in the discussion that follows, that the tracks, shuttles and drive assemblies of sticks 15, 17, 18, and 19 follow the same fundamental configuration as that of boom 12.
Winch
Winches and cables are used to move the telescopic sections of the boom and stick via a system of pulleys. The winch and cable system provides a very light weight means of moving the telescopic sections of the foldable boom. It was found that electric ball screws or hydraulic rams or toothed racks and gears could be used to move the telescopic sections of the boom, but these systems have a higher weight than the cable drive system described. The winch and cable system is detailed below.
Referring to
Side plate 219 supports idler pulleys blocks 722, 723, 724, 725.
Wear blocks 799 formed from ultra high molecular weight polyethylene (UHMPE) or other suitable material, are secured to the distal end of boom 12 and the near end of boom 14 to provide bearing surfaces for the elements to telescopingly slide. Wear blocks 799 of such material are described throughout this description to provide bearing surfaces for the telescoping parts of both the boom and the stick.
Second Boom
Referring to
Shuttle-B2531 has jaws 532, 533 for the gripping of a brick. Top plate 523 supports bracket assembly 534, which supports idler pulleys 535, 536, 537. Bracket assembly 534 supports servo motors 538, 539. Servo motor 539 drives the jaws 532, 533. Servo motor 538 drives the shuttle-B2531. Shuttle-B2531 can move linearly from the first end 525 to the second end 526 of second boom 14. The arrangement is the same as described for the first boom 12 except that the servo motors 538 and 539 are mounted externally on boom 14 to allow the channels 529 and 530 that form the track within second boom 14 to extend from the near end 525, to the distal end 526, so that the shuttle-B2531 can traverse the entire length of second boom 14.
Referring to
Refer to
Rotator-B2-S1
The rotator-B2-S1548 transfers a brick from the second boom shuttle to the first stick shuttle. It can rotate to align with either the second boom, or the first stick, to that the brick maintains orientation with its longitudinal extent extending with the first stick longitudinal extent, when the brick is transferred from the second boom 12 to the first stick 15. The rotator-B2-S1548 has movable gripper jaws to grasp the brick. A detailed description follows.
Referring to
Joint
Refer to
Refer to
First Stick
Refer to
Stick Assembly
The stick assembly has telescopic sticks that can extend and retract. The extension and retraction is servo controlled. Each stick supports channels that in turn support shuttles that move bricks from a first near end to the next stick. The shuttles move back and forth on tracks within their respective sticks. The shuttles are provided with clamps, and can pass a brick along the stick assembly.
Stick Winch and Cables
The telescopic stick assembly is extended and retracted by a winch that winds cables that wrap around a system of pulleys to move the sticks. The winch is driven by a servo motor and bearing reducer. A detailed description follows.
Refer to
Winch 578 is mounted to top plate 570 by bracket 581 and bracket 582. A bearing reducer 583 is provided between servo motor 584′ and a winch drum 584. Bracket 581 supports a roller bearing 585 (not visible) that rotateably supports the winch drum 584, at the end thereof away from the bearing reducer 583. Top plate 570 supports pulley blocks 746, 747, 748, 749, 750, 751.
Referring to
First Stick
Referring to
Top plate 570 supports drive assembly 592 inside first stick 15, in the same manner as that of the first boom 12. Top plate 570 supports bracket 593, which supports idler pulleys 594, 595, 596, 597. Servo motors not shown on drive assembly 592 move the shuttle-S1573 along the top of and inside first stick 15 and can open and close jaws 576, 577 to grip or release a brick. Thus shuttle 573 can grasp a brick at first near end 561 of first stick 15 and move it to or toward second distal end 566 of first stick 15, then unclamp the brick not shown. The mechanism for this functions in the same manner as that of the first boom 12 and its shuttle. The jaws 576 and 577 each include a deviation 576′ and 577′ which aligns with the bracket assembly 534 of second boom 14, to provide clearance to receive bracket assembly 534 at the distal end of second boom 14, when the shuttle-S1573 moves in to take a brick from rotator-B2-S1548 when second boom 14 and first stick 15 are aligned in line, as shown in
Second Stick
Refer to
Second stick 17 is preferably constructed from carbon fibre sandwich panels for low weight. Alternatively, second stick 17 way be welded with metal plates. Second stick 17 is of a substantially rectangular or box cross section. Second stick 17 is constructed by welding or bonding bottom plate 600 to side plates 601, 602. Side plates 601, 602 are welded or bonded to top plate 603. Bottom plate 600 supports a track formed by longitudinally extending channels 604, 605. Channels 604, 605 support shuttle-S2606 for movement therealong. Shuttle-S2606 has jaws 607 and 608 to grasp a brick. Referring to
Third Stick
Refer to
Fourth Stick
Refer to
Referring to
Fifth Stick
Refer to
The panels or plates making up each of the first stick 15, second stick 17, third stick 18, fourth stick 19 and fifth stick 20 may be provided with removable panel portions (not shown) to provide access for servicing of internal componentry within each stick.
Boom Cable Chains
Cable chains are used to route power and signals to and from the servo motors. The arrangement of the cable chains provides a compact over all cross section of the folding boom.
Referring to
First near end 637 of fourth stick 19 supports a first end 737 of cable duct 733. Second end 738 of cable duct 733 supports a first end 739 of cable chain 734. The bottom plate 660 of fifth stick 20, supports the second end 740 of cable chain 734. Cable chain 734 and cable duct 733 are also visible in
Referring to
Referring to
Referring to
Referring to
Flipper
Refer to
During the laying of bricks, the brick laying and adhesive applying head 32 is held at a constant tilt relative to the ground. The pose of the foldable boom is varied to position the brick laying and adhesive applying head 32 appropriately for the brick laying and adhesive applying head 32 to lay bricks in the required position. The angle of the stick assembly, varies according to the required pose of the foldable boom. The flipper assembly 687 is used to receive a brick from the stick assembly (
A detailed description of the flipper assembly follows.
Refer to
Refer to
Referring to
Refer to
Jaws 690 and 693 can be moved by servo motor 684 towards the second distal end 658 of fifth stick 20 to pick up a brick (see
Optionally, servo motor 684 can then rotate arm 679 through 90 degrees so that the end of said brick is presented flat, ready for adhesive application by the adhesive application system 150 (see
Servo motor 684 can then rotate arm 679 through 180 degrees (or 90 or 270 degrees, depending on which faces of the brick had adhesive applied to them), so that said brick is inverted, ready to be picked up by the laying arm gripper 44 (see
Adhesive
Referring to
Refer to
Refer to
Refer to
Referring to
Referring to
Preferably the hollow links 778 are manufactured from a material with a low coefficient of friction such as acetal copolymer or UHMWPE (Ultra High Molecular Weight Polyethylene) plastic. The curved guide 113 and straight guide 784 may be manufactured from a material with a low coefficient of friction such as acetal plastic.
Referring to
The tongue in sheath arrangement of the adhesive applicator allows a single axis of servo motion control to move a nozzle for application of adhesive whilst maintaining a vertical nozzle orientation and also to retract the nozzle to allow for movement of the brick to the next step of the process. The laying head space is quite limited, so to achieve the application and retraction with more conventional linear movement mechanisms or articulating arm robots would require the use of two or more servo axes of motion or the addition of linkages and cam mechanisms.
Brick Laying and Adhesive Applying Head
Refer to
Refer to
Referring to
Referring to
The arm 40 has linear guides 820 which co-operate with bearing cars 822 (see
The brick laying clamp/gripper 44 mounts for controlled rotation by a servo motor 830 driving a bearing reducer 831 about an axis normal and perpendicular to the plane of its jaws 833, 835 and bearing reducer on a clevis 817 to provide the gripper yaw angle 43 adjustment; a universal joint formed by mechanism 819 comprising servo motor 837 and bearing reducer 839 connected by toothed belt 841 and pulleys provides wrist pitch angle 41 adjustment; and mechanism 821 comprising servo motor 843 and bearing reducer 845 driven by toothed belt 847 and pulleys provides wrist roll angle 42 adjustment (shown in
The brick laying and adhesive applying head 32 supports a hook 151 that can be used to lift items such as windows, doors, lintels and other items not shown.
Refer to
The jaws 835, 833 of the laying head gripper 44 are independently movable by independent lead screws 849, 851, engaged with nuts 853, 855 connected with the jaws 835, 833, and moveable by servo motors 857, 859, via drive belts 861, 863 respectively. This allows the offset gripping of a brick. The arrangements for moving the jaws 835, 833 use lead screws 849, 851 and co-operating nuts 853, 855, driven by separate servo motors 857, 859, respectively, similar to that as described for other grippers utilised elsewhere in the embodiment, apart from the drives for the jaws being separate in order to allow independent movement of the jaws.
As can be seen in
Tracker and Slab Scan
Referring to
Referring to
Referring to
As the brick laying and adhesive applying head 32 lays a brick 144, the machine vision 143 or laser scanner 140 is used to measure the laid brick 144 so that the height of the laid brick 144 is stored and later used to adjust the laying height of the dependant bricks that are laid on top of it on the next course. If the height is over tolerance, the dependant bricks above it can be machined to a reduced thickness by the router 47.
The concrete slab 136 may alternatively be a slab of earth, rock, wood, plastic or other material or a steel deck or footings. The slab 136 may be on the ground or suspended.
The bricks are normally fired clay but may be concrete, aerated concrete, plastic, foam, wood, compressed wood, recycled material or any block or brick shaped component or any interlocking component or a random shaped component such as rock or stone or a sculpted or moulded complex object. For applications where the supplied dimensions or shape of the bricks, blocks or objects to be laid vary significantly from the design dimensions, additional routers or saws may be added to the machine so that routing or sawing of the bricks, blocks or objects can occur simultaneously on a number of bricks, blocks or objects in parallel.
Block Moulding
In a further variation of the machine not shown but described here, the machine is provided with an on board brick or block moulding machine. A filler mixture of for example sand, clay, aggregate stone or wood chip or wood fibre is supplied to a hopper. The hopper may then optionally supply the filler mixture to a mixer which may add a binder material such as cement or polymer adhesive or water or a thermoplastic powder or fiber. The mixer then supplies the mixed filler and binder to a brick moulding press. Optionally the moulded bricks may pass through a curing station which may apply a chemical curing agent or heat or radiation. The curing station may apply steam to rapidly cure a concrete binder. Alternatively, the curing station may apply UV light to cure a UV sensitive binder resin. Alternatively, the curing station may apply moisture to cure a moisture curing polyurethane binder material. Alternatively, the curing station may apply heat to cure an epoxy binder. The moulded bricks may then be used by the automated brick laying machine. Alternatively, the filler mixture may contain a thermoplastic material such as recycled plastic. When pressed under heat the plastic binder melts, fusing the sand or aggregate or wood fiber material when it cools. Brick or block making presses are commercially available from suppliers such as Besser.
Harsh Environment
In an adaptation of the machine, with radiation protection, the machine could be used for erecting containment structures in nuclear disaster zones.
In a further adaptation of the machine, the machine may be adapted to work in a low pressure atmosphere or in a vacuum and in the presence of ionising radiation. In this format with an integral automated brick or block making unit, the machine could be used for building structures on the moon or Mars or in other extra-terrestrial locations.
Advantages of the Invention
The invention provides an improved automated brick laying machine that is compact and mobile and able to drive on public roads. The arrangement and configuration of components allows the machine to have a very large working envelope whilst also being compact for road travel. It is capable of receiving packs of bricks and processes them to in effect 3D print a full size structure of walls. The machine is electronically programmed and can build a wide variety of structures.
The invention uses thin bed mortars or liquid adhesives which need not support the weight of a brick so can be very fluid and may contain no particulates or may contain very fine non-abrasive particulates, rather than abrasive sand which is used in thick bed mortars used in traditional manual brick-laying. Given variations in slab height, the desire to completely remove the need for a thick bed of mortar or thick adhesive between the slab and the first course of bricks requires a very level slab, level within a few mm of height tolerance. To achieve the slab height tolerance required for use of thin be mortars would incur significant additional cost from concrete contractors. The provision of a router module in the invention allows bricks to be pre-machined based on measured slab elevation at the required brick location, which results in only a slight increase in build time, to machine in the router, each brick in the first course, so that the top of the first course is laid at the correct height and level, even on inaccurate slabs. Deviations of between 0 and 50 mm of flatness and level can be easily accommodated. Larger deviations could be accommodated if required.
To build common house size structures, the boom needs to reach out 30m. To manoeuvre on suburban roads a short truck is advantageous. To fit on small building sites a compact machine is advantageous. Bricks being conveyed along a boom, must be restrained, so that they can't fall and damage structures or injure personnel. By conveying the bricks along the inside of the boom, the cross section of the boom can be made smaller than the total cross section of a boom with external guarding to contain externally conveyed bricks. The smaller boom cross section enables a smaller and more compact machine to be built. The present invention has cable chains routed inside the boom. By conveying the bricks internally, and routing the services internally, the structural cross section of the boom is maximised for a given over all cross section, thereby increasing the stiffness of the boom which reduces the dynamic displacement of the boom. A light weight boom is also possible due to the large cross section.
The present invention utilises a series of shuttles that transfer a brick from one shuttle to the next. This system has the advantage that the movement of bricks along the boom is completely independent of the brick preparation or laying processes. In this way, the laying rate can be kept as high as possible. Both the brick preparation, the brick transport and the laying process can proceed at the individual maximum rates, limited only by the availability of the bricks into each process, and the availability of a consumer process for the output of the bricks.
The invention is intended to build all of the external and internal walls of a structure. Whilst it would be possible for the invention to build only some of the brick walls in a structure, with the remaining walls being manually constructed later with manually laid bricks or manually placed stud walls or precast panels, it should be understood that the invention allows the rapid and accurate placement of bricks and construction of brick walls faster and at a cost equal to or lower than the cost of manually built walls using bricks or stud framing or pre cast concrete.
It should be appreciated that the scope of the invention is not limited to the particular embodiment described herein, and the skilled addressee will understand that changes can be made without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2016902787 | Jul 2016 | AU | national |
This application is a continuation of U.S. patent application Ser. No. 16/823,596 filed on Mar. 19, 2020, which is a continuation of U.S. patent application Ser. No. 16/317,792 filed on Jan. 14, 2019 (now U.S. Pat. No. 10,635,758), which is a national stage entry under 35 C.F.R. 371 of International Application No. PCT/AU2017/050731 filed on Jul. 14, 2017, which claims priority to Australian Patent Application No. 2016902787 filed on Jul. 15, 2016, the disclosures of which are each incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1633192 | Reagan | Jun 1927 | A |
1829435 | Barnhart | Oct 1931 | A |
3438171 | Demarest | Apr 1969 | A |
3757484 | Williamson et al. | Sep 1973 | A |
3790428 | Lingl | Feb 1974 | A |
RE28305 | Williamson et al. | Jan 1975 | E |
3930929 | Lingl | Jan 1976 | A |
3950914 | Lowen | Apr 1976 | A |
4033463 | Cervin | Jul 1977 | A |
4106259 | Taylor-smith | Aug 1978 | A |
4221258 | Richard | Sep 1980 | A |
4245451 | Taylor-smith | Jan 1981 | A |
4303363 | Cervin | Dec 1981 | A |
4523100 | Payne | Jun 1985 | A |
4708562 | Melan et al. | Nov 1987 | A |
4714339 | Lau | Dec 1987 | A |
4758036 | Legille et al. | Jul 1988 | A |
4765789 | Lonardi et al. | Aug 1988 | A |
4790651 | Brown et al. | Dec 1988 | A |
4827689 | Lonardi et al. | May 1989 | A |
4852237 | Tradt et al. | Aug 1989 | A |
4911595 | Kirchen et al. | Mar 1990 | A |
4945493 | Huang et al. | Jul 1990 | A |
4952772 | Zana | Aug 1990 | A |
4954762 | Miyake et al. | Sep 1990 | A |
4969789 | Searle | Nov 1990 | A |
5004844 | Van et al. | Apr 1991 | A |
5013986 | Gauggel | May 1991 | A |
5018923 | Melan et al. | May 1991 | A |
5049797 | Phillips | Sep 1991 | A |
5080415 | Bjornson | Jan 1992 | A |
5196900 | Pettersen | Mar 1993 | A |
5284000 | Milne et al. | Feb 1994 | A |
5321353 | Furness | Jun 1994 | A |
5403140 | Carmichael et al. | Apr 1995 | A |
5413454 | Movsesian | May 1995 | A |
5419669 | Kremer et al. | May 1995 | A |
5420489 | Hansen et al. | May 1995 | A |
5469531 | Faure et al. | Nov 1995 | A |
5497061 | Nonaka et al. | Mar 1996 | A |
5523663 | Tsuge et al. | Jun 1996 | A |
5527145 | Duncan | Jun 1996 | A |
5557397 | Hyde et al. | Sep 1996 | A |
5581975 | Trebbi | Dec 1996 | A |
5737500 | Seraji et al. | Apr 1998 | A |
5838882 | Gan et al. | Nov 1998 | A |
6018923 | Wendt | Feb 2000 | A |
6049377 | Lau et al. | Apr 2000 | A |
6101455 | Davis | Aug 2000 | A |
6134507 | Markey, Jr. et al. | Oct 2000 | A |
6166809 | Pettersen et al. | Dec 2000 | A |
6166811 | Long et al. | Dec 2000 | A |
6172754 | Niebuhr | Jan 2001 | B1 |
6213309 | Dadisho | Apr 2001 | B1 |
6285959 | Greer | Sep 2001 | B1 |
6310644 | Keightley | Oct 2001 | B1 |
6330503 | Sharp et al. | Dec 2001 | B1 |
6370837 | Mcmahon et al. | Apr 2002 | B1 |
6427122 | Lin | Jul 2002 | B1 |
6429016 | Mcneil | Aug 2002 | B1 |
6512993 | Kacyra et al. | Jan 2003 | B2 |
6516272 | Lin | Feb 2003 | B2 |
6584378 | Anfindsen | Jun 2003 | B1 |
6611141 | Schulz | Aug 2003 | B1 |
6618496 | Tassakos et al. | Sep 2003 | B1 |
6628322 | Cerruti | Sep 2003 | B1 |
6643002 | Drake, Jr. | Nov 2003 | B2 |
6664529 | Pack et al. | Dec 2003 | B2 |
6681145 | Greenwood et al. | Jan 2004 | B1 |
6683694 | Cornil | Jan 2004 | B2 |
6704619 | Coleman et al. | Mar 2004 | B1 |
6741364 | Lange et al. | May 2004 | B2 |
6825937 | Gebauer et al. | Nov 2004 | B1 |
6850946 | Rappaport et al. | Feb 2005 | B1 |
6859729 | Breakfield et al. | Feb 2005 | B2 |
6864966 | Giger | Mar 2005 | B2 |
6868847 | Ainedter et al. | Mar 2005 | B2 |
6873880 | Hooke et al. | Mar 2005 | B2 |
6917893 | Dietsch et al. | Jul 2005 | B2 |
6935036 | Barber et al. | Aug 2005 | B2 |
6957496 | Raab et al. | Oct 2005 | B2 |
6965843 | Hobden et al. | Nov 2005 | B2 |
6970802 | Ban et al. | Nov 2005 | B2 |
6996912 | Raab et al. | Feb 2006 | B2 |
7050930 | Hobden et al. | May 2006 | B2 |
7051450 | Barber et al. | May 2006 | B2 |
7069664 | Barber et al. | Jul 2006 | B2 |
7107144 | Capozzi et al. | Sep 2006 | B2 |
7111437 | Ainedter | Sep 2006 | B2 |
7130034 | Barvosa-carter et al. | Oct 2006 | B2 |
7142981 | Hablani | Nov 2006 | B2 |
7145647 | Suphellen et al. | Dec 2006 | B2 |
7153454 | Khoshnevis | Dec 2006 | B2 |
7174651 | Barber et al. | Feb 2007 | B2 |
7230689 | Lau | Jun 2007 | B2 |
7246030 | Raab et al. | Jul 2007 | B2 |
7269910 | Raab et al. | Sep 2007 | B2 |
7347311 | Rudge | Mar 2008 | B2 |
7519493 | Atwell et al. | Apr 2009 | B2 |
7551121 | Oconnell et al. | Jun 2009 | B1 |
7564538 | Sakimura et al. | Jul 2009 | B2 |
7570371 | Storm | Aug 2009 | B1 |
7576836 | Bridges | Aug 2009 | B2 |
7576847 | Bridges | Aug 2009 | B2 |
7591078 | Crampton | Sep 2009 | B2 |
7639347 | Eaton | Dec 2009 | B2 |
7693325 | Pulla et al. | Apr 2010 | B2 |
7701587 | Shioda et al. | Apr 2010 | B2 |
7774159 | Cheng et al. | Aug 2010 | B2 |
7800758 | Bridges et al. | Sep 2010 | B1 |
7804602 | Raab | Sep 2010 | B2 |
RE42055 | Raab et al. | Jan 2011 | E |
RE42082 | Raab et al. | Feb 2011 | E |
7881896 | Atwell et al. | Feb 2011 | B2 |
7967549 | Geist et al. | Jun 2011 | B2 |
7993289 | Quistgaard et al. | Aug 2011 | B2 |
8036452 | Pettersson et al. | Oct 2011 | B2 |
8054451 | Karazi et al. | Nov 2011 | B2 |
8060344 | Stathis | Nov 2011 | B2 |
8145446 | Atwell et al. | Mar 2012 | B2 |
8166727 | Pivac et al. | May 2012 | B2 |
8169604 | Braghiroli et al. | May 2012 | B2 |
8185240 | Williams et al. | May 2012 | B2 |
8229208 | Pulla et al. | Jul 2012 | B2 |
8233153 | Knuettel | Jul 2012 | B2 |
8244030 | Pettersson et al. | Aug 2012 | B2 |
8248620 | Wicks et al. | Aug 2012 | B2 |
8269984 | Hinderling et al. | Sep 2012 | B2 |
8327555 | Champ | Dec 2012 | B2 |
8337407 | Quistgaard et al. | Dec 2012 | B2 |
8345926 | Clark et al. | Jan 2013 | B2 |
8346392 | Walser et al. | Jan 2013 | B2 |
8405716 | Yu et al. | Mar 2013 | B2 |
8467072 | Cramer et al. | Jun 2013 | B2 |
8537372 | Siercks et al. | Sep 2013 | B2 |
8537376 | Day et al. | Sep 2013 | B2 |
8558992 | Steffey | Oct 2013 | B2 |
8593648 | Cramer et al. | Nov 2013 | B2 |
8595948 | Raab et al. | Dec 2013 | B2 |
8606399 | Williams et al. | Dec 2013 | B2 |
8634950 | Simonetti et al. | Jan 2014 | B2 |
8644964 | Hendron et al. | Feb 2014 | B2 |
8668074 | Davidson | Mar 2014 | B2 |
8670114 | Bridges et al. | Mar 2014 | B2 |
8677643 | Bridges et al. | Mar 2014 | B2 |
8792709 | Pulla et al. | Jul 2014 | B2 |
8803055 | Lau et al. | Aug 2014 | B2 |
8812155 | Brethe | Aug 2014 | B2 |
8825208 | Benson | Sep 2014 | B1 |
8832954 | Atwell et al. | Sep 2014 | B2 |
8848203 | Bridges et al. | Sep 2014 | B2 |
8875409 | Kretschmer et al. | Nov 2014 | B2 |
8898919 | Bridges et al. | Dec 2014 | B2 |
8902408 | Bridges | Dec 2014 | B2 |
8913814 | Gandyra | Dec 2014 | B2 |
8931182 | Raab et al. | Jan 2015 | B2 |
8942940 | York | Jan 2015 | B2 |
8965571 | Peters et al. | Feb 2015 | B2 |
8996244 | Summer et al. | Mar 2015 | B2 |
8997362 | Briggs et al. | Apr 2015 | B2 |
9020240 | Pettersson et al. | Apr 2015 | B2 |
9033998 | Schaible et al. | May 2015 | B1 |
RE45565 | Bridges et al. | Jun 2015 | E |
9046360 | Atwell et al. | Jun 2015 | B2 |
9074381 | Drew | Jul 2015 | B1 |
9109877 | Thierman | Aug 2015 | B2 |
9146315 | Bosse et al. | Sep 2015 | B2 |
9151830 | Bridges | Oct 2015 | B2 |
9163922 | Bridges et al. | Oct 2015 | B2 |
9170096 | Fowler et al. | Oct 2015 | B2 |
9188430 | Atwell et al. | Nov 2015 | B2 |
9207309 | Bridges | Dec 2015 | B2 |
9223025 | Debrunner et al. | Dec 2015 | B2 |
9229108 | Debrunner et al. | Jan 2016 | B2 |
9266238 | Huettenhofer | Feb 2016 | B2 |
9267784 | Atwell et al. | Feb 2016 | B2 |
9278448 | Freeman | Mar 2016 | B2 |
9279661 | Tateno et al. | Mar 2016 | B2 |
9303988 | Tani | Apr 2016 | B2 |
9353519 | Williams | May 2016 | B2 |
9354051 | Dunne et al. | May 2016 | B2 |
9358688 | Drew | Jun 2016 | B2 |
9367741 | Le Marec | Jun 2016 | B2 |
9377301 | Neier et al. | Jun 2016 | B2 |
9383200 | Hulm et al. | Jul 2016 | B2 |
9395174 | Bridges | Jul 2016 | B2 |
9405293 | Meuleau | Aug 2016 | B2 |
9423282 | Moy | Aug 2016 | B2 |
9437005 | Tateno et al. | Sep 2016 | B2 |
9443308 | Pettersson et al. | Sep 2016 | B2 |
9452533 | Calkins et al. | Sep 2016 | B2 |
9454818 | Cramer | Sep 2016 | B2 |
9476695 | Becker et al. | Oct 2016 | B2 |
9482524 | Metzler et al. | Nov 2016 | B2 |
9482525 | Bridges | Nov 2016 | B2 |
9482746 | Bridges | Nov 2016 | B2 |
9494686 | Maryfield et al. | Nov 2016 | B2 |
9513100 | Raab et al. | Dec 2016 | B2 |
9536163 | Veeser et al. | Jan 2017 | B2 |
9541371 | Pettersson et al. | Jan 2017 | B2 |
9561019 | Mihailescu et al. | Feb 2017 | B2 |
9607239 | Bridges et al. | Mar 2017 | B2 |
9618620 | Zweigle et al. | Apr 2017 | B2 |
9658061 | Wilson et al. | May 2017 | B2 |
9671221 | Ruhland et al. | Jun 2017 | B2 |
9679385 | Suzuki et al. | Jun 2017 | B2 |
9686532 | Tohme | Jun 2017 | B2 |
9708079 | Desjardien et al. | Jul 2017 | B2 |
9715730 | Suzuki | Jul 2017 | B2 |
9720087 | Christen et al. | Aug 2017 | B2 |
9734609 | Pulla et al. | Aug 2017 | B2 |
9739595 | Lau | Aug 2017 | B2 |
9746308 | Gong | Aug 2017 | B2 |
9757859 | Kolb et al. | Sep 2017 | B1 |
9768837 | Charvat et al. | Sep 2017 | B2 |
9772173 | Atwell et al. | Sep 2017 | B2 |
9803969 | Gong | Oct 2017 | B2 |
9816813 | Lettau et al. | Nov 2017 | B2 |
9829305 | Gong | Nov 2017 | B2 |
9835717 | Bosse et al. | Dec 2017 | B2 |
9844792 | Pettersson et al. | Dec 2017 | B2 |
9879976 | Bridges et al. | Jan 2018 | B2 |
9897442 | Pettersson et al. | Feb 2018 | B2 |
9903939 | Charvat et al. | Feb 2018 | B2 |
9909855 | Becker et al. | Mar 2018 | B2 |
9915733 | Fried et al. | Mar 2018 | B2 |
9921046 | Gong | Mar 2018 | B2 |
9958268 | Ohtomo et al. | May 2018 | B2 |
9958545 | Eichenholz et al. | May 2018 | B2 |
9964398 | Becker et al. | May 2018 | B2 |
9964402 | Tohme et al. | May 2018 | B2 |
9967545 | Tohme | May 2018 | B2 |
9989353 | Bartmann et al. | Jun 2018 | B2 |
10012732 | Eichenholz et al. | Jul 2018 | B2 |
10030972 | Iseli et al. | Jul 2018 | B2 |
10041793 | Metzler et al. | Aug 2018 | B2 |
10054422 | Böckem et al. | Aug 2018 | B2 |
10058394 | Johnson et al. | Aug 2018 | B2 |
10073162 | Charvat et al. | Sep 2018 | B2 |
10074889 | Charvat et al. | Sep 2018 | B2 |
10082521 | Atlas et al. | Sep 2018 | B2 |
10090944 | Charvat et al. | Oct 2018 | B1 |
10094909 | Charvat et al. | Oct 2018 | B2 |
10126415 | Becker et al. | Nov 2018 | B2 |
10189176 | Williams | Jan 2019 | B2 |
10220511 | Linnell et al. | Mar 2019 | B2 |
10240949 | Peters et al. | Mar 2019 | B2 |
10315904 | Landler | Jun 2019 | B2 |
10635758 | Pivac et al. | Apr 2020 | B2 |
10865578 | Pivac et al. | Dec 2020 | B2 |
10876308 | Pivac et al. | Dec 2020 | B2 |
11106836 | Pivac et al. | Aug 2021 | B2 |
20020176603 | Bauer et al. | Nov 2002 | A1 |
20030048459 | Gooch | Mar 2003 | A1 |
20030090682 | Gooch et al. | May 2003 | A1 |
20030120377 | Hooke et al. | Jun 2003 | A1 |
20030206285 | Lau | Nov 2003 | A1 |
20040078137 | Breakfield et al. | Apr 2004 | A1 |
20040093119 | Gunnarsson et al. | May 2004 | A1 |
20040200947 | Lau | Oct 2004 | A1 |
20050007450 | Hill et al. | Jan 2005 | A1 |
20050057745 | Bontje | Mar 2005 | A1 |
20050060092 | Hablani | Mar 2005 | A1 |
20050086901 | Chisholm | Apr 2005 | A1 |
20050131619 | Rappaport et al. | Jun 2005 | A1 |
20050196484 | Khoshnevis | Sep 2005 | A1 |
20050252118 | Matsufuji | Nov 2005 | A1 |
20060167587 | Read | Jul 2006 | A1 |
20060215179 | Mcmurtry et al. | Sep 2006 | A1 |
20070024870 | Girard et al. | Feb 2007 | A1 |
20070229802 | Lau | Oct 2007 | A1 |
20070284215 | Rudge | Dec 2007 | A1 |
20080030855 | Lau | Feb 2008 | A1 |
20080189046 | Eliasson et al. | Aug 2008 | A1 |
20090038258 | Pivac et al. | Feb 2009 | A1 |
20090074979 | Krogedal et al. | Mar 2009 | A1 |
20100025349 | Khoshnevis | Feb 2010 | A1 |
20100138185 | Kang | Jun 2010 | A1 |
20100274390 | Walser et al. | Oct 2010 | A1 |
20100281822 | Murray | Nov 2010 | A1 |
20110066393 | Groll et al. | Mar 2011 | A1 |
20110153524 | Schnackel | Jun 2011 | A1 |
20110208347 | Otake et al. | Aug 2011 | A1 |
20120038074 | Khoshnevis | Feb 2012 | A1 |
20120099096 | Bridges et al. | Apr 2012 | A1 |
20120136524 | Everett et al. | May 2012 | A1 |
20120265391 | Letsky | Oct 2012 | A1 |
20120277898 | Kawai et al. | Nov 2012 | A1 |
20130028478 | St-pierre et al. | Jan 2013 | A1 |
20130068061 | Yoon | Mar 2013 | A1 |
20130103192 | Huettenhofer | Apr 2013 | A1 |
20130104407 | Lee | May 2013 | A1 |
20130222816 | Briggs et al. | Aug 2013 | A1 |
20130250285 | Bridges et al. | Sep 2013 | A1 |
20130286196 | Atwell | Oct 2013 | A1 |
20140002608 | Atwell et al. | Jan 2014 | A1 |
20140067121 | Brooks et al. | Mar 2014 | A1 |
20140176677 | Valkenburg et al. | Jun 2014 | A1 |
20140192187 | Atwell et al. | Jul 2014 | A1 |
20140309960 | Vennegeerts et al. | Oct 2014 | A1 |
20140343727 | Calkins et al. | Nov 2014 | A1 |
20140348388 | Metzler et al. | Nov 2014 | A1 |
20140366481 | Benson | Dec 2014 | A1 |
20150082740 | Peters et al. | Mar 2015 | A1 |
20150100066 | Kostrzewski et al. | Apr 2015 | A1 |
20150134303 | Chang et al. | May 2015 | A1 |
20150153720 | Pettersson et al. | Jun 2015 | A1 |
20150241203 | Jordil et al. | Aug 2015 | A1 |
20150258694 | Hand et al. | Sep 2015 | A1 |
20150276402 | Grsser et al. | Oct 2015 | A1 |
20150280829 | Breuer | Oct 2015 | A1 |
20150293596 | Krausen et al. | Oct 2015 | A1 |
20150309175 | Hinderling et al. | Oct 2015 | A1 |
20150314890 | Desjardien et al. | Nov 2015 | A1 |
20150352721 | Wicks et al. | Dec 2015 | A1 |
20150355310 | Gong et al. | Dec 2015 | A1 |
20150367509 | Georgeson | Dec 2015 | A1 |
20150371082 | Csaszar et al. | Dec 2015 | A1 |
20150377606 | Thielemans | Dec 2015 | A1 |
20160005185 | Geissler | Jan 2016 | A1 |
20160093099 | Bridges | Mar 2016 | A1 |
20160153786 | Liu et al. | Jun 2016 | A1 |
20160187130 | Metzler et al. | Jun 2016 | A1 |
20160187470 | Becker et al. | Jun 2016 | A1 |
20160223364 | Peters et al. | Aug 2016 | A1 |
20160242744 | Mihailescu et al. | Aug 2016 | A1 |
20160263767 | Williams | Sep 2016 | A1 |
20160274237 | Stutz | Sep 2016 | A1 |
20160282107 | Roland et al. | Sep 2016 | A1 |
20160282110 | Vagman et al. | Sep 2016 | A1 |
20160282179 | Nazemi et al. | Sep 2016 | A1 |
20160288331 | Sivich et al. | Oct 2016 | A1 |
20160313114 | Tohme et al. | Oct 2016 | A1 |
20160327383 | Becker et al. | Nov 2016 | A1 |
20160340873 | Eidenberger et al. | Nov 2016 | A1 |
20160341041 | Puura et al. | Nov 2016 | A1 |
20160349746 | Grau | Dec 2016 | A1 |
20160363436 | Clark et al. | Dec 2016 | A1 |
20160363659 | Mindell et al. | Dec 2016 | A1 |
20160363663 | Mindell et al. | Dec 2016 | A1 |
20160363664 | Mindell et al. | Dec 2016 | A1 |
20160364869 | Siercks et al. | Dec 2016 | A1 |
20160364874 | Tohme et al. | Dec 2016 | A1 |
20170066157 | Peters et al. | Mar 2017 | A1 |
20170067739 | Siercks et al. | Mar 2017 | A1 |
20170082436 | Siercks et al. | Mar 2017 | A1 |
20170091922 | Siercks et al. | Mar 2017 | A1 |
20170091923 | Siercks et al. | Mar 2017 | A1 |
20170108528 | Atlas et al. | Apr 2017 | A1 |
20170122733 | Brown | May 2017 | A1 |
20170122736 | Dold et al. | May 2017 | A1 |
20170166399 | Stubbs | Jun 2017 | A1 |
20170173796 | Kim et al. | Jun 2017 | A1 |
20170176572 | Charvat et al. | Jun 2017 | A1 |
20170179570 | Charvat | Jun 2017 | A1 |
20170179603 | Charvat et al. | Jun 2017 | A1 |
20170191822 | Becker et al. | Jul 2017 | A1 |
20170227355 | Pettersson et al. | Aug 2017 | A1 |
20170236299 | Valkenburg et al. | Aug 2017 | A1 |
20170254102 | Peters et al. | Sep 2017 | A1 |
20170269203 | Trishaun | Sep 2017 | A1 |
20170307757 | Hinderling et al. | Oct 2017 | A1 |
20170314909 | Dang | Nov 2017 | A1 |
20170314918 | Shah | Nov 2017 | A1 |
20170333137 | Roessler | Nov 2017 | A1 |
20170343336 | Lettau | Nov 2017 | A1 |
20180003493 | Bernhard et al. | Jan 2018 | A1 |
20180017384 | Siercks et al. | Jan 2018 | A1 |
20180023935 | Atwell et al. | Jan 2018 | A1 |
20180038684 | Fröhlich et al. | Feb 2018 | A1 |
20180046096 | Shibazaki | Feb 2018 | A1 |
20180052233 | Frank et al. | Feb 2018 | A1 |
20180108178 | Murugappan et al. | Apr 2018 | A1 |
20180121571 | Tiwari et al. | May 2018 | A1 |
20180149469 | Becker et al. | May 2018 | A1 |
20180156601 | Pontai | Jun 2018 | A1 |
20180170719 | Tasch et al. | Jun 2018 | A1 |
20180180416 | Edelman et al. | Jun 2018 | A1 |
20180202796 | Ziegenbein | Jul 2018 | A1 |
20180209156 | Pettersson | Jul 2018 | A1 |
20180239010 | Mindell et al. | Aug 2018 | A1 |
20180300433 | Maxam et al. | Oct 2018 | A1 |
20190026401 | Benjamin et al. | Jan 2019 | A1 |
20190032348 | Parkes | Jan 2019 | A1 |
20190184555 | Linnell et al. | Jun 2019 | A1 |
20190224846 | Pivac et al. | Jul 2019 | A1 |
20190251210 | Pivac et al. | Aug 2019 | A1 |
20200173777 | Pivac et al. | Jun 2020 | A1 |
20200206923 | Pivac et al. | Jul 2020 | A1 |
20200206924 | Pivac et al. | Jul 2020 | A1 |
20200215688 | Pivac et al. | Jul 2020 | A1 |
20200215692 | Pivac et al. | Jul 2020 | A1 |
20200215693 | Pivac et al. | Jul 2020 | A1 |
20200324981 | Pivac et al. | Oct 2020 | A1 |
20210016437 | Pivac et al. | Jan 2021 | A1 |
20210016438 | Pivac et al. | Jan 2021 | A1 |
20210080582 | Pivac et al. | Mar 2021 | A1 |
20210291362 | Pivac et al. | Sep 2021 | A1 |
20210370509 | Pivac et al. | Dec 2021 | A1 |
20210379775 | Pivac et al. | Dec 2021 | A1 |
Number | Date | Country |
---|---|---|
645640 | Jan 1994 | AU |
673498 | Mar 1990 | CH |
2730976 | Oct 2005 | CN |
2902981 | May 2007 | CN |
2923903 | Jul 2007 | CN |
101100903 | Jan 2008 | CN |
201184054 | Jan 2009 | CN |
101360873 | Feb 2009 | CN |
101476883 | Jul 2009 | CN |
100557169 | Nov 2009 | CN |
101694130 | Apr 2010 | CN |
201972413 | Sep 2011 | CN |
102359282 | Feb 2012 | CN |
202248944 | May 2012 | CN |
202292752 | Jul 2012 | CN |
102995911 | Mar 2013 | CN |
202925913 | May 2013 | CN |
103363902 | Oct 2013 | CN |
103698769 | Apr 2014 | CN |
203701626 | Jul 2014 | CN |
104141391 | Nov 2014 | CN |
104153591 | Nov 2014 | CN |
104493810 | Apr 2015 | CN |
204295678 | Apr 2015 | CN |
104612411 | May 2015 | CN |
204311767 | May 2015 | CN |
103774859 | Nov 2015 | CN |
103753586 | Dec 2015 | CN |
105113373 | Dec 2015 | CN |
105178616 | Dec 2015 | CN |
105257008 | Jan 2016 | CN |
105544998 | May 2016 | CN |
104806028 | Nov 2016 | CN |
205668271 | Nov 2016 | CN |
205840368 | Dec 2016 | CN |
205990775 | Mar 2017 | CN |
206185879 | May 2017 | CN |
206189878 | May 2017 | CN |
105089274 | Jun 2017 | CN |
105064699 | Jul 2017 | CN |
107217859 | Sep 2017 | CN |
107237483 | Oct 2017 | CN |
107357294 | Nov 2017 | CN |
107605167 | Jan 2018 | CN |
206844687 | Jan 2018 | CN |
107654077 | Feb 2018 | CN |
107675891 | Feb 2018 | CN |
107740591 | Feb 2018 | CN |
106088632 | Mar 2018 | CN |
107762165 | Mar 2018 | CN |
207063553 | Mar 2018 | CN |
106088631 | May 2018 | CN |
107975245 | May 2018 | CN |
108061551 | May 2018 | CN |
108222527 | Jun 2018 | CN |
108301628 | Jul 2018 | CN |
108331362 | Jul 2018 | CN |
106150109 | Aug 2018 | CN |
108457479 | Aug 2018 | CN |
108708560 | Oct 2018 | CN |
208023979 | Oct 2018 | CN |
106881711 | Apr 2019 | CN |
107083845 | Jun 2019 | CN |
108016585 | Jul 2019 | CN |
3430915 | Mar 1986 | DE |
4038260 | Jun 1991 | DE |
4207384 | Sep 1993 | DE |
19509809 | Oct 1995 | DE |
4417928 | Nov 1995 | DE |
29601535 | May 1997 | DE |
19600006 | Jul 1997 | DE |
19603234 | Sep 1997 | DE |
19743717 | Apr 1999 | DE |
19849720 | May 2000 | DE |
10230021 | Jul 2003 | DE |
102006030130 | Sep 2007 | DE |
102009018070 | Oct 2010 | DE |
102009042014 | Mar 2011 | DE |
202012100646 | Jun 2013 | DE |
102013019869 | May 2015 | DE |
190076 | Aug 1986 | EP |
370682 | May 1990 | EP |
456020 | Jan 1995 | EP |
493020 | Apr 1995 | EP |
495525 | Apr 1995 | EP |
836664 | Jan 1999 | EP |
674069 | Dec 1999 | EP |
1918478 | May 2008 | EP |
2112291 | Oct 2009 | EP |
2219528 | Aug 2010 | EP |
2249997 | Nov 2010 | EP |
2353801 | Aug 2011 | EP |
2199719 | Oct 2014 | EP |
3084719 | Oct 2016 | EP |
2296556 | Apr 2008 | ES |
2230825 | Dec 1974 | FR |
2524522 | Oct 1983 | FR |
119331 | Oct 1918 | GB |
2198105 | May 1923 | GB |
673472 | Jun 1952 | GB |
682010 | Nov 1952 | GB |
839253 | Jun 1960 | GB |
1067604 | May 1967 | GB |
1465068 | Feb 1977 | GB |
125079 | Dec 2001 | GB |
2422400 | Jul 2006 | GB |
64006719 | Jan 1989 | JP |
H07101509 | Nov 1999 | JP |
2005283600 | Oct 2005 | JP |
4294990 | Apr 2009 | JP |
2009521630 | Jun 2009 | JP |
5508895 | Mar 2014 | JP |
87054 | Jun 1989 | LU |
87381 | Jun 1990 | LU |
88144 | Apr 1994 | LU |
85392 | Aug 2009 | RU |
9702397 | Jan 1997 | WO |
2001076830 | Oct 2001 | WO |
2004020760 | Mar 2004 | WO |
2004083540 | Sep 2004 | WO |
2005014240 | Feb 2005 | WO |
2005017550 | Feb 2005 | WO |
2005070657 | Aug 2005 | WO |
2004011734 | Nov 2005 | WO |
2006111827 | Oct 2006 | WO |
2007076581 | Jul 2007 | WO |
2008124713 | Oct 2008 | WO |
2009026641 | Mar 2009 | WO |
2009026642 | Mar 2009 | WO |
2010020457 | Feb 2010 | WO |
2011077006 | Jun 2011 | WO |
2013088154 | Jun 2013 | WO |
2013134559 | Sep 2013 | WO |
2018009978 | Jan 2018 | WO |
2018009980 | Jan 2018 | WO |
2018009981 | Jan 2018 | WO |
2018009985 | Jan 2018 | WO |
2018009986 | Jan 2018 | WO |
2018052469 | Apr 2018 | WO |
2018099323 | Jun 2018 | WO |
2019006511 | Jan 2019 | WO |
2019014701 | Jan 2019 | WO |
2019014702 | Jan 2019 | WO |
2019014705 | Jan 2019 | WO |
2019014706 | Jan 2019 | WO |
2019014707 | Jan 2019 | WO |
2019033165 | Feb 2019 | WO |
2019033166 | Feb 2019 | WO |
2019033170 | Feb 2019 | WO |
2019068128 | Apr 2019 | WO |
2019071313 | Apr 2019 | WO |
Entry |
---|
Boston Dynamics: “Introducing Spot (previously SpotMini)”, Jun. 28, 2016, YouTube video, 1 page (screenshot of video); video retrieved at <https://www.youtube.com/watch?v=tf7IEVTDjng>. |
Delgado, R. et al.: “Development and Control of an Omnidirectional Mobile Robot on an EtherCAT Network”, International Journal of Applied Engineering Research, vol. 11, No. 21, 2016, pp. 10586-10592, XP055574484 *. |
Dorfler, K. et al.: “Mobile Robotic Brickwork ', Automation of a Discrete Robotic Fabrication Process Using an Autonomous Mobile Robot Robotic Fabrication in Architecture”, Art and Design 2016, Feb. 4, 2016 (Feb. 4, 2016), pp. 204-217, XP055567451 *. |
Egerstedt, M. et al.: “Control of Mobile Platforms using a Virtual Vehicle Approach”, IEEE Transactions on Automatic Control, vol. 46, No. 11, Nov. 2001 (Nov. 1, 2001), XP055567515 *. |
Examination Report dated Apr. 18, 2021 in GCC Patent Application No. 2018-35644, 5 pages. |
Examination Report dated Apr. 30, 2021 in GCC Patent Application No. 2018-35643, 3 pages. |
Examination Report dated Jun. 29, 2021 for India Patent Application No. 201927004006, 6 pages. |
Examination Report dated Sep. 30, 2021 for Australian Patent Application No. 2017295316, 3 pages. |
Extended European Search Report dated Jun. 4, 2021 for European Patent Application No. 18865644.1, 7 pages. |
Extended European Search Report dated Mar. 16, 2021 for European Patent Application No. 18834565.6, 19 pages. |
Extended European Search Report dated Mar. 17, 2021 for European Patent Application No. 18835861.8, 12 pages. |
Extended European Search Report dated Mar. 18, 2021 for European Patent Application No. 18834673.8, 14 pages. |
Extended European Search Report dated Mar. 18, 2021 for European Patent Application No. 18834893.2, 12 pages. |
Extended European Search Report dated Mar. 18, 2021 for European Patent Application No. 18835737.0, 10 pages. |
Extended European Search Report dated Mar. 30, 2021 for European Patent Application No. 18845794.9, 13 pages. |
Extended European Search Report dated Mar. 5, 2021 for European Patent Application No. 18828425.1, 7 pages. |
Fastbrick Robotics, Fastbrick Robotics: Hadrian 105 First Look Revealed, Nov. 16, 2015 (Nov. 16, 2015), XP054978174, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=7Zw7qHxMtrY> [retrieved on Nov. 16, 2015] *. |
Fastbrick Robotics: Hadrian 105 Demonstrative Model Animation, Jun. 29, 2015 (Jun. 29, 2015), XP054979424, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=Rebqcsb61gY> [retrieved on Mar. 7, 2018] *. |
Fastbrick Robotics: Hadrian 105 Time Lapse, Fastbrick Robotics Time Lapse, May 22, 2016 (May 22, 2016), XP054978173, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=4YcrO8ONcfY> [retrieved on May 22, 2016] *. |
Fastbrick Robotics: Hadrian X Digital Construction System, published on Sep. 21, 2016 <URL: https://www.youtube.com/watch?v=5bW1vuCgEaA >. |
Feng, C. et al.: “Vision Guided Autonomous Robotic Assembly and as-built Scanning on Unstructured Construction Sites”, Automation in Construction, vol. 59, Nov. 2015 (Nov. 1, 2015), pp. 128-138, XP055567454 *. |
Gander H et al: “Application of a floating point digital signal processor to a dynamic robot measurement system”, Instrumentation and Measurement Technology Conference, 1994. IMTC/94. Conference Proceedings. 10th Anniversary. Advanced Technologies in I & M., 1994 IEEE Hamamatsu, Japan May 10-12, 1994, New York, NY, USA, IEEE, May 10, 1994 (May 10, 1994), pp. 372-375, XP010121924, DOI: 10.1109/IMTC.1994.352046, ISBN: 978-0-7803-1880-9, *whole document*. |
Gao, X. et al.: “Complete Solution Classification for the Perspective-Three-Point Problem”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, No. 8, Aug. 2003 (Aug. 1, 2003), pp. 930-943, XP011099374*. |
Garrido, S. et al., “FM2: A real-time fast marching sensor based motion planner”, Advanced Intelligent Mechatronics, 2007 IEEE/ASME International Conference on, IEEE, PI, Sep. 1, 2007 (Sep. 1, 2007), pp. 1-6. |
Giftthaler, M. et al., “Efficient Kinematic Planning for Mobile Manipulators with Non-holonomic Constraints Using Optimal Control”, 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, May 29-Jun. 3, 2017. |
Heintze, H., “Design and Control of a Hydraulically Actuated Industrial Brick Laying Robot,” 264 pages. |
Heintze, J. et al., “Controlled hydraulics for a direct drive brick laying robot,” Automation in Construction 5 (1996), pp. 23-29. |
Helm, V. et al.: “Mobile Robotic Fabrication on Construction Sites: dimRob”, IEEE /RSJ International Conference on Intelligent Robots and Systems, Oct. 7, 2012 (Oct. 7, 2012), Vilamoura, Portugal, pp. 4335-4341, XP032287463 *. |
http://www.new-technologies.org/ECT/Other/brickrob.htm. “Emerging Construction Technologies.” Dec. 1, 2006. |
Huang, S. et al., “Applying High-Speed Vision Sensing to an Industrial Robot for High-Performance Position Regulation under Uncertainties,” Sensors, 2016, 16, 1195, 15 pages. |
International Preliminary Report on Patentability for International Application No. PCT/AU2017/050731; dated Jan. 15, 2019; 5 pages. |
International Preliminary Report on Patentability for International Application No. PCT/AU2017/050738; dated Jan. 15, 2019; 13 pages. |
International Preliminary Report on Patentability for International Application No. PCT/AU2017/050739; dated Jan. 15, 2019; 6 pages. |
International Preliminary Report on Patentability for International Application No. PCT/AU2018/050733; dated Jan. 21, 2020; 6 pages. |
International Preliminary Report on Patentability for International Application No. PCT/AU2018/050734; dated Jan. 21, 2020; 9 pages. |
International Preliminary Report on Patentability for International Application No. PCT/AU2018/050737; dated Jan. 21, 2020; 6 pages. |
International Preliminary Report on Patentability for International Application No. PCT/AU2018/050739; dated Jan. 21, 2020; 6 pages. |
International Preliminary Report on Patentability for International Application No. PCT/AU2018/050740; dated Jan. 21, 2020; 6 pages. |
International Search Report and Written Opinion for International Application No. PCT/AU2017/050730; dated Aug. 23, 2017; 17 pages. |
International Search Report and Written Opinion for International Application No. PCT/AU2017/050731; dated Aug. 31, 2017; 8 pages. |
International Search Report and Written Opinion for International Application No. PCT/AU2017/050738; dated Oct. 17, 2017; 19 pages. |
International Search Report and Written Opinion for International Application No. PCT/AU2017/050739; dated Sep. 28, 2017; 9 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/AU19/50742; dated Sep. 23, 2019; 5 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/AU19/50743; dated Oct. 1, 2019; 10 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/AU20/50367; dated Jun. 29, 2020; 15 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/AU20/50368; dated Jun. 25, 2020; 11 pages. |
Kazemi, M. et al.: “Path Planning for Image-based Control of Wheeled Mobile Manipulators”, 2012 IEEE /RSJ International Conference on Intelligent Robots and Systems, Oct. 7, 2012 (Oct. 7, 2012), Vilamoura, Portugal, XP055567470 *. |
Kleinigger, M. et al.: “Application of 6-DOF sensing for robotic disturbance compensation”, Automation Science and Engineering (CASE), 2010 IEEE Conference on, IEEE, Piscataway, NJ, USA, Aug. 21, 2010 (Aug. 21, 2010, pp. 344-349, XP031762876, ISBN: 978-1-4244-5477-1, *abstract*, *sections 1 to 3*. |
Kleinkes, M. et al.: “Laser Tracker and 6DoF measurement strategies in industrial robot applications”, CMSC 2011: Coordinate Metrology System Conference, Jul. 25, 2011 (Jul. 25, 2011), XP055456272 *. |
Koren et al.: “End-effector guidance of robot arms”, CIRP Annals—Manufacturing Technology, vol. 36, No. 1, 1987, pp. 289-292, XP055456270 *. |
Kwon, S. et al., “On the Coarse/Fine Dual-Stage Manipulators with Robust Perturbation Compensator,” IEEE, May 21-26, 2001, pp. 121-126. |
Kyle in CMSC: Charlotte—Concord, Jul. 21-25, 2008. |
Latteur, et al., “Drone-Based Additive Manufacturing of Architectural Structures,” IASS Symposium 2015, Amsterdam, The Netherlands; Aug. 17-20, 2015; 12 pages. |
Lippiello, V. et al.: “Position-Based Visual Servoing in Industrial Multirobot Cells Using a Hybrid Camera Configuration”, IEEE Transactions on Robotics, vol. 23, No. 1, Feb. 2007 (Feb. 1, 2007), XP011163518 *. |
Liu, Z. et al.: “EtherCAT Based Robot Modular Joint Controller”, Proceeding of the 2015 IEEE International Conference on Information and Automation, Aug. 2015 (Aug. 1, 2015), Lijiang, China, pp. 1708-1713, XP033222650 *. |
Mercedes-Benz: “Mercedes-Benz “Chicken” Magic Body Control TV commercial”, YouTube, Sep. 23, 2013, 1 page. Retrieved from the internet: <https://www.youtube.com/watch?v+nLwML2PagbY>. |
Notice of Acceptance of Patent Application received for priority Australian Patent Application No. 2017294796, dated May 15, 2019 (158 pages). |
Office Action dated Apr. 21, 2021 in Japanese Patent Application No. 2019-523148, 4 pages. |
Office Action dated Aug. 20, 2021 for Japanese Patent Application No. 2019-523147, 3 pages. |
Office Action dated Jul. 5, 2021 for Japanese Patent Application No. 2019-523145, 4 pages. |
Office Action dated May 24, 2021 for Chinese Patent Application No. 201880067520.0, 8 pages. |
Office Action dated Sep. 3, 2021 for Chinese Patent Application No. 201780056460.8, 9 pages. |
Partial Supplementary European Search Report dated Apr. 14, 2020 in European Patent Application No. 17826696.1, 10 pages. |
Pless, R .: “Using Many Cameras as One”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Jun. 18, 2003 (Jun. 18, 2003), Madison , WI, USA, pp. 1-7, XP055564465 *. |
Posada et al.: “High accurate robotic drilling with external sensor and compliance model-based compensation”, Robotics and Automation (ICRA), 2016 IEEE International Conference, May 16, 2016 (May 16, 2016), pp. 3901-3907, XP032908649 *. |
Pritschow, G. et al., “A Mobile Robot for On-Site Construction of Masonry,” Inst. of Control Tech. for Machine Tools and Manuf. Units, pp. 1701-1707. |
Pritschow, G. et al., “Application Specific Realisation of a Mobile Robot for On-Site Construction of Masonry,” Automation and Robotics in Construction XI, 1994, pp. 95-102. |
Pritschow, G. et al., “Configurable Control System of a Mobile Robot for On-Site Construction of Masonry,” Inst. of Control Technology for Machine Tools and Manuf. Units, pp. 85-92. |
Pritschow, G. et al., “Technological aspects in the development of a mobile bricklaying robot,” Automation in Construction 5 (1996), pp. 3-13. |
Riegl Laser Measurement Systems. “Long Range & High Accuracy 3D Terrestrial Laser Scanner System—LMS-Z420i.” pp. 1-4. |
Salcudean, S. et al., “On the Control of Redundant Coarse-Fine Manipulators,” IEEE, pp. 1834-1840. |
Sandy, T. et al.: “Autonomous Repositioning and Localization of an In Situ Fabricator”, 2016 IEEE International Conference on Robotics and Automation (ICRA), May 16, 2016 (May 16, 2016), pp. 2852-2858, XP055567467 *. |
Siciliano, B. et al., “Robotics—chapters 2-4” Robotics, Dec. 31, 2009 (Dec. 31, 2009), Springer London, London, pp. 39-189. |
Skibniewski, M.J., “Current Status of Construction Automation and Robotics in the United States of America,” The 9th International Symposium on Automation and Robotics in Construction, Jun. 3-5, 1992, 8 pages. |
Trimble ATS. “Advanced Tracking Sensor (ATS) with target recognition capability for stakeless machine control survey applications.” pp. 1-4. |
Vincze, M. et al., “A Laser Tracking System to Measure Position and Orientation of Robot End Effectors Under Motion,” The International Journal of Robotics Research, vol. 13, No. 4, Aug. 1994, pp. 305-314. |
Warszawski, A. et al., “Implementation of Robotics in Building: Current Status and Future Prospects,” Journal of Construction Engineering and Management, Jan./Feb. 1998, 124(1), pp. 31-41. |
Willmann, J. et al.: “Robotic Timber Construction—Expanding Additive Fabrication to New Dimensions”, Automation in Construction, vol. 61, 2016, pp. 16-23, XP029310896 *. |
Xu, H. et al.: “Uncalibrated Visual Servoing of Mobile Manipulators with an Eye-to-hand Camera”, Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics, Dec. 3, 2016 (Dec. 3, 2016), Qingdao, China, pp. 2145-2150, XP033071767 *. |
Yu, S.N. et al., “Feasibility verification of brick-laying robot using manipulation trajectory and the laying pattern optimization,” Dept. of Meeh. Eng., Automation in Construction (2009), pp. 644-655. |
Zaki, T., “Parametric modeling of Blackwall assemblies for automated generation of shop drawings and detailed estimates using BIM”, Master's Thesis, May 23, 2016, pp. 1-151. |
Number | Date | Country | |
---|---|---|---|
20220058300 A1 | Feb 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16823596 | Mar 2020 | US |
Child | 17382136 | US | |
Parent | 16317792 | US | |
Child | 16823596 | US |