Compliant printed flexible circuit

Information

  • Patent Grant
  • 9414500
  • Patent Number
    9,414,500
  • Date Filed
    Thursday, May 27, 2010
    14 years ago
  • Date Issued
    Tuesday, August 9, 2016
    7 years ago
Abstract
A compliant printed flexible circuit including a flexible polymeric film and at least one dielectric layer bonded to the polymeric film with recesses corresponding to a target circuit geometry. A conductive material is printed in at least a portion of the recesses to form a circuit geometry. At least one dielectric covering layer is printed over at least the circuit geometry. Openings can be printed in the dielectric covering layer to provide access to at least a portion of the circuit geometry.
Description
TECHNICAL FIELD

The present application relates to a high performance compliant printed flexible circuit that merges the long-term performance advantages of flexible circuits, with the flexibility of additive printing technology.


BACKGROUND OF THE INVENTION

Traditional printed circuits are often constructed in what is commonly called rigid or flexible formats. The rigid versions are used in nearly every electronic system, where the printed circuit board (PCB) is essentially a laminate of materials and circuits that when built is relatively stiff or rigid and cannot be bent significantly without damage.


Flexible circuits have become very popular in many applications where the ability to bend the circuit to connect one member of a system to another has some benefit. These flexible circuits are made in a very similar fashion as rigid PCB's, where layers of circuitry and dielectric materials are laminated. The main difference is the material set used for construction. Typical flexible circuits start with a polymer film that is clad, laminated, or deposited with copper. A photolithography image with the desired circuitry geometry is printed onto the copper, and the polymer film is etched to remove the unwanted copper. Flexible circuits are very commonly used in many electronic systems such as notebook computers, medical devices, displays, handheld devices, autos, aircraft and many others.


Flexible circuits are processed similar to that of rigid PCB's with a series of imaging, masking, drilling, via creation, plating, and trimming steps. The resulting circuit can be bent, without damaging the copper circuitry. Flexible circuits are solderable, and can have devices attached to provide some desired function. The materials used to make flexible circuits can be used in high frequency applications where the material set and design features can often provide better electrical performance than a comparable rigid circuit.


Flexible circuits are connected to electrical system in a variety of ways. In most cases, a portion of the circuitry is exposed to create a connection point. Once exposed, the circuitry can be connected to another circuit or component by soldering, conductive adhesive, thermosonic welding, pressure or a mechanical connector. In general, the terminals are located on an end of the flexible circuit, where edge traces are exposed or in some cases an area array of terminals are exposed. Often there is some sort of mechanical enhancement at or near the connection to prevent the joints from being disconnected during use or flexure.


In general, flexible circuits are expensive compared to some rigid PCB products. Flexible circuits also have some limitations regarding layer count or feature registration, and are therefore generally only used for small or elongated applications.


BRIEF SUMMARY OF THE INVENTION

The present disclosure is directed to a high performance compliant printed flexible circuit (“CFPC”) that will enable next generation electrical performance. The present disclosure merges the long-term performance advantages of flexible circuits, with the flexibility of additive printing technology.


This present compliant printed flexible circuit enables internal and/or external compliance to enhance the mechanical performance of the circuit. Electrical devices can be printed on the CFPC, such as for example, ground planes, power planes, transistors, capacitors, resistors, RF antennae, shielding, filters, signal or power altering and enhancing devices, memory devices, embedded IC, and the like.


The present CFPC can be produced digitally, without tooling or costly artwork. The CFPC can be produced as a “Green” product, with dramatic reductions in environmental issues related to the production of conventional flexible circuits.


Contact members can be printed in a variety of shapes and sizes, depending on the terminal structure on the circuit members. The contact members can be positioned at a variety of locations, heights, or spacing to match the parameters of existing connections, allowing replacement of existing interconnect connectors, without changing hardware or the PCB. In some embodiments, the tips of the contact members are treated with specialty materials to increase long term reliability, such as for a test socket application.


The use of additive printing processes permits the material set in a given layer to vary. Traditional PCB and flex circuit fabrication methods take sheets of material and stack them up, laminate, and/or drill. The materials in each layer are limited to the materials in a particular sheet. Additive printing technologies permit a wide variety of materials to be applied on a layer with a registration relative to the features of the previous layer. Selective addition of conductive, non-conductive, or semi-conductive materials at precise locations to create a desired effect has the major advantages in tuning impedance or adding electrical function on a given layer. Tuning performance on a layer by layer basis relative to the previous layer greatly enhances electrical performance.


Since the individual contact members are preferably printed, the present CFPC can be removed and replaced without having to handle or assemble individual contact members. The circuit members on the CFPC can be configured to mate with existing or custom connectors in a LIF, ZIF, or plugged connector configuration, while maintaining or improving signal integrity.


One embodiment is directed to a compliant printed flexible circuit including a flexible polymeric film and at least one dielectric layer bonded to the polymeric film with recesses corresponding to a target circuit geometry. A conductive material is printed in at least a portion of the recesses to form a circuit geometry. At least one dielectric covering layer is printed over at least the circuit geometry. At least one opening in the dielectric covering layer provides access to at least a portion of the circuit geometry.


A conductive plating layer is optionally applied on at least a portion of the circuit geometry. The conductive material can be sintered conductive particles or a conductive ink. In one embodiment, a compliant material is located between the polymeric film and at least a portion of the circuit geometry. The compliant material is preferably aligned with the opening in the dielectric layer.


The resulting circuit geometry preferably has conductive traces that have substantially rectangular cross-sectional shapes, corresponding to the recesses. The use of additive printing processes permit conductive material, non-conductive material, and semi-conductive material to be located on a single layer.


In one embodiment, pre-formed conductive trace materials are located in the recesses. The recesses are than plated to form conductive traces with substantially rectangular cross-sectional shapes. In another embodiment, a conductive foil is pressed into at least a portion of the recesses. The conductive foil is sheared along edges of the recesses. The excess conductive foil not located in the recesses is removed and the recesses are plated to form conductive traces with substantially rectangular cross-sectional shapes.


At least one electrical device is optionally printed on a dielectric layer or the polymeric film and electrically coupled to at least a portion of the circuit geometry. Optical quality materials can be printed or deposited in at least a portion of the recesses to form optical circuit geometries. Alternatively, optical fibers can be located in the recesses.


Vias can be printed on the compliant printed flexible circuit to electrically couple adjacent layers of the circuit geometry. One or more contact members electrically coupled to at least a portion of the circuit geometry are printed to extend above the dielectric covering layer. The compliant printed flexible circuit is optionally singulated adjacent at least one of the contact members.


In one embodiment, at least one contact member extends along a first surface of the compliant printed flexible circuit and at least one printed compliant member is located on a second surface of the compliant printed flexible circuit opposite at least one of the contact members.


The present disclosure is also directed to an edge connector on the compliant printed flexible circuit. A first portion of the circuit geometry extends beyond the dielectric covering layer. A compliant material is located along a surface of the first portion of the circuit geometry. A second portion of the circuit geometry is located on top of the compliant material.


The present disclosure is also directed to an electrical interconnect assembly. A housing retains the compliant printed flexible circuit. Electrical contacts on a first circuit member are compressively engaged with contact members located along a first surface of the compliant printed flexible circuit. Electrical contacts on a second circuit member are compressively engaged with contact members located along a second surface of the compliant printed flexible circuit. The first and second circuit members are selected from one of a dielectric layer, a printed circuit board, a flexible circuit, a bare die device, an integrated circuit device, organic or inorganic substrates, or a rigid circuit.


The present disclosure is also directed to a method of making a compliant printed flexible circuit. At least one dielectric layer is bonded to a flexible polymeric film to create recesses corresponding to a target circuit geometry. A conductive material is printed in at least a portion of the recesses to form a circuit geometry. At least one dielectric covering layer is printed over at least the circuit geometry.


The dielectric covering layer can be printed with at least one opening that provides access to at least a portion of the circuit geometry. The conductive material is preferably plated. The conductive material, compliant materials, electrical devices, optical quality material, and the contact members are all preferably printed.


The present disclosure is also directed to a method of making an edge connector for a compliant printed flexible circuit. A first portion of the circuit geometry is printed beyond the dielectric covering layer. A compliant material is printed along a surface of the first portion of the circuit geometry. A second portion of the circuit geometry is printed on top of the compliant material.


The present disclosure is also directed to a method of making an electrical interconnect assembly. A compliant printed flexible circuit is retained in a housing. Electrical contacts on a first circuit member are compressively coupled with contact members located along a first surface of the compliant printed flexible circuit, and electrical contacts on a second circuit member are compressively coupled with contact members located along a second surface of the compliant printed flexible circuit.


The present disclosure is also directed to several additive processes that combine the mechanical or structural properties of a polymer material, while adding metal materials in an unconventional fashion, to create electrical paths that are refined to provide electrical performance improvements. By adding or arranging metallic particles, conductive inks, plating, or portions of traditional alloys, the compliant printed flexible circuit reduces parasitic electrical effects and impedance mismatch, potentially increasing the current carrying capacity.


The present compliant printed flexible circuit can serve as a platform to add passive and active circuit features to improve electrical performance or internal function and intelligence. For example, electrical features and devices are printed onto the interconnect assembly using, for example, inkjet printing technology or other printing technologies. The ability to enhance the compliant printed flexible circuit, such that it mimics aspects of an IC package and a PCB, allows for reductions in complexity for the IC package and the PCB, while improving the overall performance of the interconnect assembly.


The printing process permits the fabrication of functional structures, such as conductive paths and electrical devices, without the use of masks or resists. Features down to about 10 microns can be directly written in a wide variety of functional inks, including metals, ceramics, polymers and adhesives, on virtually any substrate—silicon, glass, polymers, metals and ceramics. The substrates can be planar and non-planar surfaces. The printing process is typically followed by a thermal treatment, such as in a furnace or with a laser, to achieve dense functionalized structures.


The compliant printed flexible circuit can be configured with conductive traces that reduce or redistribute the terminal pitch, without the addition of an interposer or daughter substrate. Grounding schemes, shielding, electrical devices, and power planes can be added to the interconnect assembly, reducing the number of connections to the PCB and relieving routing constraints while increasing performance.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING


FIG. 1 is a cross-sectional view of a method of making a compliant printed flexible circuit in accordance with an embodiment of the present disclosure.



FIG. 2 illustrates a printed circuit geometry on the compliant printed flexible circuit of FIG. 1.



FIG. 3 illustrates the compliant printed flexible circuit of FIG. 1.



FIG. 4 illustrates a compliant printed flexible circuit with printed compliant features in accordance with an embodiment of the present disclosure.



FIG. 5 illustrates a compliant printed flexible circuit with optical features in accordance with an embodiment of the present disclosure.



FIG. 6 illustrates an alternate compliant printed flexible circuit with optical features in accordance with an embodiment of the present disclosure.



FIG. 7 illustrates an alternate compliant printed flexible circuit with printed vias in accordance with an embodiment of the present disclosure.



FIG. 8 illustrates an alternate compliant printed flexible circuit with printed electrical devices in accordance with an embodiment of the present disclosure.



FIG. 9 illustrates an alternate compliant printed flexible circuit with printed compliant electrical pads to plug into another connector in accordance with an embodiment of the present disclosure.



FIG. 10 illustrates a method of making a compliant printed flexible circuit in accordance with an embodiment of the present disclosure.



FIGS. 11 and 12 illustrate other aspects of the method of FIG. 10.



FIG. 13 illustrates a compliant printed flexible circuit made in accordance with the method of FIGS. 10, 11 and 12.



FIG. 14 illustrates a compliant printed flexible circuit incorporated into a socket assembly in accordance with an embodiment of the present disclosure.



FIG. 15 illustrates an alternate compliant printed flexible circuit in accordance with an embodiment of the present disclosure.



FIG. 16 illustrates an alternate compliant printed flexible circuit in accordance with an embodiment of the present disclosure.



FIG. 17 illustrates an alternate compliant printed flexible circuit in accordance with an embodiment of the present disclosure.



FIG. 18 illustrates an alternate compliant printed flexible circuit in accordance with an embodiment of the present disclosure.





DETAILED DESCRIPTION OF THE INVENTION

A complaint printed flexible circuit according to the present disclosure may permit fine contact-to-contact spacing (pitch) on the order of less than 1.0 mm pitch, and more preferably a pitch of less than about 0.7 millimeter, and most preferably a pitch of less than about 0.4 millimeter. Such fine pitch compliant printed flexible circuits are especially useful for communications, wireless, and memory devices.


The present compliant printed flexible circuit can be configured as a low cost, high signal performance interconnect assembly, which has a low profile that is particularly useful for desktop and mobile PC applications. IC devices to be installed and uninstalled without the need to reflow solder. The solder-free electrical connection of the IC devices is environmentally friendly.



FIG. 1 is a side cross-sectional view of a method for replicating a flexible circuit member using additive processes in accordance with an embodiment of the present disclosure. Flexible polymeric film 50 includes one or more dielectric layers 52, 54 configured to include recesses 56 corresponding to a desired circuit geometry. In one embodiment, the dielectric layers 52, 54 are printed or placed on surface 58 of the flexible polymeric film 50. The recesses 56 can be defined by printing, embossing, imprinting, chemical etching with a printed mask, or a variety of other techniques. A number of different materials are used as the flexible polymeric film 50 including: polyester (PET), polyimide (PI), polyethylene napthalate (PEN), Polyetherimide (PEI), along with various fluoropolymers (FEP) and copolymers. Polyimide films are the most prevalent due to their advantageous electrical, mechanical, chemical, and thermal properties.


As illustrated in FIG. 2, a metalizing layer is deposited in the recesses 56 to create circuit geometry 62. Metalizing can be performed by printing conductive particles followed by a sintering step, by printing conductive inks, or a variety of other techniques. The resulting metalized layer is preferably plated to improve conductive properties. The circuit geometry 62 is preferably of copper or similar metallic materials such as phosphor bronze or beryllium-copper. The plating is preferably a corrosion resistant metallic material such as nickel, gold, silver, palladium, or multiple layers thereof.


As illustrated in FIG. 3, another dielectric or insulating layer 64 is applied to the circuit geometry 62 and the dielectric layer 54. The nature of the printing process allows for selective application of dielectric layer 64 to leave selected portions 66 of the circuit geometry 62 expose if desired. The resulting compliant printed flexible circuit 68 can potentially be considered entirely “green” with limited or no chemistry used to produce beyond the direct write materials.


The recesses 56 in the layers 52, 54, 64 permit control of the location, cross section, material content, and aspect ratio of the conductive traces in the circuit geometry 62. Maintaining the conductive traces with a cross-section of 1:1 or greater provides greater signal integrity than traditional subtractive trace forming technologies. For example, traditional methods take a sheet of a given thickness and etches the material between the traces away to have a resultant trace that is usually wider than it is thick. The etching process also removes more material at the top surface of the trace than at the bottom, leaving a trace with a trapezoidal cross-sectional shape, degrading signal integrity in some applications. Using the recesses 56 to control the aspect ratio of the conductive traces results in a more rectangular or square cross-section of the conductive traces in the circuit geometry 62, with the corresponding improvement in signal integrity.


In another embodiment, pre-patterned or pre-etched thin conductive foil circuit traces are transferred to the recesses 56. For example, a pressure sensitive adhesive can be used to retain the copper foil circuit traces in the recesses 56. The trapezoidal cross-sections of the pre-formed conductive foil traces are then post-plated. The plating material fills the open spaces in the recesses 56 not occupied by the foil circuit geometry, resulting in a substantially rectangular or square cross-sectional shape corresponding to the shape of the recesses 56.


In another embodiment, a thin conductive foil is pressed into the recesses 56, and the edges of the recesses 56 acts to cut or shear the conductive foil. The process locates a portion of the conductive foil in the trenches 56, but leaves the negative pattern of the conductive foil not wanted outside and above the trenches 56 for easy removal. Again, the foil in the trenches 56 is preferably post plated to add material to increase the thickness of the conductive traces in the circuit geometry 62 and to fill any voids left between the conductive foil and the recesses 56.


The dielectric layers 52, 54, 64 may be constructed of any of a number of dielectric materials that are currently used to make sockets, semiconductor packaging, and printed circuit boards. Examples may include UV stabilized tetrafunctional epoxy resin systems referred to as Flame Retardant 4 (FR-4); bismaleimide-triazine thermoset epoxy resins referred to as BT-Epoxy or BT Resin; and liquid crystal polymers (LCPs), which are polyester polymers that are extremely unreactive, inert and resistant to fire. Other suitable plastics include phenolics, polyesters, and Ryton® available from Phillips Petroleum Company.


In one embodiment, one or more of the layer 52, 54, 64 are designed to provide electrostatic dissipation or to reduce cross-talk between the traces of the circuit geometry 62. An efficient way to prevent electrostatic discharge (“ESD”) is to construct one of the layers from materials that are not too conductive but that will slowly conduct static charges away. These materials preferably have resistivity values in the range of 105 to 1011 Ohm-meters.



FIG. 4 illustrates an alternate compliant printed flexible circuit 80 in accordance with an embodiment of the present disclosure. Dielectric layer 82 includes openings 84 into which compliant material 86 is printed before formation of circuit geometry 88. The compliant printed material 86 improves reliability during flexure of exposed portion 90 the circuit geometry 88.



FIG. 5 illustrates an alternate compliant printed flexible circuit 100 in accordance with an embodiment of the present disclosure. Optical fibers 102 are located between layers 104, 106 of dielectric material. In one embodiment, optical fibers 102 is positioned over printed compliant layer 108, and dielectric layer 110 is printed over and around the optical fibers 102. A compliant layer 112 is preferably printed above the optical fiber 102 as well. The compliant layers 108, 112 support the optical fibers 102 during flexure. In another embodiment, the dielectric layer 110 is formed or printed with recesses into which the optical fibers 102 are deposited.


In another embodiment, optical quality materials 114 are printed during printing of the compliant printed flexible circuit 100. The optical quality material 114 and/or the optical fibers 102 comprise optical circuit geometries. The printing process allows for deposition of coatings in-situ that enhance the optical transmission or reduce loss. The precision of the printing process reduces misalignment issues when the optical materials 114 are optically coupled with another optical structure.



FIG. 6 illustrates another embodiment of a present compliant printed flexible circuit 140 in accordance with an embodiment of the present disclosure. Embedded coaxial RF circuits 142 or printed micro strip RF circuits 144 are located with dielectric/metal layers 146. These RF circuits 142, 144 are preferably created by printing dielectrics and metallization geometry.


As illustrated in FIG. 7, use of additive processes allows the creation of a compliant printed flexible circuit 160 with inter-circuit, 3D lattice structures 162 having intricate routing schemes. Vias 164 can be printed with each layer, without drilling.



FIG. 8 illustrates a compliant printed flexible circuit 180 with printed electrical devices 182. The electrical devices 182 can include passive or active functional elements. Passive structure refers to a structure having a desired electrical, magnetic, or other property, including but not limited to a conductor, resistor, capacitor, inductor, insulator, dielectric, suppressor, filter, varistor, ferromagnet, and the like. In the illustrated embodiment, electrical devices 182 include printed LED indicator 184 and display electronics 186. Geometries can also be printed to provide capacitive coupling 188.


The electrical devices 182 are preferably printed during construction of the interconnect assembly 100. The electrical devices 182 can be ground planes, power planes, electrical connections to other circuit members, dielectric layers, conductive traces, transistors, capacitors, resistors, RF antennae, shielding, filters, signal or power altering and enhancing devices, memory devices, embedded IC, and the like. For example, the electrical devices 182 can be formed using printing technology, adding intelligence to the compliant printed flexible circuit 180. Features that are typically located on other circuit members can be incorporated into the flexible circuit 180 in accordance with an embodiment of the present disclosure.


The availability of printable silicon inks provides the ability to print electrical devices 90, 92, such as disclosed in U.S. Pat. No. 7,485,345 (Renn et al.); U.S. Pat. No. 7,382,363 (Albert et al.); U.S. Pat. No. 7,148,128 (Jacobson); U.S. Pat. No. 6,967,640 (Albert et al.); U.S. Pat. No. 6,825,829 (Albert et al.); U.S. Pat. No. 6,750,473 (Amundson et al.); U.S. Pat. No. 6,652,075 (Jacobson); U.S. Pat. No. 6,639,578 (Comiskey et al.); U.S. Pat. No. 6,545,291 (Amundson et al.); U.S. Pat. No. 6,521,489 (Duthaler et al.); U.S. Pat. No. 6,459,418 (Comiskey et al.); U.S. Pat. No. 6,422,687 (Jacobson); U.S. Pat. No. 6,413,790 (Duthaler et al.); U.S. Pat. No. 6,312,971 (Amundson et al.); U.S. Pat. No. 6,252,564 (Albert et al.); U.S. Pat. No. 6,177,921 (Comiskey et al.); U.S. Pat. No. 6,120,588 (Jacobson); U.S. Pat. No. 6,118,426 (Albert et al.); and U.S. Pat. Publication No. 2008/0008822 (Kowalski et al.), which are hereby incorporated by reference. In particular, U.S. Pat. No. 6,506,438 (Duthaler et al.) and U.S. Pat. No. 6,750,473 (Amundson et al.), which are incorporated by reference, teach using ink-jet printing to make various electrical devices, such as, resistors, capacitors, diodes, inductors (or elements which may be used in radio applications or magnetic or electric field transmission of power or data), semiconductor logic elements, electro-optical elements, transistor (including, light emitting, light sensing or solar cell elements, field effect transistor, top gate structures), and the like.


The electrical devices 202 can also be created by aerosol printing, such as disclosed in U.S. Pat. No. 7,674,671 (Renn et al.); U.S. Pat. No. 7,658,163 (Renn et al.); U.S. Pat. No. 7,485,345 (Renn et al.); U.S. Pat. No. 7,045,015 (Renn et al.); and U.S. Pat. No. 6,823,124 (Renn et al.), which are hereby incorporated by reference.


Printing processes are preferably used to fabricate various functional structures, such as conductive paths and electrical devices, without the use of masks or resists. Features down to about 10 microns can be directly written in a wide variety of functional inks, including metals, ceramics, polymers and adhesives, on virtually any substrate—silicon, glass, polymers, metals and ceramics. The substrates can be planar and non-planar surfaces. The printing process is typically followed by a thermal treatment, such as in a furnace or with a laser, to achieve dense functionalized structures.


Ink jet printing of electronically active inks can be done on a large class of substrates, without the requirements of standard vacuum processing or etching. The inks may incorporate mechanical, electrical or other properties, such as, conducting, insulating, resistive, magnetic, semi conductive, light modulating, piezoelectric, spin, optoelectronic, thermoelectric or radio frequency.


A plurality of ink drops are dispensed from the print head directly to a substrate or on an intermediate transfer member. The transfer member can be a planar or non-planar structure, such as a drum. The surface of the transfer member can be coated with a non-sticking layer, such as silicone, silicone rubber, or Teflon.


The ink (also referred to as function inks) can include conductive materials, semi-conductive materials (e.g., p-type and n-type semiconducting materials), metallic material, insulating materials, and/or release materials. The ink pattern can be deposited in precise locations on a substrate to create fine lines having a width smaller than 10 microns, with precisely controlled spaces between the lines. For example, the ink drops form an ink pattern corresponding to portions of a transistor, such as a source electrode, a drain electrode, a dielectric layer, a semiconductor layer, or a gate electrode.


The substrate can be an insulating polymer, such as polyethylene terephthalate (PET), polyester, polyethersulphone (PES), polyimide film (e.g. Kapton, available from DuPont located in Wilmington, Del.; Upilex available from Ube Corporation located in Japan), or polycarbonate. Alternatively, the substrate can be made of an insulator such as undoped silicon, glass, or a plastic material. The substrate can also be patterned to serve as an electrode. The substrate can further be a metal foil insulated from the gate electrode by a non-conducting material. The substrate can also be a woven material or paper, planarized or otherwise modified on at least one surface by a polymeric or other coating to accept the other structures.


Electrodes can be printed with metals, such as aluminum or gold, or conductive polymers, such as polythiophene or polyaniline. The electrodes may also include a printed conductor, such as a polymer film comprising metal particles, such as silver or nickel, a printed conductor comprising a polymer film containing graphite or some other conductive carbon material, or a conductive oxide such as tin oxide or indium tin oxide.


Dielectric layers can be printed with a silicon dioxide layer, an insulating polymer, such as polyimide and its derivatives, poly-vinyl phenol, polymethylmethacrylate, polyvinyldenedifluoride, an inorganic oxide, such as metal oxide, an inorganic nitride such as silicon nitride, or an inorganic/organic composite material such as an organic-substituted silicon oxide, or a sol-gel organosilicon glass. Dielectric layers can also include a bicylcobutene derivative (BCB) available from Dow Chemical (Midland, Mich.), spin-on glass, or dispersions of dielectric colloid materials in a binder or solvent.


Semiconductor layers can be printed with polymeric semiconductors, such as, polythiophene, poly(3-alkyl)thiophenes, alkyl-substituted oligothiophene, polythienylenevinylene, poly(para-phenylenevinylene) and doped versions of these polymers. An example of suitable oligomeric semiconductor is alpha-hexathienylene. Horowitz, Organic Field-Effect Transistors, Adv. Mater., 10, No. 5, p. 365 (1998) describes the use of unsubstituted and alkyl-substituted oligothiophenes in transistors. A field effect transistor made with regioregular poly(3-hexylthiophene) as the semiconductor layer is described in Bao et al., Soluble and Processable Regioregular Poly(3-hexylthiophene) for Thin Film Field-Effect Transistor Applications with High Mobility, Appl. Phys. Lett. 69 (26), p. 4108 (December 1996). A field effect transistor made with a-hexathienylene is described in U.S. Pat. No. 5,659,181, which is incorporated herein by reference.


A protective layer can optionally be printed onto the electrical devices. The protective layer can be an aluminum film, a metal oxide coating, a polymeric film, or a combination thereof.


Organic semiconductors can be printed using suitable carbon-based compounds, such as, pentacene, phthalocyanine, benzodithiophene, buckminsterfullerene or other fullerene derivatives, tetracyanonaphthoquinone, and tetrakisimethylanimoethylene. The materials provided above for forming the substrate, the dielectric layer, the electrodes, or the semiconductor layer are exemplary only. Other suitable materials known to those skilled in the art having properties similar to those described above can be used in accordance with the present disclosure.


The ink-jet print head preferably includes a plurality of orifices for dispensing one or more fluids onto a desired media, such as for example, a conducting fluid solution, a semiconducting fluid solution, an insulating fluid solution, and a precursor material to facilitate subsequent deposition. The precursor material can be surface active agents, such as octadecyltrichlorosilane (OTS).


Alternatively, a separate print head is used for each fluid solution. The print head nozzles can be held at different potentials to aid in atomization and imparting a charge to the droplets, such as disclosed in U.S. Pat. No. 7,148,128 (Jacobson), which is hereby incorporated by reference. Alternate print heads are disclosed in U.S. Pat. No. 6,626,526 (Ueki et al.), and U.S. Pat. Publication Nos. 2006/0044357 (Andersen et al.) and 2009/0061089 (King et al.), which are hereby incorporated by reference.


The print head preferably uses a pulse-on-demand method, and can employ one of the following methods to dispense the ink drops: piezoelectric, magnetostrictive, electromechanical, electro pneumatic, electrostatic, rapid ink heating, magneto hydrodynamic, or any other technique well known to those skilled in the art. The deposited ink patterns typically undergo a curing step or another processing step before subsequent layers are applied.


While ink jet printing is preferred, the term “printing” is intended to include all forms of printing and coating, including: pre-metered coating such as patch die coating, slot or extrusion coating, slide or cascade coating, and curtain coating; roll coating such as knife over roll coating, forward and reverse roll coating; gravure coating; dip coating; spray coating; meniscus coating; spin coating; brush coating; air knife coating; screen printing processes; electrostatic printing processes; thermal printing processes; and other similar techniques.



FIG. 9 illustrates an alternate compliant printed flexible circuit 200 with printed compliant material 202 added between circuit geometries 204, 206 to facilitate insertion of exposed circuit geometries 208, 210 into a receptacle or socket. The compliant material 202 can supplement or replace the compliance in the receptacle or socket. In one embodiment, the compliance is provided by a combination of the compliant material 202 and the exposed circuit geometries 208, 210.



FIG. 10 is a side sectional view of a method of making a compliant printed flexible circuit 250 in accordance with an embodiment of the present disclosure. Polymeric film 252 includes a plurality of cavities 254 extending through dielectric layer 256. The cavities 254 can be formed using a variety of techniques, such as molding, machining, printing, imprinting, embossing, etching, coining, and the like. Although the cavities 254 are illustrated as truncated cones or pyramids, a variety of other shapes can be used, such as for example, cones, hemispherical shapes, and the like.


As illustrated in FIG. 11, metalizing layer is printed in the cavities 254 to create contact member 258, as discussed above. As illustrated in FIG. 12, a compliant layer 260 is printed on the dielectric layer 256, followed by dielectric layer 262 establishing circuit geometry.



FIG. 13 illustrates circuit geometries 264 printed as discussed above. In one embodiment, the circuit geometries 264 are formed by depositing a conductive material in a first state in the recesses, and then processed to create a second more permanent state. For example, the metallic powder is printed according to the circuit geometry and subsequently sintered, or the curable conductive material flows into the circuit geometry and is subsequently cured. As used herein “cure” and inflections thereof refers to a chemical-physical transformation that allows a material to progress from a first form (e.g., flowable form) to a more permanent second form. “Curable” refers to an uncured material having the potential to be cured, such as for example by the application of a suitable energy source.


Second compliant layer 270 is printed on exposed surfaces 272 of the dielectric layers 262 and circuit geometries 264. The second compliant layer 270 and second dielectric layer 274 are selectively printed to permit printing of contact member 276. Alternatively, pre-fabricated contact members 276 can be bonded to the circuit geometries 264. As used herein, “bond” or “bonding” refers to, for example, adhesive bonding, solvent bonding, ultrasonic welding, thermal bonding, or any other techniques suitable for attaching adjacent layers to a substrate.


The dielectric layer 274 adjacent contact members 276 is optionally singulated to permit greater compliance. As used herein, “singulated” refers to slits, cuts, depressions, perforations, and/or points of weakness. In another embodiment, the compliant printed flexible circuit 250 is made in two portions and then bonded together.



FIG. 14 illustrates a socket assembly 300 incorporating the compliant printed flexible circuit 250 of FIG. 13, in accordance with an embodiment of the present disclosure. The dielectric layer 256 is separated from the polymeric film 252 to expose contact member 258. In the illustrated embodiment, the dielectric layer 274 is bonded to surface 302 of socket housing 304 so that contact members 276 are positioned in recess 306. First circuit member 308, such as an IC device, is positioned in the recess 306 so that the terminals 310 align with the contact members 276.


The contact members 258, 276 are optionally plated, either before or after the compliant printed flexible circuit 250 is installed in the socket housing 304. In another embodiment, the contact members 258, 276 are deformed, such as for example by coining or etching, to facilitate engagement with terminals 310 on the first circuit member 308 and/or terminal 312 on second circuit member 314.


In operation, the first circuit member 308, socket assembly 300 and the second circuit member 314 are compressively coupled so that contact member 276 electrically couples with terminal 310 and contact member 258 electrically couples with contact pad 312. Compliant layer 260 biases the contact member 276 into engagement with the terminal 310, while the compliant layer 270 biases the contact member 258 into engagement with the pad 312. The compliant layers 260, 270 also permit the contact members 276, 258 to deflect and compensate for non-planarity of the terminals 310 or the pads 312. As used herein, the term “circuit members” refers to, for example, a packaged integrated circuit device, an unpackaged integrated circuit device, a printed circuit board, a flexible circuit, a bare-die device, an organic or inorganic substrate, a rigid circuit, or any other device capable of carrying electrical current.



FIG. 15 illustrates a compliant printed flexible circuit 330 with compliant structure 332 printed to add compliance and normal force 334 external to the circuit geometry 336. For example, the compliant structure 332 can be a printed/sintering metallic spring. In another embodiment, the compliant structure 332 is a stamped or etched metallic, plastic, or overmolded leadframe that is added to the compliant printed flexible circuit 330. The compliant members 332 can optionally be singulated in tandem with the circuit geometry 336 to allow for individual contact compliance.



FIG. 16 illustrates a compliant printed flexible circuit 350 with male contact member 352 in accordance with an embodiment of the present disclosure. Contact member 352 is preferably inserted through opening 354 printed in dielectric layers 356, 358 and circuit geometry 360. The resiliency of the dielectric layers 356, 358 permits plastic deformation to permit enlarged end 362 to penetrate the opening 354 in the compliant printed flexible circuit 350. The resilience of the dielectric layers 356, 358 also permit the contact member 360 to move in all six degrees of freedom (X-Y-Z-Pitch-Roll-Yaw) to facilitate electrical coupling with first and second circuit members 364, 366.



FIG. 17 illustrates a compliant printed flexible circuit 370 with printed compliant member 372 located above contact member 374 in accordance with an embodiment of the present disclosure. The printed compliant member 372 and associated contact member 374 is preferably singulated to promote flexure and compliance.



FIG. 18 illustrates an alternate embodiment of a compliant printed flexible circuit 380 where printed compliant member 382 is located on circuit member 384. In the illustrated embodiment, secondary printed compliant member 386 is located on the compliant printed flexible circuit 380 above contact member 388.


Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the embodiments of the disclosure. The upper and lower limits of these smaller ranges which may independently be included in the smaller ranges is also encompassed within the embodiments of the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either both of those included limits are also included in the embodiments of the present disclosure.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the embodiments of the present disclosure belong. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the embodiments of the present disclosure, the preferred methods and materials are now described. All patents and publications mentioned herein, including those cited in the Background of the application, are hereby incorporated by reference to disclose and described the methods and/or materials in connection with which the publications are cited.


The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present disclosure is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.


Other embodiments of the disclosure are possible. Although the description above contains much specificity, these should not be construed as limiting the scope of the disclosure, but as merely providing illustrations of some of the presently preferred embodiments of this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the present disclosure. It should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed embodiments of the disclosure. Thus, it is intended that the scope of the present disclosure herein disclosed should not be limited by the particular disclosed embodiments described above.


Thus the scope of this disclosure should be determined by the appended claims and their legal equivalents. Therefore, it will be appreciated that the scope of the present disclosure fully encompasses other embodiments which may become obvious to those skilled in the art, and that the scope of the present disclosure is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” All structural, chemical, and functional equivalents to the elements of the above-described preferred embodiment(s) that are known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims. Moreover, it is not necessary for a device or method to address each and every problem sought to be solved by the present disclosure, for it to be encompassed by the present claims. Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims.

Claims
  • 1. A compliant printed flexible circuit comprising: a flexible polymeric film including a major surface; a first dielectric layer selectively printed on the major surface of the polymeric film with first recesses corresponding to a target circuit geometry; a conductive material printed in at least a portion of the first recesses comprising a circuit geometry have first and second portions at least partially separated by dielectric material of the first dielectric layer; a second dielectric layer selectively printed on a major surface of the first dielectric layer to create second recesses adjacent with at least a portion of the first portion of the circuit geometry; compliant material deposited in the second recesses supporting at least a portion of the first portion of the circuit geometry;at least one dielectric covering layer extending over the first and second portions of the circuit geometry; and at least one opening in the dielectric covering layer comprising at least one recess receiving electrical contacts of a circuit member and electrically coupling the electrical contacts with the first portion of the circuit geometry in the compliant printed flexible circuit, wherein the compliant material is in direct contact with the first portion of the circuit geometry and is beneath the first portion of the circuit geometry opposite the at least one opening in the covering layer and elastically deforms during flexure of the first portion of the circuit geometry in response to compressive engagement of the electrical contacts on the circuit member, the compliant material attempting to resume its former shape: biasing the first portion of the circuit geometry into engagement with the electrical contacts on the circuit member.
  • 2. The compliant printed flexible circuit of claim 1 comprising a conductive plating layer on at least a portion of the circuit geometry.
  • 3. The compliant printed flexible circuit of claim 1 comprising a compliant material located along at least two sides of the circuit geometry within the printed flexible circuit.
  • 4. The compliant printed flexible circuit of claim 1 comprising a compliant material located between the polymeric film and at least a portion of the circuit geometry.
  • 5. The compliant printed flexible circuit of claim 1 comprising a compliant material generally aligned with the opening in the dielectric layer and positioned between the polymeric film and at least a portion of the circuit geometry.
  • 6. The compliant printed flexible circuit of claim 1 comprising at least one printed electrical device on one of a dielectric layer or the polymeric film and electrically coupled to at least a portion of the circuit geometry.
  • 7. The compliant printed flexible circuit of claim 1 comprising: an optical quality material deposited in at least a portion of the recesses comprising one or more optical circuit geometries; anda compliant material located in recesses adjacent to at least a portion of the optical circuit geometries.
  • 8. The compliant printed flexible circuit of claim 1 comprising: one or more optical fibers located in at least a portion of the recesses comprising one or more optical circuit geometries; anda compliant material located in recesses adjacent to the optical fibers.
  • 9. The compliant printed flexible circuit of claim 1 wherein at least a portion of the circuit geometry comprises a via electrically coupling adjacent layers of the circuit geometry.
  • 10. The compliant printed flexible circuit of claim 1 comprising one or more contact members electrically coupled to at least a portion of the circuit geometry and extending above the dielectric covering layer.
  • 11. The compliant printed flexible circuit of claim 10 wherein the compliant printed flexible circuit is singulated adjacent at least, one of the contact members.
  • 12. The compliant printed flexible circuit of claim 1 comprising: at least one contact member extending along a first surface of the compliant printed flexible circuit; andat least one printed compliant member located on a second surface of the compliant printed flexible circuit opposite at least one of the contact members.
  • 13. The compliant printed flexible circuit of claim 1 wherein conductive traces in the circuit geometry comprise substantially rectangular cross-sectional shapes.
  • 14. The compliant printed flexible circuit of claim 1 wherein a conductive material, a non-conductive material, and a semi-conductive material are printed on a single layer.
  • 15. An edge connector ran the compliant printed flexible circuit of claim 1 comprising: a first portion of the circuit geometry extending beyond the dielectric covering layer;a compliant material located along a surface of the first portion of the circuit geometry; anda second portion of the circuit geometry located on top of the compliant material.
  • 16. An electrical interconnect assembly comprising: a housing retaining the compliant printed flexible circuit of claim 1;a first circuit member comprising electrical contacts compressively engaged with contact members located along a first surface of the compliant printed flexible circuit; anda second circuit member comprising electrical contacts compressively engaged with contact members located along a second surface of the compliant printed flexible circuit.
  • 17. The electrical interconnect assembly of claim 16 wherein the first and second circuit members are selected from one of a dielectric layer, a printed circuit board, a flexible circuit, a bare die device, an integrated circuit device, organic or inorganic substrates, or a rigid circuit.
  • 18. The compliant printed flexible circuit of claim 1 comprising: at least one opening extending through the compliant printed flexible circuit; andat least one contact member inserted in the opening and electrically coupled to at least a portion of the circuit geometry.
  • 19. A method of making a compliant printed flexible circuit comprising: selectively printing a first dielectric layer on a major surface of a flexible polymeric film to create first recesses corresponding to a first target circuit geometry;depositing a conductive material in at least a portion of the first recesses comprising a circuit geometry having first and second portions at least partially separated by dielectric material of the first dielectric layer;selectively printing a second dielectric layer on a major surface of the first dielectric layer to create second recesses aligned with at least a portion of the first portion of the circuit geometry;depositing a compliant material in at least, a portion of the second recesses supporting at least a portion of the first portion of the circuit geometry;printing at least: one dielectric covering layer over at least the circuit geometry with at least one opening comprising at least one recess exposing selected regions of the first portion of the circuit geometry, the at least one recess receiving electrical contacts on a circuit member and electrically coupling the electrical contacts with the first portion of the circuit geometry, wherein the compliant material is in direct contact with the first portion of the circuit geometry and is beneath the first portion of the circuit geometry opposite the at least one openings in the covering layer; andelastically deforming the compliant material during flexure of the at least one exposed portion of the first portion of the circuit geometry, in response to compressive engagement of the electrical contacts on the circuit member, the compliant material attempting to resume its former shape biasing the exposed portion of the first portion of the circuit geometry into engagement with the electrical contacts on the circuit member.
  • 20. The method of claim 19 comprising depositing a compliant material along at least two sides of the circuit geometry in the compliant printed flexible circuit.
  • 21. The method of claim 19 comprising plating a conductive material on at least a portion of the circuit geometry.
  • 22. The method of claim 19 wherein printing the conductive material comprises: printing a conductive material in the recesses; andplating the conductive material.
  • 23. The method of claim 19 comprising depositing a plating material in the recesses.
  • 24. The method of claim 19 comprising printing a compliant material in a location between the polymeric film and at least a portion of the circuit geometry.
  • 25. The method of claim 24 comprising aligning the printed compliant material with an opening in the dielectric covering layer.
  • 26. The method of claim 19 comprising: printing at least one electrical device on one of a dielectric layer or the polymeric film; andelectrically coupled the electrical device to at least a portion of the circuit geometry.
  • 27. The method of claim 19 comprising: printing an optical quality material in at least a portion of the recesses comprising one or more optical circuit geometries; and depositing a compliant material in recesses adjacent to at least a portion of the optical circuit geometries.
  • 28. The method of claim 19 comprising: locating one or more optical fibers in at least a portion of the recesses comprising one or more optical circuit geometries; anddepositing a compliant material in recesses adjacent to at least a portion of the optical fibers.
  • 29. The method of claim 19 comprising printing at least one via in a dielectric layer to electrically couple adjacent layers of the circuit geometry.
  • 30. The method of claim 19 comprising printing one or more contact members that extends above the dielectric covering layer and electrically couple to at least a portion of the circuit geometry.
  • 31. The method of claim 30 comprising singulating at least a portion of the compliant printed flexible circuit adjacent at least one of the contact members.
  • 32. The method of claim 19 comprising: printing one or more contact members that extend above a first surface of the compliant printed flexible circuit and electrically couple to at least a portion of the circuit geometry; and,printing at least one compliant member on a second surface of the compliant printed flexible circuit opposite at least one of the contact members.
  • 33. The method of claim 19 wherein conductive traces in the circuit geometry comprise substantially rectangular cross-sectional shapes.
  • 34. The method of claim 19 comprising printing a conductive material, a non-conductive material, and a semi-conductive material is printed on a single layer.
  • 35. The method of claim 19 comprising the steps of: locating pre-formed conductive trace materials in the recesses; andplating the recesses to form conductive traces with substantially rectangular cross-sectional shapes.
  • 36. The method of claim 19 comprising the steps of: pressing a conductive foil into at least a portion of the recesses;shearing the conductive foil along edges of the recesses;removing excess conductive foil not located in the recesses; andplating the recesses to form conductive traces with substantially rectangular cross-sectional shapes.
  • 37. A method of making an edge connector for a compliant printed flexible circuit made according to claim 19 comprising the steps of: printing a first portion of the circuit geometry beyond the dielectric covering layer;printing a compliant material along a surface of the first portion of the circuit geometry; andprinting a second portion of the circuit geometry on top of the compliant material.
  • 38. A method of making an electrical interconnect assembly comprising the steps of: retaining a compliant printed flexible circuit made according to the method of claim 19 in a housing;compressively coupling electrical contacts on a first circuit member with contact members located along a first surface of the compliant printed flexible circuit; andcompressively coupling electrical contacts on a second circuit member with contact members located along a second surface of the compliant printed flexible circuit.
  • 39. The method of claim 38 wherein the first and second circuit members are selected from one of a dielectric layer, a printed circuit board, a flexible circuit, a bare die device, an integrated circuit device, organic or inorganic substrates, or a rigid circuit.
  • 40. The method of claim 19 comprising the steps of: printing at least one opening extending through the compliant printed flexible circuit; andinserting at least one contact member into the opening and electrically coupling the contact member with at least a portion of the circuit geometry.
  • 41. The compliant printed flexible circuit of claim 1 wherein the compliant material supports the circuit geometry opposite the openings in the covering layer.
  • 42. The method of claim 19 comprising the step of supporting the circuit geometry opposite the openings in the covering layer with the compliant material.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a national stage application under 35 U.S.C. §371 of International Application No. PCT/US2010/036282, titled COMPLIANT PRINTED FLEXIBLE CIRCUIT, filed May 27, 2010, which claims priority to U.S. Provisional Application No. 61/183,340, filed Jun. 2, 2009, both of which are hereby incorporated by reference in their entireties.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2010/036282 5/27/2010 WO 00 11/14/2011
Publishing Document Publishing Date Country Kind
WO2010/141295 12/9/2010 WO A
US Referenced Citations (408)
Number Name Date Kind
3672986 Schneble, Jr. et al. Jun 1972 A
4188438 Burns Feb 1980 A
4295700 Sado Oct 1981 A
4489999 Miniet Dec 1984 A
4922376 Pommer et al. May 1990 A
4964948 Reed Oct 1990 A
5014159 Butt May 1991 A
5071363 Reylek et al. Dec 1991 A
5072520 Nelson Dec 1991 A
5096426 Simpson et al. Mar 1992 A
5127837 Shah et al. Jul 1992 A
5129573 Duffey Jul 1992 A
5161983 Ohno Nov 1992 A
5167512 Walkup Dec 1992 A
5208068 Davis et al. May 1993 A
5237203 Massaron Aug 1993 A
5246880 Reele et al. Sep 1993 A
5286680 Cain Feb 1994 A
5334029 Akkapeddi et al. Aug 1994 A
5358621 Oyama Oct 1994 A
5378981 Higgins, III Jan 1995 A
5419038 Wang et al. May 1995 A
5454161 Beilin et al. Oct 1995 A
5479319 Werther et al. Dec 1995 A
5509019 Yamamura Apr 1996 A
5527998 Anderson et al. Jun 1996 A
5562462 Matsuba et al. Oct 1996 A
5659181 Bridenbaugh Aug 1997 A
5674595 Busacco et al. Oct 1997 A
5691041 Frankeny et al. Nov 1997 A
5716663 Capote et al. Feb 1998 A
5741624 Jeng et al. Apr 1998 A
5746608 Taylor May 1998 A
5761801 Gebhardt et al. Jun 1998 A
5764485 Lebaschi Jun 1998 A
5772451 Dozier et al. Jun 1998 A
5785538 Beaman et al. Jul 1998 A
5787976 Hamburgen et al. Aug 1998 A
5791911 Fasano et al. Aug 1998 A
5802699 Fjelstad et al. Sep 1998 A
5802711 Card et al. Sep 1998 A
5819579 Roberts Oct 1998 A
5904546 Wood et al. May 1999 A
5913109 Distefano et al. Jun 1999 A
5921786 Slocum et al. Jul 1999 A
5925931 Yamamoto Jul 1999 A
5933558 Sauvageau et al. Aug 1999 A
5973394 Slocum et al. Oct 1999 A
6020597 Kwak Feb 2000 A
6062879 Beaman et al. May 2000 A
6080932 Smith et al. Jun 2000 A
6107109 Akram et al. Aug 2000 A
6114240 Akram et al. Sep 2000 A
6118426 Albert Sep 2000 A
6120588 Jacobson Sep 2000 A
6137687 Shirai et al. Oct 2000 A
6172879 Cilia et al. Jan 2001 B1
6177921 Comiskey Jan 2001 B1
6178540 Lo et al. Jan 2001 B1
6181144 Hembree et al. Jan 2001 B1
6200143 Haba et al. Mar 2001 B1
6207259 Iino et al. Mar 2001 B1
6225692 Hinds May 2001 B1
6247938 Rathburn Jun 2001 B1
6252564 Albert Jun 2001 B1
6255126 Mathieu et al. Jul 2001 B1
6263566 Hembree et al. Jul 2001 B1
6270363 Brofman et al. Aug 2001 B1
6288451 Tsao Sep 2001 B1
6312971 Amundson Nov 2001 B1
6313528 Solberg Nov 2001 B1
6320256 Ho Nov 2001 B1
6350386 Lin Feb 2002 B1
6359790 Meyer-Berg Mar 2002 B1
6413790 Duthaler Jul 2002 B1
6422687 Jacobson Jul 2002 B1
6428328 Haba et al. Aug 2002 B2
6433427 Wu et al. Aug 2002 B1
6437452 Lin Aug 2002 B2
6437591 Farnworth et al. Aug 2002 B1
6459418 Comiskey Oct 2002 B1
6461183 Ohkita Oct 2002 B1
6462418 Sakamoto et al. Oct 2002 B2
6462568 Cram Oct 2002 B1
6477286 Ouchi Nov 2002 B1
6490786 Belke et al. Dec 2002 B2
6494725 Lin et al. Dec 2002 B2
6506438 Duthaler et al. Jan 2003 B2
6521489 Duthaler Feb 2003 B2
6545291 Amundson Apr 2003 B1
6572396 Rathburn Jun 2003 B1
6574114 Brindle et al. Jun 2003 B1
6593535 Gailus Jul 2003 B2
6603080 Jensen Aug 2003 B2
6614104 Farnworth et al. Sep 2003 B2
6626526 Ueki Sep 2003 B2
6639578 Comiskey Oct 2003 B1
6642127 Kumar et al. Nov 2003 B2
6652075 Jacobson Nov 2003 B2
6661084 Peterson et al. Dec 2003 B1
6662442 Matsui et al. Dec 2003 B1
6709967 Evers Mar 2004 B2
6744126 Chiang Jun 2004 B1
6750473 Amundson Jun 2004 B2
6750551 Frutschy et al. Jun 2004 B1
6758691 McHugh Jul 2004 B1
6773302 Gutierrez et al. Aug 2004 B2
6800169 Liu et al. Oct 2004 B2
6809414 Lin et al. Oct 2004 B1
6821131 Suzuki et al. Nov 2004 B2
6823124 Renn Nov 2004 B1
6825829 Albert Nov 2004 B1
6827611 Payne et al. Dec 2004 B1
6830460 Rathburn Dec 2004 B1
6840777 Sathe et al. Jan 2005 B2
6853087 Neuhaus et al. Feb 2005 B2
6856151 Cram Feb 2005 B1
6861345 Ball et al. Mar 2005 B2
6910897 Driscoll et al. Jun 2005 B2
6946325 Yean et al. Sep 2005 B2
6962829 Glenn et al. Nov 2005 B2
6965168 Langhorn Nov 2005 B2
6967640 Albert Nov 2005 B2
6971902 Taylor Dec 2005 B2
6987661 Huemoeller et al. Jan 2006 B1
6992376 Jaeck Jan 2006 B2
7009413 Alghouli Mar 2006 B1
7025600 Higashi Apr 2006 B2
7029289 Li Apr 2006 B2
7040902 Li May 2006 B2
7045015 Renn May 2006 B2
7064412 Geissinger et al. Jun 2006 B2
7070419 Brown et al. Jul 2006 B2
7095090 Nakajima et al. Aug 2006 B2
7101210 Lin Sep 2006 B2
7114960 Rathburn Oct 2006 B2
7118391 Minich et al. Oct 2006 B2
7121837 Sato et al. Oct 2006 B2
7121839 Rathburn Oct 2006 B2
7129166 Speakman Oct 2006 B2
7138328 Downey et al. Nov 2006 B2
7145228 Yean et al. Dec 2006 B2
7148128 Jacobson Dec 2006 B2
7154175 Shrivastava et al. Dec 2006 B2
7157799 Noquil et al. Jan 2007 B2
7180313 Bucksch Feb 2007 B2
7217996 Cheng et al. May 2007 B2
7220287 Wyrzykowska et al. May 2007 B1
7229293 Sakurai et al. Jun 2007 B2
7232263 Sashinaka et al. Jun 2007 B2
7244967 Hundt et al. Jul 2007 B2
7249954 Weiss Jul 2007 B2
7276919 Beaman et al. Oct 2007 B1
7301105 Vasoya Nov 2007 B2
7321168 Tao Jan 2008 B2
7326064 Rathburn Feb 2008 B2
7327006 Svard et al. Feb 2008 B2
7337537 Smetana, Jr. Mar 2008 B1
7382363 Albert et al. Jun 2008 B2
7402515 Arana et al. Jul 2008 B2
7410825 Majumdar et al. Aug 2008 B2
7411304 Kirby et al. Aug 2008 B2
7417299 Hu Aug 2008 B2
7417314 Lin et al. Aug 2008 B1
7422439 Rathburn et al. Sep 2008 B2
7423219 Kawaguchi et al. Sep 2008 B2
7427717 Morimoto et al. Sep 2008 B2
7432600 Klein et al. Oct 2008 B2
7458150 Totokawa et al. Dec 2008 B2
7459393 Farnworth et al. Dec 2008 B2
7485345 Renn Feb 2009 B2
7489524 Green et al. Feb 2009 B2
7508076 Japp et al. Mar 2009 B2
7527502 Li May 2009 B2
7531906 Lee May 2009 B2
7535114 Agraharam May 2009 B2
7536714 Yuan May 2009 B2
7537461 Rathburn May 2009 B2
7538415 Lin et al. May 2009 B1
7548430 Huemoeller et al. Jun 2009 B1
7563645 Jaeck Jul 2009 B2
7595454 Kresge et al. Sep 2009 B2
7619309 Drexl et al. Nov 2009 B2
7621761 Mok et al. Nov 2009 B2
7628617 Brown et al. Dec 2009 B2
7632106 Nakamura Dec 2009 B2
7645635 Wood et al. Jan 2010 B2
7651382 Yasumura et al. Jan 2010 B2
7658163 Renn Feb 2010 B2
7674671 Renn Mar 2010 B2
7726984 Bumb et al. Jun 2010 B2
7736152 Hougham et al. Jun 2010 B2
7748110 Asahi et al. Jul 2010 B2
7758351 Brown et al. Jul 2010 B2
7800916 Blackwell et al. Sep 2010 B2
7833832 Wood et al. Nov 2010 B2
7836587 Kim Nov 2010 B2
7868469 Mizoguchi Jan 2011 B2
7874847 Matsui et al. Jan 2011 B2
7897503 Foster et al. Mar 2011 B2
7898087 Chainer Mar 2011 B2
7955088 Di Stefano Jun 2011 B2
7999369 Malhan et al. Aug 2011 B2
8004092 Lin Aug 2011 B2
8044502 Rathburn Oct 2011 B2
8058558 Mok et al. Nov 2011 B2
8072058 Kim et al. Dec 2011 B2
8114687 Mizoguchi Feb 2012 B2
8120173 Forman et al. Feb 2012 B2
8148643 Hirose et al. Apr 2012 B2
8154119 Yoon et al. Apr 2012 B2
8158503 Abe Apr 2012 B2
8159824 Cho et al. Apr 2012 B2
8178978 McElrea et al. May 2012 B2
8203207 Getz et al. Jun 2012 B2
8227703 Maruyama et al. Jul 2012 B2
8232632 Rathburn Jul 2012 B2
8247702 Kouya Aug 2012 B2
8278141 Chow et al. Oct 2012 B2
8299494 Yilmaz et al. Oct 2012 B2
8329581 Haba et al. Dec 2012 B2
8344516 Chainer Jan 2013 B2
8373428 Eldridge et al. Feb 2013 B2
8421151 Yamashita Apr 2013 B2
8525322 Kim et al. Sep 2013 B1
8525346 Rathburn Sep 2013 B2
8536714 Sakaguchi Sep 2013 B2
8536889 Nelson et al. Sep 2013 B2
8610265 Rathburn Dec 2013 B2
8618649 Rathburn Dec 2013 B2
8758067 Rathburn Jun 2014 B2
8789272 Rathburn Jul 2014 B2
8803539 Rathburn Aug 2014 B2
8829671 Rathburn Sep 2014 B2
8912812 Rathburn Dec 2014 B2
8928344 Rathburn Jan 2015 B2
8955215 Rathburn Feb 2015 B2
8955216 Rathburn Feb 2015 B2
8970031 Rathburn Mar 2015 B2
8981568 Rathburn Mar 2015 B2
8981809 Rathburn Mar 2015 B2
8984748 Rathburn Mar 2015 B2
8987886 Rathburn Mar 2015 B2
8988093 Rathburn Mar 2015 B2
20010012707 Ho et al. Aug 2001 A1
20010016551 Yushio et al. Aug 2001 A1
20020011639 Carlson et al. Jan 2002 A1
20020027441 Akram et al. Mar 2002 A1
20020062200 Mori et al. May 2002 A1
20020079912 Shahriari et al. Jun 2002 A1
20020088116 Milkovich et al. Jul 2002 A1
20020098740 Ooya Jul 2002 A1
20020105080 Speakman Aug 2002 A1
20020105087 Forbes et al. Aug 2002 A1
20020160103 Fukunaga et al. Oct 2002 A1
20030003779 Rathburn Jan 2003 A1
20030096512 Cornell May 2003 A1
20030114029 Lee et al. Jun 2003 A1
20030117161 Burns Jun 2003 A1
20030156400 Dibene et al. Aug 2003 A1
20030162418 Yamada Aug 2003 A1
20030164548 Lee Sep 2003 A1
20030188890 Bhatt et al. Oct 2003 A1
20030189083 Olsen Oct 2003 A1
20030231819 Palmer et al. Dec 2003 A1
20040016995 Kuo et al. Jan 2004 A1
20040029411 Rathburn Feb 2004 A1
20040048523 Huang et al. Mar 2004 A1
20040054031 Jacobson Mar 2004 A1
20040070042 Lee et al. Apr 2004 A1
20040077190 Huang et al. Apr 2004 A1
20040174180 Fukushima et al. Sep 2004 A1
20040183557 Akram Sep 2004 A1
20040184219 Otsuka et al. Sep 2004 A1
20040217473 Shen Nov 2004 A1
20040243348 Minatani Dec 2004 A1
20050020116 Kawazoe et al. Jan 2005 A1
20050048680 Matsumani Mar 2005 A1
20050100294 Nguyen et al. May 2005 A1
20050101164 Rathburn May 2005 A1
20050162176 Bucksch Jul 2005 A1
20050164527 Radza et al. Jul 2005 A1
20050196511 Garrity et al. Sep 2005 A1
20050253610 Cram Nov 2005 A1
20060001152 Hu Jan 2006 A1
20060006534 Yean et al. Jan 2006 A1
20060012966 Chakravorty Jan 2006 A1
20060024924 Haji et al. Feb 2006 A1
20060044357 Andersen Mar 2006 A1
20060087064 Daniel et al. Apr 2006 A1
20060125500 Watkins et al. Jun 2006 A1
20060145338 Dong Jul 2006 A1
20060149491 Flach et al. Jul 2006 A1
20060157103 Sheats et al. Jul 2006 A1
20060160379 Rathburn Jul 2006 A1
20060186906 Bottoms et al. Aug 2006 A1
20060208230 Cho et al. Sep 2006 A1
20060258912 Belson et al. Nov 2006 A1
20060261827 Cooper et al. Nov 2006 A1
20060281303 Trezza et al. Dec 2006 A1
20070021002 Laurx et al. Jan 2007 A1
20070057382 Liu et al. Mar 2007 A1
20070059901 Majumdar et al. Mar 2007 A1
20070145981 Tomita et al. Jun 2007 A1
20070148822 Haba et al. Jun 2007 A1
20070170595 Sinha Jul 2007 A1
20070182431 Komatsu et al. Aug 2007 A1
20070201209 Francis et al. Aug 2007 A1
20070221404 Das et al. Sep 2007 A1
20070224735 Karashima Sep 2007 A1
20070232059 Abe Oct 2007 A1
20070259539 Brown et al. Nov 2007 A1
20070267138 White et al. Nov 2007 A1
20070269999 Di Stefano Nov 2007 A1
20070273394 Tanner et al. Nov 2007 A1
20070287304 Eldridge Dec 2007 A1
20070289127 Hurwitz et al. Dec 2007 A1
20070296090 Hembree Dec 2007 A1
20080008822 Kowalski Jan 2008 A1
20080020566 Egitto et al. Jan 2008 A1
20080020624 Nikaido et al. Jan 2008 A1
20080041822 Wang Feb 2008 A1
20080057753 Rathburn et al. Mar 2008 A1
20080060838 Chen et al. Mar 2008 A1
20080073110 Shioga et al. Mar 2008 A1
20080093115 Lee Apr 2008 A1
20080115961 Mok et al. May 2008 A1
20080117606 Karlsson May 2008 A1
20080143358 Breinlinger Jun 2008 A1
20080143367 Chavineau-Lovgren Jun 2008 A1
20080156856 Barausky Jul 2008 A1
20080157361 Wood et al. Jul 2008 A1
20080182436 Rathburn Jul 2008 A1
20080185180 Cheng et al. Aug 2008 A1
20080197867 Wokhlu et al. Aug 2008 A1
20080220584 Kim et al. Sep 2008 A1
20080241997 Sunohara et al. Oct 2008 A1
20080246136 Haba et al. Oct 2008 A1
20080248596 Das et al. Oct 2008 A1
20080250363 Goto et al. Oct 2008 A1
20080265919 Izadian Oct 2008 A1
20080290885 Matsunami Nov 2008 A1
20080309349 Sutono Dec 2008 A1
20090246136 Beer et al. Feb 2009 A1
20090058444 McIntyre Mar 2009 A1
20090061089 King Mar 2009 A1
20090065918 Murphy Mar 2009 A1
20090127698 Rathburn May 2009 A1
20090133906 Baek May 2009 A1
20090158581 Nguyen et al. Jun 2009 A1
20090180236 Lee et al. Jul 2009 A1
20090224404 Wood et al. Sep 2009 A1
20090241332 Lauffer et al. Oct 2009 A1
20090267628 Takase Oct 2009 A1
20090321915 Hu et al. Dec 2009 A1
20100022105 Di Stefano Jan 2010 A1
20100133680 Kang et al. Jun 2010 A1
20100143194 Lee et al. Jun 2010 A1
20100213960 Mok et al. Aug 2010 A1
20100300734 Ables et al. Dec 2010 A1
20110083881 Nguyen et al. Apr 2011 A1
20110101540 Chainer May 2011 A1
20120017437 Das et al. Jan 2012 A1
20120043119 Rathburn Feb 2012 A1
20120043130 Rathburn Feb 2012 A1
20120043667 Rathburn Feb 2012 A1
20120044659 Rathburn Feb 2012 A1
20120049342 Rathburn Mar 2012 A1
20120049877 Rathburn Mar 2012 A1
20120051016 Rathburn Mar 2012 A1
20120055701 Rathburn Mar 2012 A1
20120056332 Rathburn Mar 2012 A1
20120056640 Rathburn Mar 2012 A1
20120058653 Rathburn Mar 2012 A1
20120061846 Rathburn Mar 2012 A1
20120061851 Rathburn Mar 2012 A1
20120062270 Rathburn Mar 2012 A1
20120068727 Rathburn Mar 2012 A1
20120161317 Rathburn Jun 2012 A1
20120164888 Rathburn Jun 2012 A1
20120168948 Rathburn Jul 2012 A1
20120171907 Rathburn Jul 2012 A1
20120182035 Rathburn Jul 2012 A1
20120199985 Rathburn Aug 2012 A1
20120202364 Rathburn Aug 2012 A1
20120244728 Rathburn Sep 2012 A1
20120252164 Nakao et al. Oct 2012 A1
20120257343 Das et al. Oct 2012 A1
20120268155 Rathburn Oct 2012 A1
20130078860 Rathburn Mar 2013 A1
20130105984 Rathburn May 2013 A1
20130203273 Rathburn Aug 2013 A1
20130206468 Rathburn Aug 2013 A1
20130210276 Rathburn Aug 2013 A1
20130223034 Rathburn Aug 2013 A1
20130244490 Rathburn Sep 2013 A1
20130330942 Rathburn Dec 2013 A1
20140043782 Rathburn Feb 2014 A1
20140080258 Rathburn Mar 2014 A1
20140192498 Rathburn Jul 2014 A1
20140220797 Rathburn Aug 2014 A1
20140225255 Rathburn Aug 2014 A1
20140242816 Rathburn Aug 2014 A1
20150013901 Rathburn Jan 2015 A1
20150091600 Rathburn Apr 2015 A1
20150136467 Rathburn May 2015 A1
20150162678 Rathburn Jun 2015 A1
20150181710 Rathburn Jun 2015 A1
Foreign Referenced Citations (36)
Number Date Country
2003217774 Jul 2003 JP
WO 9114015 Sep 1991 WO
WO 2006039277 Apr 2006 WO
WO 2006124597 Nov 2006 WO
WO 2008156856 Dec 2008 WO
WO 2010138493 Dec 2010 WO
WO 2010141264 Dec 2010 WO
WO 2010141266 Dec 2010 WO
WO 2010141295 Dec 2010 WO
WO 2010141296 Dec 2010 WO
WO 2010141297 Dec 2010 WO
WO 2010141298 Dec 2010 WO
WO 2010141303 Dec 2010 WO
WO 2010141311 Dec 2010 WO
WO 2010141313 Dec 2010 WO
WO 2010141316 Dec 2010 WO
WO 2010141318 Dec 2010 WO
WO 2010147782 Dec 2010 WO
WO 2010147934 Dec 2010 WO
WO 2010147939 Dec 2010 WO
WO 2011002709 Jan 2011 WO
WO 2011002712 Jan 2011 WO
WO 2011097160 Aug 2011 WO
WO 2011139619 Nov 2011 WO
WO 2011153298 Dec 2011 WO
WO-2012061008 May 2012 WO
WO-2012074963 Jun 2012 WO
WO-2012074969 Jun 2012 WO
WO-2012078493 Jun 2012 WO
WO 2012122142 Sep 2012 WO
WO 2012125331 Sep 2012 WO
WO 2013036565 Mar 2013 WO
WO-2014011226 Jan 2014 WO
WO-2014011228 Jan 2014 WO
WO-2014011232 Jan 2014 WO
WO-2015006393 Jan 2015 WO
Non-Patent Literature Citations (288)
Entry
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority mailed Nov. 29, 2012 in International Application No. PCT/US2012/053848.
Tarzwell, Robert, “A Real Printed Electronic Replacement for PCB Fabrication,” PCB007 Magazine, May 19, 2009.
Tarzwell, Robert, “Green PCB Manufacturing Announced,” Electrical Engineering Times, May 18, 2009.
Tarzwell, Robert, “Can Printed Electronics Replace PCB Technology?” PCB007 Magazine, May 14, 2009.
Tarzwell, Robert, “The Bleeding Edge: Printed Electronics, Inkjets and Silver Ink,” PCB007 Magazine, May 6, 2009.
Tarzwell, Robert, “Integrating Printed Electronics and PCB Technologies,” Printed Electronics World, Jul. 14, 2009.
Tarzwell, Robert, “Printed Electronics: The Next Generation of PCBs?” PCB007 Magazine, Apr. 28, 2009.
Restriction Requirement mailed Nov. 23, 2012 in co-pending U.S. Appl. No. 13/318,263, now published as US Patent Application Publication No. US 2012/0043667.
Co-pending U.S. Appl. No. 13/643,436 titled Semiconductor Device Package Adapter, filed Oct. 25, 2012.
Co-pending U.S. Appl. No. 13/700,639 titled Electrical Connector Insulator Housing, filed Nov. 28, 2012.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority mailed Feb. 8, 2012 in International Application No. PCT/US2011/0.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority mailed Mar. 26, 2012 in International Application No. PCT/US2011/062313.
Co-pending U.S. Appl. No. 13/410,914, titled Metalized Pad to Electrical Contact Interface, filed Mar. 2, 2012.
Co-pending U.S. Appl. No. 13/410,943, titled Area Array Semiconductor Device Package Interconnect Structure With Optional Package-To-Package or Flexible Circuit to Package Connection, filed Mar. 2, 2012.
Co-pending U.S. Appl. No. 13/412,870, titled Selective Metalization of Electrical Connector or Socket Housing, filed Mar. 6, 2012.
Co-pending U.S. Appl. No. 13/413,032, titled Bumped Semiconductor Wafer or Die Level Electrical Interconnect, filed Mar. 6, 2012.
Co-pending U.S. Appl. No. 13/413,724, titled Copper Pillar Full Metal Via Electrical Circuit Structure, filed Mar. 7, 2012.
Co-pending U.S. Appl. No. 13/418,853, titled High Performance Surface Mount Electrical Interconnect With External Biased Normal Force Loading, filed Mar. 13, 2012.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority mailed Apr. 5, 2012 in International Application No. PCT/US2011/062321.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority mailed Mar. 29, 2012 in International Application No. PCT/US2011/063247.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority mailed Jun. 20, 2012 in International Application No. PCT/US2012/027813.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority mailed Jun. 19, 2012 in International Application No. PCT/US2012/027823.
Co-pending U.S. Appl. No. 13/448,865, titled Compliant Conductive Nano-Particle Electrical Interconnect, filed Apr. 17, 2012.
Co-pending U.S. Appl. No. 13/448,914, titled Compliant Core Peripheral Lead Semiconductor Test Socket, filed Apr. 17, 2012.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority issued Jul. 30, 2010 in International Application No. PCT/US2010/036043.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority issued Jul. 21, 2010 in International Application No. PCT/US2010/036047.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority issued Jul. 28, 2010 in International Application No. PCT/US2010/036363.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority issued Jul. 28, 2010 in International Application No. PCT/US2010/036377.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority issued Jul. 30, 2010 in International Application No. PCT/US2010/036388.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority issued Jul. 27, 2010 in International Application No. PCT/US2010/036397.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority issued Jul. 30, 2010 in International Application No. PCT/US2010/036055.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority issued Aug. 4, 2010 in International Application No. PCT/US2010/036288.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority issued Aug. 4, 2010 in International Application No. PCT/US2010/036285.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority issued Jul. 30, 2010 in International Application No. PCT/US2010/036282.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority issued Jul. 30, 2010 in International Application No. PCT/US2010/036295.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority issued Jul. 30, 2010 in International Application No. PCT/US2010/036313.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority issued Aug. 3, 2010 in International Application No. PCT/US2010/037619.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority issued Sep. 7, 2010 in International Application No. PCT/US2010/038600.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority issued Aug. 18, 2010 in International Application No. PCT/US2010/038606.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority issued Sep. 1, 2010 in International Application No. PCT/US2010/040188.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority issued Aug. 20, 2010 in International Application No. PCT/US2010/040197.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority issued Apr. 14, 2011 in International Application No. PCT/US2011/023138.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority issued Aug. 17, 2011 in International Application No. PCT/US2011/033726.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority issued Sep. 27, 2011 in International Application No. PCT/US2011/038845.
Co-pending U.S. Appl. No. 13/266,486 titled High Performance Surface Mount Electrical Interconnect, filed Oct. 27, 2011.
Co-pending U.S. Appl. No. 13/266,522, titled Compliant Wafer Level Probe Assembly, filed Oct. 27, 2011.
Co-pending U.S. Appl. No. 13/266,573, titled Compliant Printed Circuit Area Array Semiconductor Device Package, filed Oct. 27, 2011.
Co-pending U.S. Appl. No. 13/266,907, titled Compliant Printed Circuit Socket Diagnostic Tool, filed Oct. 28, 2011.
Co-pending U.S. Appl. No. 13/318,038, titled Compliant Printed Circuit Wafer Probe Diagnostic Tool, filed Oct. 28, 2011.
Co-pending U.S. Appl. No. 13/318,171, titled Compliant Printed Circuit Peripheral Lead Semiconductor Test Socket, filed Oct. 31, 2011.
Co-pending U.S. Appl. No. 13/318,181, titled Compliant Printed Circuit Peripheral Lead Semiconductor Package, filed Oct. 31, 2011.
Co-pending U.S. Appl. No. 13/318,200, titled Compliant Printed Circuit Wafer Level Semiconductor Package, filed Oct. 31, 2011.
Co-pending U.S. Appl. No. 13/318,263, titled Compliant Printed Circuit Semiconductor Package, filed Oct. 31, 2011.
Co-pending U.S. Appl. No. 13/318,369, titled Composite Polymer-Metal Electrical Contacts, filed Nov. 1, 2011.
Co-pending U.S. Appl. No. 13/318,382, titled Resilient Conductive Electrical Interconnect, filed Nov. 1, 2011.
Co-pending U.S. Appl. No. 13/319,120, titled Simulated Wirebond Semiconductive Package, filed Nov. 7, 2011.
Co-pending U.S. Appl. No. 13/319,145, titled Semiconductor Die Terminal, filed Nov. 7, 2011.
Co-pending U.S. Appl. No. 13/319,158, titled Semiconductor Socket, filed Nov. 7, 2011.
Co-pending U.S. Appl. No. 13/319,203, titled Compliant Printed Circuit Semiconductor Tester Interface, filed Nov. 7, 2011.
Co-pending U.S. Appl. No. 13/319,228, titled Singulated Semiconductor Device Separable Electrical Interconnect, filed Nov. 7, 2011.
Co-pending U.S. Appl. No. 13/575,368, titled High Speed Backplane Connector, filed Jul. 26, 2012.
Restriction Requirement mailed Mar. 1, 2013 in co-pending U.S. Appl. No. 13/318,200, now published as US Patent Application Publication No. US 2012/0056332.
Response to Restriction Requirement filed Mar. 7, 3013 in co-pending U.S. Appl. No. 13/318,200, now published as US Patent Application Publication No. US 2012/0056332.
Amendment and Response filed Mar. 4, 2013 in co-pending U.S. Appl. No. 13/318,263, now published as US Patent Application Publication No. US 2012/0043667.
Co-pending U.S. Appl. No. 13/879,783 titled High Performance Electrical Circuit Structure, filed Apr. 16, 2013.
Co-pending U.S. Appl. No. 13/879,883 titled High Performance Surface Mount Electrical Interconnect, filed Apr. 17, 2013.
Co-pending U.S. Appl. No. 13/880,231 titled Electrical Interconnect IC Device Socket, filed Apr. 18, 2013.
Co-pending U.S. Appl. No. 13/880,461 titled Electrical Interconnect IC Device Socket, filed Apr. 19, 2013.
Liu, et al, “All-Polymer Capacitor Fabricated with Inkjet Printing Technique,” Solid-State Electronics, vol. 47, pp. 1543-1548 (2003).
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority mailed Jun. 7, 2013 in International Application No. PCT/US2013/030856.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority mailed Jun. 19, 2013 in International Application No. PCT/US2013/030981.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority mailed Jun. 3, 2013 in International Application No. PCT/US2013/031395.
Restriction Requirement mailed Jun. 13, 2013 in co-pending U.S. Appl. No. 13/266,486, now published as US Patent Application Publication No. US 2012/0055701.
Office Communication mailed May 30, 2013 in co-pending U.S. Appl. No. 13/318,200, now published as US Patent Application Publication No. US 2012/0056332.
Office Action mailed May 30, 2013 in co-pending U.S. Appl. No. 13/318,200, now published as US Patent Application Publication No. US 2012/0056332.
Amendment and Response filed Jul. 1, 2013 in co-pending U.S. Appl. No. 13/318,200, now published as US Patent Application Publication No. US 2012/0056332.
Examiner-Initiated Interview Summary mailed Mar. 14, 2013 in co-pending U.S. Appl. No. 13/319,228, now published as US Patent Application Publication No. US 2012/0058653.
Office Action mailed Apr. 30, 2013 in co-pending U.S. Appl. No. 13/413,724, now published as US Patent Application Publication No. US 2012/0168948.
Amendment and Response filed May 7, 2013 in co-pending U.S. Appl. No. 13/413,724, now published as US Patent Application Publication No. US 2012/0168948.
Notice of Non-Compliant Amendment mailed May 16, 2013 in co-pending U.S. Appl. No. 13/413,724, now published as US Patent Application Publication No. US 2012/0168948.
Revised Amendment and Response filed May 17, 2013 in co-pending U.S. Appl. No. 13/413,724, now published as US Patent Application Publication No. US 2012/0168948.
Office Action mailed May 9, 2013 in co-pending U.S. Appl. No. 13/448,914, now published as US Patent Application Publication No. US 2012/0202364.
Amendment and Response filed May 20, 2013 in co-pending U.S. Appl. No. 13/448,914, now published as US Patent Application Publication No. US2012/0202364.
Response to Restriction Requirement filed Jul. 15, 2013 in co-pending U.S. Appl. No. 13/266,486, now published as US Patent Application Publication No. US 2012/0055701.
Restriction Requirement mailed Sep. 25, 2013 in co-pending U.S. Appl. No. 13/266,486, now published as US Patent Application Publication No. US 2012/0055701.
Response to Restriction Requirement field Oct. 2, 2013 in co-pending U.S. Appl. No. 13/266,486, now published as US Patent Application Publication No. US 2012/0055701.
Office Action mailed Jul. 10, 2013 in co-pending U.S. Appl. No. 13/318,263, now published as US Patent Application Publication No. US 2012/0043667.
Amendment and Response filed Sep. 24, 2013 in co-pending U.S. Appl. No. 13/318,263, now published as US Patent Application Publication No. US 2012/0043667.
Notice of Allowance and Fee(s) Due mailed Jul. 17, 2013 in co-pending U.S. Appl. No. 13/448,914, now published as US Patent Application Publication No. US 2012/0202364.
Restriction Requirement mailed Sep. 9, 2013 in co-pending U.S. Appl. No. 13/410,914, now published as US Patent Application Publication No. US 2012/0164888.
Response to Restriction Requirement and Amendment to the Claims filed Sep. 25, 2013 in co-pending U.S. Appl. No. 13/410,914, now published as US Patent Application Publication No. US 2012/0164888.
Office Action mailed Sep. 16, 2013 in co-pending U.S. Appl. No. 13/413,724, now published as US Patent Application Publication No. US 2012/0168948.
Restriction Requirement mailed Sep. 26, 2013 in co-pending U.S. Appl. No. 13/319,120 now published as US Patent Application Publication No. US 2012/0061851.
Notice of Allowance and Fee(s) Due mailed Oct. 2, 2013 in co-pending U.S. Appl. No. 13/448,865, now published as US Patent Application Publication No. US 2012/0199985.
Restriction Requirement mailed Oct. 1, 2013 in co-pending U.S. Appl. No. 13/266,573, now published as US Patent Application Publication No. 2012/0061846.
Restriction Requirement mailed Oct. 1, 2013 in co-pending U.S. Appl. No. 13/319,145, now published as US Patent Application Publication No. 2012/0049342.
Co-pending U.S. Appl. No. 13/969,953 titled Compliant Conductive Nano-Particle Electrical Interconnect, filed Aug. 19, 2013.
Office Action mailed Feb. 21, 2014 in co-pending U.S. Appl. No. 13/266,573, now published as US Patent Application Publication No. 2012/0061846.
Amendment and Response filed Feb. 26, 2014 in co-pending U.S. Appl. No. 13/266,573, now published as US Patent Application Publication No. 2012/0061846.
Amendment and Response filed Jan. 3, 2014 in co-pending U.S. Appl. No. 13/266,907, now published as US Patent Application Publication No. US 2012/0268155.
Supplemental Amendment and Response filed Jan. 29, 2014 in co-pending U.S. Appl. No. 13/266,907, now published as US Patent Application Publication No. US 2012/0268155.
Office Action mailed Jan. 3, 2014 in co-pending U.S. Appl. No. 13/318,038, now published as US Patent Application Publication No. US 2012/0062270.
Office Action mailed Feb. 14, 2014 in co-pending U.S. Appl. No. 13/318,171, now published as US Patent Application Publication No. US 2012/0049877.
Amendment and Response filed Feb. 26, 2014 in co-pending U.S. Appl. No. 13/318,171, now published as US Patent Application Publication No. US 2012/0049877.
Response Restriction Requirement filed Jan. 28, 2014 in co-pending U.S. Appl. No. 13/318,181, now published as US Patent Application Publication No. US 2012/0044659.
Response to Advisory Action filed Dec. 6, 2013 in co-pending U.S. Appl. No. 13/318,200, now published as US Patent Application Publication No. US 2012/0056332.
Request for Continued Examination filed Feb. 11, 2014 in co-pending U.S. Appl. No. 13/318,200, now published as US Patent Application Publication No. US 2012/0056332.
Office Action mailed Jan. 17, 2014 in co-pending U.S. Appl. No. 13/319,120 now published as US Patent Application Publication No. US 2012/0061851.
Office Action mailed Dec. 26, 2013 in co-pending U.S. Appl. No. 13/319,145, now published as US Patent Application Publication No. 2012/0049342.
Restriction Requirement mailed Jan. 30, 2014 in co-pending U.S. Appl. No. 13/319,158, now published as US Patent Application Publication No. 2012/0051016.
Response to Restriction Requirement filed Feb. 6, 2014 in co-pending U.S. Appl. No. 13/319,158, now published as US Patent Application Publication No. 2012/0051016.
Office Action mailed Feb. 27, 2014 in co-pending U.S. Appl. No. 13/319,203, now published as US Patent Application Publication No. 2012/0056640.
Restriction Requirement mailed Feb. 7, 2014 in co-pending U.S. Appl. No. 13/575,368, now published as US Patent Application Publication No. 2013/0203273.
Response to Restriction Requirement filed Feb. 19, 2014 in co-pending U.S. Appl. No. 13/575,368, now published as US Patent Application Publication No. 2013/0203273.
Office Action mailed Mar. 4, 2014 in co-pending U.S. Appl. No. 13/575,368, now published as US Patent Application Publication No. 2013/0203273.
Notice of Allowance and Fee(s) Due mailed Feb. 26, 2014 in co-pending U.S. Appl. No. 13/412,870, now published as US Patent Application Publication No. US 2012/0171907.
Final Office Action mailed Feb. 14, 2014 in co-pending U.S. Appl. No. 13/413,724, now published as US Patent Application Publication No. US 2012/0168948.
Amendment and Response to Final Office filed Feb. 26, 2014 in co-pending U.S. Appl. No. 13/413,724, now published as US Patent Application Publication No. US 2012/0168948.
Amendment and Response to Final Office filed Dec. 30, 2013 in co-pending U.S. Appl. No. 13/969,953, now published as US Patent Application Publication No. US 2013/0330942.
Notice of Allowance and Fee(s) Due mailed Jan. 22, 2014 in co-pending U.S. Appl. No. 13/969,953, now published as US Patent Application Publication No. US 2013/0330942.
Co-pending U.S. Appl. No. 14/238,638 titled Direct Metalization of Electrical Circuit Structure, filed Feb. 12, 2014.
Office Action mailed Oct. 30, 2013 in co-pending U.S. Appl. No. 13/266,486, now published as US Patent Application Publication No. US 2012/0055701.
Amendment and Response filed Nov. 6, 2013 in co-pending U.S. Appl. No. 13/266,486, now published as US Patent Application Publication No. US 2012/0055701.
Notice of Non-Compliant Amended mailed Nov. 15, 2013 in co-pending U.S. Appl. No. 13/266,486, now published as US Patent Application Publication No. US 2012/0055701.
Response and Examiner's Interview Summary filed Nov. 20, 2013 in co-pending U.S. Appl. No. 13/266,486, now published as US Patent Application Publication No. US 2012/0055701.
Response to Restriction Requirement filed Oct. 7, 2013 in co-pending U.S. Appl. No. 13/266,573, now published as US Patent Application Publication No. 2012/0061846.
Office Action mailed Nov. 22, 2013 in co-pending U.S. Appl. No. 13/266,907, now published as US Patent Application Publication No. US 2012/0268155.
Restriction Requirement mailed Dec. 9, 2013 in co-pending U.S. Appl. No. 13/318,171, now published as US Patent Application Publication No. US 2012/0049877.
Response to Restriction Requirement filed Dec. 17, 2013 in co-pending U.S. Appl. No. 13/318,171, now published as US Patent Application Publication No. US 2012/0049877.
Restriction Requirement mailed Dec. 9, 2013 in co-pending U.S. Appl. No. 13/318,181, now published as US Patent Application Publication No. US 2012/0044659.
Final Office Action mailed Nov. 6, 2013 in co-pending U.S. Appl. No. 13/318,200, now published as US Patent Application Publication No. US 2012/0056332.
Amendment and Response to Final Office Action filed Nov. 26, 2013 in co-pending U.S. Appl. No. 13/318,200, now published as US Patent Application Publication No. US 2012/0056332.
Advisory Action mailed Dec. 6, 2013 in co-pending U.S. Appl. No. 13/318,200, now published as US Patent Application Publication No. US 2012/0056332.
Notice of Allowance mailed Oct. 28, 2013 in co-pending U.S. Appl. No. 13/318,263, now published as US Patent Application Publication No. US 2012/0043667.
Response to Restriction Requirement filed Oct. 8, 2013 in co-pending U.S. Appl. No. 13/319,120 now published as US Patent Application Publication No. US 2012/0061851.
Notice of Non-Compliant Amendment mailed Oct. 15, 2013 in co-pending U.S. Appl. No. 13/319,120 now published as US Patent Application Publication No. US 2012/0061851.
Response to Restriction Requirement filed Oct. 18, 2013 in co-pending U.S. Appl. No. 13/319,120 now published as US Patent Application Publication No. US 2012/0061851.
Office Action mailed Dec. 16, 2013 in co-pending U.S. Appl. No. 13/410,914, now published as US Patent Application Publication No. US 2012/0164888.
Office Action mailed Nov. 7, 2013 in co-pending U.S. Appl. No. 13/412,870, now published as US Patent Application Publication No. US 2012/0171907.
Amendment and Response filed Dec. 10, 2013 in co-pending U.S. Appl. No. 13/412,870, now published as US Patent Application Publication No. US 2012/0171907.
Amendment and Response filed Nov. 20, 2013 in co-pending U.S. Appl. No. 13/413,724, now published as US Patent Application Publication No. US 2012/0168948.
Notice of Allowance and Fee(s) Due mailed Dec. 6, 2013 in co-pending U.S. Appl. No. 14/058,863.
Office Action mailed Oct. 7, 2013 in co-pending U.S. Appl. No. 13/969,953, now published as US Patent Application Publication No. US 2013/0330942.
Amendment and Response and Terminal Disclaimer filed Nov. 20, 2013 in co-pending U.S. Appl. No. 13/969,953, now published as US Patent Application Publication No. US 2013/0330942.
Final Office Action mailed Dec. 20, 2013 in co-pending U.S. Appl. No. 13/969,953, now published as US Patent Application Publication No. US 2013/0330942.
Co-pending U.S. Appl. No. 14/058,863 titled Compliant Core Peripheral Lead Semiconductor Socket, filed Oct. 21, 2013.
Co-pending U.S. Appl. No. 14/086,029 titled Compliant Printed Circuit Semiconductor Package, filed Nov. 21, 2013.
Amendment and Response and Terminal Disclaimer filed Apr. 2, 2014 in co-pending U.S. Appl. No. 13/318,038, now published as US Patent Application Publication No. US 2012/0062270.
Terminal Disclaimer Review Decision mailed Apr. 2, 2014 in co-pending U.S. Appl. No. 13/318,038, now published as US Patent Application Publication No. US 2012/0062270.
Notice of Allowance and Fee(s) Due mailed Mar. 14, 2014 in co-pending U.S. Appl. No. 13/318,171, now published as US Patent Application Publication No. US 2012/0049877.
Office Action mailed Apr. 21, 2014 in co-pending U.S. Appl. No. 13/318,181, now published as US Patent Application Publication No. US 2012/0044659.
Amendment and Response filed Apr. 16, 2014 in co-pending U.S. Appl. No. 13/319,120 now published as US Patent Application Publication No. US 2012/0061851.
Restriction Requirement mailed Apr. 23, 2014 in co-pending U.S. Appl. No. 13/319,228, now published as US Patent Application Publication No. US 2012/0058653.
Office Action mailed Apr. 24, 2014 in co-pending U.S. Appl. No. 13/700,639, now published as US Patent Application Publication No. 2013/0078860.
Amendment and Response filed Mar. 17, 2014 in co-pending U.S. Appl. No. 13/410,914, now published as US Patent Application Publication No. US 2012/0164888.
Advisory Action mailed Mar. 28, 2014 in co-pending U.S. Appl. No. 13/413,724, now published as US Patent Application Publication No. US 2012/0168948.
Second Amendment and Response filed Apr. 14, 2014 in co-pending U.S. Appl. No. 13/413,724, now published as US Patent Application Publication No. US 2012/0168948.
Restriction Requirement mailed Apr. 10, 2014 in co-pending U.S. Appl. No. 13/418,853, now published as US Patent Application Publication No. US 2012/0244728.
Office Action mailed Mar. 20, 2014 in co-pending U.S. Appl. No. 14/058,863, now published as US Patent Application Publication No. 2014/0043782.
Office Action mailed Mar. 27, 2014 in co-pending U.S. Appl. No. 14/058,863, now published as US Patent Application Publication No. 2014/0043782.
Response and Terminal Disclaimer filed Apr. 2, 2014 in co-pending U.S. Appl. No. 14/058,863, now published as US Patent Application Publication No. 2014/0043782.
Notice of Allowance and Fee(s) Due mailed Apr. 17, 2014 in co-pending U.S. Appl. No. 14/058,863, now published as US Patent Application Publication No. 2014/0043782.
Co-pending U.S. Appl. No. 14/254,038 titled High Performance Electrical Connector With Translated Insulator Contact Positioning, filed Apr. 16, 2014.
Final Office Action mailed May 15, 2014 in co-pending U.S. Appl. No. 13/266,486, now published as US Patent Application Publication No. US 2012/0055701.
Notice of Allowance and Fee(s) Due mailed May 2, 2014 in co-pending U.S. Appl. No. 13/266,522, now published as US Patent Application Publication No. 2012/0068727.
Final Office Action mailed May 7, 2014 in co-pending U.S. Appl. No. 13/266,907, now published as US Patent Application Publication No. US 2012/0268155.
Amendment and Response filed Mar. 18, 2014 in co-pending U.S. Appl. No. 13/319,145, now published as US Patent Application Publication No. 2012/0049342.
Office Action mailed Jun. 27, 2014 in co-pending U.S. Appl. No. 13/319,158, now published as US Patent Application Publication No. 2012/0051016.
Amendment and Response file Jun. 10, 2014 in co-pending U.S. Appl. No. 13/319,203, now published as US Patent Application Publication No. 2012/0056640.
Response to Restriction Requirement filed Jun. 23, 2014 in co-pending U.S. Appl. No. 13/319,228, now published as US Patent Application Publication No. US 2012/0058653.
Restriction Requirement mailed Jun. 5, 2014 in co-pending U.S. Appl. No. 13/879,783, now published as US Patent Application Publication No. 2013/0223034.
Final Office Action mailed Jun. 4, 2014 in co-pending U.S. Appl. No. 13/410,914, now published as US Patent Application Publication No. US 2012/0164888.
Notice of Allowance and Fee(s) Due mailed May 9, 2014 in co-pending U.S. Appl. No. 13/413,724, now published as US Patent Application Publication No. US 2012/0168948.
Response to Restriction Requirement filed Apr. 23, 2014 in co-pending U.S. Appl. No. 13/418,853, now published as US Patent Application Publication No. US 2012/0244728.
Office Action mailed Jun. 26, 2014 in co-pending U.S. Appl. No. 13/418,853, now published as US Patent Application Publication No. US 2012/0244728.
Notice of Allowance and Fee(s) Due mailed Nov. 24, 2014 in co-pending U.S. Appl. No. 13/266,486, now published as US Patent Application Publication No. US 2012/0055701.
Supplemental Notice of Allowance mailed Dec. 24, 2014 in co-pending U.S. Appl. No. 13/266,486, now published as US Patent Application Publication No. US 2012/0055701.
Supplemental Notice of Allowance mailed Dec. 19, 2014 in co-pending U.S. Appl. No. 13/318,181, now published as US Patent Application Publication No. US 2012/0044659.
Office Action mailed Nov. 19, 2014 in co-pending U.S. Appl. No. 13/318,200, now published as US Patent Application Publication No. US 2012/0056332.
Office Action mailed Nov. 14, 2014 in co-pending U.S. Appl. No. 13/318,369, now published as US Patent Application Publication No. US 2012/0043119.
Amendment and Response and Terminal Disclaimer filed Nov. 14, 2014 in co-pending U.S. Appl. No. 13/318,382, now published as US Patent Application Publication No. US 2012/0043130.
Notice of Allowance and Fee(s) Due mailed Dec. 19, 2014 in co-pending U.S. Appl. No. 13/319,145 now published as US Patent Application Publication No. US 2012/0049342.
Amendment and Response Under Rule 1.116 and Request After Final Consideration Program 2.0 filed Dec. 18, 2014 in co-pending U.S. Appl. No. 13/319,158, now published as US Patent Application Publication No. 2012/0051016.
Advisory Action mailed Jan. 2, 2015 in co-pending U.S. Appl. No. 13/319,158, now published as US Patent Application Publication No. 2012/0051016.
Request for Continued Examination filed Nov. 12, 2014 in co-pending U.S. Appl. No. 13/319,203, now published as US Patent Application Publication No. 2012/0056640.
Notice of Allowance and Fee(s) Due mailed Dec. 10, 2014 in co-pending U.S. Appl. No. 13/319,203, now published as US Patent Application Publication No. 2012/0056640.
Amendment and Response and Terminal Disclaimer filed Nov. 17, 2014 in co-pending U.S. Appl. No. 13/319,228, now published as US Patent Application Publication No. US 2012/0058653.
Notice of Allowance and Fee(s) Due mailed Jan. 13, 2015 in co-pending U.S. Appl. No. 13/319,228, now published as US Patent Application Publication No. US 2012/0058653.
Amendment and Response filed Nov. 19, 2014 in co-pending U.S. Appl. No. 13/643,436, now published as US Patent Application Publication No. 2013/0105984.
Response Under Rule 1.116 filed Nov. 11, 2014 in co-pending U.S. Appl. No. 13/700,639, now published as US Patent Application Publication No. 2013/0078860.
Amendment and Response and RCE filed Dec. 30, 2014 in co-pending U.S. Appl. No. 13/700,639, now published as US Patent Application Publication No. 2013/0078860.
Advisory Action mailed Dec. 3, 2014 in co-pending U.S. Appl. No. 13/700,639, now published as US Patent Application Publication No. 2013/0078860.
Office Action mailed Nov. 17, 2014 in co-pending U.S. Appl. No. 13/879,883, now published as US Patent Application Publication No. 2013/0244490.
Office Action mailed Dec. 26, 2014 in co-pending U.S. Appl. No. 13/410,914, now published as US Patent Application Publication No. US 2012/0164888.
Restriction Requirement mailed Nov. 19, 2014 in co-pending U.S. Appl. No. 13/413,032, now published as US Patent Application Publication No. US 2012/0182035.
Response to Restriction Requirement filed Nov. 20, 2014 in co-pending U.S. Appl. No. 13/413,032, now published as US Patent Application Publication No. US 2012/0182035.
Notice of Allowance and Fee(s) Due mailed Jan. 5, 2015 in co-pending U.S. Appl. No. 13/413,032, now published as US Patent Application Publication No. US 2012/0182035.
Co-pending U.S. Appl. No. 14/408,205 titled Hybrid Printed Circuit Assembly With Low Density Main Core and Embedded High Density Circuit Regions, filed Dec. 15, 2014.
Co-pending U.S. Appl. No. 14/408,039 titled High Speed Circuit Assembly With Integral Terminal and Mating Bias Loading Electrical Connector Assembly, filed Dec. 15, 2014.
Co-pending U.S. Appl. No. 14/408,338 titled Semiconductor Socket With Direct Selective Metalization, filed Dec. 16, 2014.
Co-pending U.S. Appl. No. 14/565,724 titled Performance Enhanced Semiconductor Socket, filed Dec. 10, 2014.
Final Office Action mailed Feb. 10, 2015 in co-pending U.S. Appl. No. 13/318,382, now published as US Patent Application Publication No. US 2012/0043130.
Amendment and Response with RCE filed Feb. 5, 2015 in co-pending U.S. Appl. No. 13/319,158, now published as US Patent Application Publication No. 2012/0051016.
Notice of Allowance and Fee(s) Due mailed Feb. 9, 2015 in co-pending U.S. Appl. No. 13/643,436, now published as US Patent Application Publication No. 2013/0105984.
Restriction Requirement mailed Feb. 12, 2015 in co-pending U.S. Appl. No. 13/700,639, now published as US Patent Application Publication No. 2013/0078860.
Response to Restriction Requirement filed Feb. 24, 2015 in co-pending U.S. Appl. No. 13/700,639, now published as US Patent Application Publication No. 2013/0078860.
Amendment and Response filed Feb. 3, 2015 in co-pending U.S. Appl. No. 13/879,783, now published as US Patent Application Publication No. 2013/0223034.
Amendment and Response filed Mar. 10, 2015 in co-pending U.S. Appl. No. 13/879,883, now published as US Patent Application Publication No. 2013/0244490.
Restriction Requirement mailed Jan. 22, 2015 in co-pending U.S. Appl. No. 13/880,231, now published as US Patent Application Publication No. 2013/0210276.
Response to Restriction Requirement filed Jan. 27, 2015 in co-pending U.S. Appl. No. 13/880,231, now published as US Patent Application Publication No. 2013/0210276.
Office Action mailed Feb. 27, 2015 in co-pending U.S. Appl. No. 13/410,943, now published as US Patent Application Publication No. US 2012/0161317.
Amendment and Response with RCE filed Jan. 28, 2015 in co-pending U.S. Appl. No. 13/418,853, now published as US Patent Application Publication No. US 2012/0244728.
Office Action mailed Feb. 20, 2015 in co-pending U.S. Appl. No. 13/418,853, now published as US Patent Application Publication No. US 2012/0244728.
Co-pending U.S. Appl. No. 14/621,663 titled High Performance Surface Mount Electrical Interconnect, filed Feb. 13, 2015.
Notice of Allowance and Fee(s) Due mailed Apr. 9, 2015 in co-pending U.S. Appl. No. 13/266,573, now issued as U.S. Pat. No. 9,054,097.
Notice of Allowance and Fee(s) Due mailed Apr. 13, 2015 in co-pending U.S. Appl. No. 13/318,200, now published as US Patent Application Publication No. US 2012/0056332.
Notice of Allowance and Fee(s) Due mailed May 18, 2015 in co-pending U.S. Appl. No. 14/086,029, now issued as U.S. Pat. No. 9,076,884.
Final Office Action mailed Jun. 30, 2015 in co-pending U.S. Appl. No. 13/318,369, now published as US Patent Application Publication No. US 2012/0043119.
Office Action mailed Apr. 23, 2015 in co-pending U.S. Appl. No. 13/319,158, now published as US Patent Application Publication No. 2012/0051016.
Office Action mailed Apr. 2, 2015 in co-pending U.S. Appl. No. 13/700,639, now published as US Patent Application Publication No. 2013/0078860.
Final Office Action mailed Apr. 23, 2015 in co-pending U.S. Appl. No. 13/879,783, now published as US Patent Application Publication No. 2013/0223034.
Notice of Allowance and Fee(s) Due mailed May 28, 2015 in co-pending U.S. Appl. No. 13/879,883, now published as US Patent Application Publication No. 2013/0244490.
Office Action mailed May 22, 2015 in co-pending U.S. Appl. No. 13/880,231, now published as US Patent Application Publication No. 2013/0210276.
Office Action mailed May 4, 2015 in co-pending U.S. Appl. No. 13/880,231, now published as US Patent Application Publication No. 2013/0210276.
Notice of Allowance and Fee(s) Due mailed Jun. 4, 2015 in co-pending U.S. Appl. No. 13/410,914, now published as US Patent Application Publication No. US 2012/0164888.
Print—Definition of Print by the Free Dictionary, http://www.thefreedictionary.com/print, Aug. 13, 2014.
Amendment and Response Under Rule 1.116 filed Jul. 10, 2014 in co-pending U.S. Appl. No. 13/266,486, now published as US Patent Application Publication No. US 2012/0055701.
Advisory Action mailed Jul. 21, 2014 in co-pending U.S. Appl. No. 13/266,486, now published as US Patent Application Publication No. US 2012/0055701.
Request for Continued Examination filed Jul. 31, 2014 in co-pending U.S. Appl. No. 13/266,486, now published as US Patent Application Publication No. US 2012/0055701.
Office Action mailed Jul. 3, 2014 in co-pending U.S. Appl. No. 13/266,573, now published as US Patent Application Publication No. 2012/0061846.
Amendment and Response Under Rule 1.116 mailed Jul. 10, 2014 in co-pending U.S. Appl. No. 13/266,907, now published as US Patent Application Publication No. US 2012/0268155.
Advisory Action mailed Jul. 25, 2014 in co-pending U.S. Appl. No. 13/266,907, now published as US Patent Application Publication No. US 2012/0268155.
Advisory Action mailed Aug. 8, 2014 in co-pending U.S. Appl. No. 13/266,907, now published as US Patent Application Publication No. US 2012/0268155.
Amendment and Response to Final Office Action and RCE filed Aug. 26, 2014 in co-pending U.S. Appl. No. 13/266,907, now published as US Patent Application Publication No. US 2012/0268155.
Final Office Action mailed Aug. 1, 2014 in co-pending U.S. Appl. No. 13/318,038, now published as US Patent Application Publication No. US 2012/0062270.
Amendment and Response filed Jul. 27, 2014 in co-pending U.S. Appl. No. 13/318,181, now published as US Patent Application Publication No. US 2012/0044659.
Final Office Action mailed Jul. 31, 2014 in co-pending U.S. Appl. No. 13/319,120, now published as US Patent Application Publication No. US 2012/0055702.
Office Action mailed Aug. 26, 2014 in co-pending U.S. Appl. No. 13/318,382, now published as US Patent Application Publication No. US 2012/0043130.
Final Office Action mailed Aug. 4, 2014 in co-pending U.S. Appl. No. 13/319,145, now published as US Patent Application Publication No. 2012/0049342.
Amendment and Response filed Sep. 3, 2014 in co-pending U.S. Appl. No. 13/319,158, now published as US Patent Application Publication No. 2012/0051016.
Final Office Action mailed Aug. 20, 2014 in co-pending U.S. Appl. No. 13/319,203, now published as US Patent Application Publication No. 2012/0056640.
Office Action mailed Sep. 4, 2014 in co-pending U.S. Appl. No. 13/319,228, now published as US Patent Application Publication No. US 2012/0058653.
Amendment and Response filed Jul. 30, 2014 in co-pending U.S. Appl. No. 13/700,639, now published as US Patent Application Publication No. 2013/0078860.
Response to Restriction Requirement filed Jul. 17, 2014 in co-pending U.S. Appl. No. 13/879,783, now published as US Patent Application Publication No. 2013/0223034.
Amendment and Response Under Rule 1.116 filed Jul. 29, 2014 in co-pending U.S. Appl. No. 13/410,914, now published as US Patent Application Publication No. US 2012/0164888.
Advisory Action mailed Aug. 12, 2014 in co-pending U.S. Appl. No. 13/410,914, now published as US Patent Application Publication No. US 2012/0164888.
Restriction Requirement mailed Jul. 31, 2014 in co-pending U.S. Appl. No. 13/410,943, now published as US Patent Application Publication No. US 2012/0161317.
Response to Restriction Requirement filed Aug. 19, 2014 in co-pending U.S. Appl. No. 13/410,943, now published as US Patent Application Publication No. US 2012/0161317.
Amendment and Response filed Aug. 26, 2014 in co-pending U.S. Appl. No. 13/418,853, now published as US Patent Application Publication No. US 2012/0244728.
Co-pending U.S. Appl. No. 14/327,916 titled Matrix Defined Electrical Circuit Structure, filed Jul. 10, 2014.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority mailed Oct. 27, 2014 in International Application No. PCT/US2014/045856.
Ex Parte Quayle Action mailed Oct. 1, 2014 in co-pending U.S. Appl. No. 13/266,486, now published as US Patent Application No. US 2012/0055701.
Amendment and Response After ExParte Quayle Action filed Oct. 6, 2014 in co-pending U.S. Appl. No. 13/266,486, now published as US Patent Application Publication No. US 2012/0055701.
Notice of Non-Compliant Amendment mailed Oct. 14, 2014 in co-pending U.S. Appl. No. 13/266,486, now published as US Patent Application Publication No. US 2012/0055701.
Corrected Amendment and Response filed Oct. 15, 2014 in co-pending U.S. Appl. No. 13/266,486, now published as US Patent Application Publication No. US 2012/0055701.
Amendment and Response filed Sep. 9, 2014 in co-pending U.S. Appl. No. 13/266,573, now published as US Patent Application Publication No. 2012/0061846.
Notice of Allowance and Fee(s) Due mailed Oct. 8, 2014 in co-pending U.S. Appl. No. 13/266,907, now published as US Patent Application Publication No. US 2012/0268155.
Amendment and Response Under Rule 1.116 and Termination Disclaimer filed Sep. 4, 2014 in co-pending U.S. Appl. No. 13/318,038, now published as US Patent Application Publication No. US 2012/0062270.
Terminal Disclaimer Review Decision mailed Sep. 8, 2014 in co-pending U.S. Appl. No. 13/318,038, now published as US Patent Application Publication No. US 2012/0062270.
Notice of Allowance and Fee(s) Due mailed Sep. 30, 2014 in co-pending U.S. Appl. No. 13/318,038, now published as US Patent Application Publication No. US 2012/0062270.
Notice of Allowance and Fee(s) Due mailed Oct. 24, 2014 in co-pending U.S. Appl. No. 13/318,181, now published as US Patent Application Publication No. US 2012/0044659.
Restriction Requirement mailed Sep. 8, 2014 in co-pending U.S. Appl. No. 13/318,369, now published as US Patent Application Publication No. US 2012/0043119.
Response to Restriction Requirement filed Oct. 13, 2014 in co-pending U.S. Appl. No. 13/318,369, now published as US Patent Application Publication No. US 2012/0043119.
Applicant-Initiated Interview Summary mailed Sep. 12, 2014 in co-pending U.S. Appl. No. 13/319,120 now published as US Patent Application Publication No. US 2012/0061851.
Amendment and Response and RCE filed Oct. 1, 2014 in co-pending U.S. Appl. No. 13/319,120 now published as US Patent Application Publication No. US 2012/0061851.
Notice of Allowance and Fee(s) Due mailed Oct. 27, 2014 in co-pending U.S. Appl. No. 13/319,120 now published as US Patent Application Publication No. US 2012/0061851.
Applicant-Initiated Interview Summary mailed Sep. 12, 2014 in co-pending U.S. Appl. No. 13/319,145 now published as US Patent Application Publication No. US 2012/0049342.
Amendment and Response Under Rule 1.116 filed Sep. 18, 2014 in co-pending U.S. Appl. No. 13/319,145 now published as US Patent Application Publication No. US 2012/0049342.
Final Office Action mailed Nov. 6, 2014 in co-pending U.S. Appl. No. 13/319,158, now published as US Patent Application Publication No. 2012/0051016.
Amendment and Response Under Rule 1.116 filed Oct. 2, 2014 in co-pending U.S. Appl. No. 13/319,203, now published as US Patent Application Publication No. 2012/0056640.
Applicant-Initiated Interview Summary mailed Oct. 9, 2014 in co-pending U.S. Appl. No. 13/319,203, now published as US Patent Application Publication No. 2012/0056640.
Advisory Action mailed Oct. 16, 2014 in co-pending U.S. Appl. No. 13/319,203, now published as US Patent Application Publication No. 2012/0056640.
Notice of Abandonment mailed Oct. 10, 2014 in co-pending U.S. Appl. No. 13/575,368, now published as US Patent Application Publication No. 2013/0203273.
Office Action mailed Sep. 17, 2014 in co-pending U.S. Appl. No. 13/643,436, now published as US Patent Application Publication No. 2013/0105984.
Final Office Action mailed Sep. 8, 2014 in co-pending U.S. Appl. No. 13/700,639, now published as US Patent Application Publication No. 2013/0078860.
Office Action mailed Oct. 6, 2014 in co-pending U.S. Appl. No. 13/879,783, now published as US Patent Application Publication No. 2013/0223034.
Amendment and Response and RCE filed Sep. 30, 2014 in co-pending U.S. Appl. No. 13/410,914, now published as US Patent Application Publication No. US 2012/0164888.
Final Office Action mailed Oct. 28, 2014 in co-pending U.S. Appl. No. 13/418,853, now published as US Patent Application Publication No. US 2012/0244728.
U.S. Appl. No. 14/408,338, filed Dec. 16, 2014, Semiconductor Socket With Direct Selective Metalization.
Robert Tarzwell, Post Pads: A New Technology in Chip Packaging Beyond BGA, May 1, 2003.
Robert Tarzwell, Heavy Copper—Printed Circuit Design Notebook, May 2003.
Robert Tarzwell and Ken Bahl, Designing Micro Electronic Circuits, Nov. 2006.
Robert Tarzwell, A New Third Dimension Now Possible for PCBs with 3-D Copper Structures, Sep. 6, 2007.
Robert Tarzwell, Micro PCB Machines, Nov. 25, 2007.
Robert Tarzwell and Ken Bahl, The Bleeding Edge: The Very Latest in R&D, Aug. 8, 2008.
Robert Tarzwell, 3 D Copper—Printed Circuit Manufacturing, Jan. 2009.
Robert Tarzwell, Xtreme Fine Line Printed Circuit Manufacturing, Jan. 2009.
Robert Tarzwell, The Bleeding Edge: Printed Electronics and the Military, Jul. 14, 2009.
Related Publications (1)
Number Date Country
20120055702 A1 Mar 2012 US
Provisional Applications (1)
Number Date Country
61183340 Jun 2009 US