The invention relates to a component carrier, wherein at least a part of the component carrier is formed as a three-dimensional structure. Furthermore, the invention relates to a method for manufacturing a component carrier, wherein at least a part of the component carrier is formed as a three-dimensional structure.
Conventional component carriers are manufactured as single-layered or multi-layered component carriers. Usually, they are manufactured photochemically by laminating the electrically conducting layers by a photoresist. After the illumination of the photoresist through a mask (or reticle) which includes the desired structure of the electrically conductive layer, either the illuminated or the non-illuminated portions of the photoresist are removed in a corresponding solution. Important for the quality and the functionality of the component carrier are, on the one hand, the materials used and, on the other hand, the deposition (or application) and/or connection of the used materials among each other. Due to the ever increasing requirements relating to the component carriers due to the increasing miniaturization in electrical engineering, also the requirements relating to the materials used and the structure of the very component carrier are increasing. For this reason, there may still be room for improved component carriers and their manufacturing methods.
There may be a need to provide a component carrier, which can be manufactured easily and which allows more flexibility in the arrangement of the component carrier structures.
Exemplary embodiments of the present invention are described the subject matters having the features according to the independent claims. Further embodiment examples are shown in the dependent claims.
According to a first exemplary embodiment of the invention, there is provided a component carrier, which has a carrier body, which has a plurality of electrically conductive layer structures and/or electrically isolating layer structures. At least a part of the component carrier is formed as a three-dimensionally printed structure.
According to a further exemplary embodiment of the invention, there is provided a method for manufacturing a component carrier. The method has the following: a connecting of a plurality of electrically conductive layer structures and/or electrically isolating layer structures, so as to form a carrier body. The method further has a forming of at least a part of the component carrier as a three-dimensionally printed structure by three-dimensional printing.
The term “component carrier” may be understood in particular to refer to each supporting structure, which may be capable to receive thereon and/or therein one or more components for providing a mechanical support and/or electrical connection. In other words, a component carrier can be configured as a mechanical and/or an electrical carrier for components. In particular, a component carrier can be one of a conductor board, an organic interposer and an IC (integrated circuit) substrate. A component carrier can also be a hybrid board, which may combine the different types of component carriers mentioned above.
According to an embodiment of the invention, the component carrier may have a carrier body having a stack of at least one electrically isolating layer structure and at least one electrically conducting layer structure. For example, the component carrier can be a lamination from the mentioned electrically isolating layer structure(s) and the electrically conducting layer structure(s), which lamination may be formed in particular by an application of mechanical pressure, if desired supported by thermal energy. The mentioned stack can provide a board-shaped (or plate-shaped) component carrier, which may be capable to provide a large mounting surface for further components and which may be nevertheless very thin and compact. The term “layer structure” may be understood to refer in particular to a continuous layer, a structured layer or a plurality of non-consecutive islands within a common plane. The component carrier may have a carrier body, which may consist of different layer structures, i.e. of electrically isolating and electrically conducting layer structures. The different layer structures can be arranged such that the sequence of the electrically isolating layer structure and the electrically conducting layer structure changes (or alternates). For example, the carrier body may have a layer structure, which may begin with the electrically conducting layer structure, which may be followed by an electrically isolating layer structure, and which may be further followed by an electrically conducting layer structure, such that the stack of the component carrier may be formed.
The term “at least a part” of the component carrier may be understood to refer in particular to at least one layer of the component carrier, electrically conducting components of the component carrier, or any other parts, which may form the component carrier. The at least one part can be a conducting part of the component carrier and/or a non-conducting and/or isolating part of the component carrier, and/or also a combination thereof. Furthermore, the at least one part can be formed on and/or in at least one of the electrically conducting layer structures and/or the electrically isolating layer structures. In particular, the complete component carrier can also be formed as a three-dimensionally printed structure.
The term “three-dimensionally printed structure” may be understood to refer in particular to a structure, which may be manufactured by a three-dimensional printing process. During a three-dimensional printing process, the 3D printed structures may be constructed layer by layer. In particular, a three-dimensional printing may be understood to refer to a printing using powdery material, a 3D printing with using meltable material, a 3D printing by fluidic materials. A process, which may use printable material in powdery form is the Selective Laser Sintering (SLS) or also the Selective Laser Melting (SLM). A further process, which may use printable materials in powder form, is electron beam melting (EBM), or also electron beam additive manufacturing (EBAM). A 3D printing with meltable materials can be understood to refer in particular to a Fused Filament Fabrication (FFF), or to a Fused Deposition Modeling (FDM, melting layering). Melted materials, which can be used for this process, can be in particular ABS or PLA. 3D printing with fluidic materials can be understood to refer in particular to a manufacturing process, which may work on the basis of UV-sensitive plastic materials (such as photo-polymers, or also other light-sensitive materials, which may react differently to different wavelengths). In particular, the 3D printing with fluidic materials can include the so-called stereo-lithography (SLA). During the 3D printing process, the three-dimensionally printed structure may be constructed layer by layer.
The forming of a part of a component carrier using a three-dimensional printing process can simplify the manufacturing of the component carrier. Furthermore, the design of the one part of the component carrier can be adapted in a simple manner to its function and/or to a position on the component carrier, such that the design of the very component carrier may be adaptable easily. The using of the 3D printing can guarantee more precision during the formation of the one part of the component carrier. Furthermore, an arrangement of different parts on the component carrier by the 3D printing method can be implemented with a high precision.
It is noted that the term “layer structures” can, in the framework of the present document, be used representatively for the plurality of the electrically conducting layer structures and the electrically isolating layer structures.
According to an exemplary embodiment of the invention, the three-dimensionally printed structure may be formed in the interior and/or at a surface of the carrier body. The three-dimensionally printed structure can be formed on a one of the plurality of layer structures and/or in one of the plurality of layer structures. Furthermore, the three-dimensionally printed structure can be a part of at least one of the plurality of layer structures. Furthermore, the three-dimensionally printed structure can extend at least partially through the carrier body, such that the three-dimensionally printed structure may extend through at least one of the plurality of layer structures.
According to an exemplary embodiment, the three-dimensionally printed structure may be formed along a stacking direction of the plurality of layer structures. The plurality of layer structures of the component carrier can be arranged as a stack, i.e. layered on top of each other. Thus, the term “stacking direction” can be understood to refer in particular to the direction, along which the stacked layers may be stacked on top of each other. The stacking direction can thus be an extension direction of the three-dimensionally printed structure through the plurality of layer structures.
According to an exemplary embodiment, the three-dimensionally printed structure may be formed perpendicular to a stacking direction of the plurality of layer structures. The perpendicular extension with respect to the stacking direction can be an extension direction of the three-dimensionally printed structure along at least one of the plurality of layer structures.
According to an exemplary embodiment, the three-dimensionally printed structure may have different cross-sectional areas, in particular in a stacking direction of the plurality of layer structures and/or perpendicular to a stacking direction of the plurality of layer structures. The three-dimensionally printed structure can have different cross-sectional areas in the direction of a plane, which may extend parallel to the plurality of layer structures and/or the three-dimensionally printed structure can have different cross-sectional areas in the direction of a plane, which may extend perpendicular to the plurality of layer structures. For this reason, the three-dimensionally printed structure can have different thicknesses in a plane parallel and/or perpendicular to the plurality of layer structures. Different thicknesses can be realized by the 3D printing in a simple manner.
According to an exemplary embodiment, the component carrier may have a surrounding component carrier region and a surrounded component carrier region, which may be surrounded by the surrounding component carrier region, wherein in particular at least a part of the surrounding component carrier region and/or of the surrounded component carrier region may be formable as a further three-dimensionally printed structure. In other words, the three-dimensionally printed structure can be formed in a component carrier region, which may surround the three-dimensional structure and/or the three-dimensionally printed structure can be formed in a component carrier region, such that the three-dimensional structure may surround another component carrier region. Herein, as a function of in which region the three-dimensionally printed structure is arranged, the corresponding other region may also be formed as (i.e. as a further) three-dimensionally printed structure. In particular, the three-dimensionally printed structure can be embedded in a component carrier, such that the three-dimensionally printed structure may be formed on/in a component carrier, which may be integratable in another component carrier, or vice versa.
According to an exemplary embodiment, the three-dimensionally printed structure may form at least partially the electrically conductive layer structures and/or the electrically isolating layer structures. As a function of the material selection in the 3D printing method, the three-dimensionally printed structure can comprise materials, which may be electrically conducting or electrically isolating, in order to thus possibly form corresponding structures. In particular, the three-dimensionally printed structure can form at least partially at least one of the plurality of layer structures. Thus, the three-dimensionally printed one part of the component carrier can be at least one of the plurality of the layer structures.
According to an exemplary embodiment example, the three-dimensionally printed structure may be formed as a rigid and/or flexible structure. If the three-dimensionally printed structure is formed as a rigid structure, the three-dimensionally printed structure can be used for the purpose of forming at least a part of a rigid carrier body, in particular a rigid conductor board. If the three-dimensionally printed structure is formed as a flexible structure, the three-dimensionally printed structure can be used for the purpose of forming at least a part of a flexible carrier body, in particular a flexible conductor board. As a function of the used 3D printable material for the three-dimensionally printed structure, the 3D printed structure may have rigid and/or flexible properties. Flexible properties and/or a flexible carrier body may be understood to refer e.g. to a bendable material, such that at least a part of the carrier body may be deformable reversibly under a load. By contrast thereto, a rigid part of a carrier body may be less and/or not at all deformable.
According to an exemplary embodiment, the carrier body may have a recess (or a hollow), wherein the three-dimensionally printed structure may be printed within the recess. The term “recess” may be understood to refer in particular to a cavity within the carrier body. Herein, the recess can be formed in the carrier body such that the recess may be surrounded by the carrier body on at least three sides and thus may have contact to an environment of the carrier body via the non-surrounded side. On the other hand, the recess can be formed in the carrier body such that the recess may be enclosed by the carrier body on all sides, and thus may have no contact to the surrounding of the carrier body, i.e. may have contact only to the very carrier body. The recess can extend in the direction of a stacking direction of the carrier body and/or the recess can extend perpendicular to a stacking direction. Furthermore, the three-dimensionally printed structure can fill the recess at least partially, or the three-dimensionally printed structure can fill the recess completely. Thus, for example, a component, which may be concealable in (or immersible) in the carrier body, can be printed thereinto three-dimensionally.
According to an exemplary embodiment example, the three-dimensionally printed structure may be formed at least partially as an electrically conducting connection element, in particular as a terminal pad, a pin, a female connector, a micro-pin (or also micro-pillar), an, in particular annular, sliding contact, and/or a spring contact. Furthermore, the electrically conducting connection element can be soldering material. That is, the three-dimensionally printed structure may be a three-dimensional printable soldering material for fabricating electrically conducting connections. Furthermore, the 3D printed structure can be a solderable terminal pad, which may be printed directly on the carrier body. Likewise, the 3D printed structure can be an electrical connection element, which may extend outwardly from the carrier body, such that a pin, a female connector and/or a micro-pin is formed, by which electronic components can be connected to the carrier body. Furthermore, the 3D printed structure can be a sliding contact, in particular a sliding contact made of steel, in order to thus form a non-permanent plug connection having a very high working life and a high reliability. The electrically conducting connection element can also be a wire connection, i.e. a conductor path connection, between different components of the carrier body.
According to an exemplary embodiment, a solder depot may be depositable (or can be applied) on the conducting connection element, in particular as a three-dimensionally printed structure. Thus, a standard soldering process can be replaced by a 3D printing of soldering material. The printable soldering material can be in particular tin-solder. The printing of soldering material itself may be of advantage in the printing on copper-free elements, like copper layers as an electrically conducting layer, such that a direct electrically conducting contact between the two different materials can be fabricated, such that special fluxing agents for the soldering process may be obsolete.
According to an exemplary embodiment, the three-dimensionally printed structure may be formed as a damping element, in particular as a spring. In particular, the 3D printed structure may be formed as a micro-spring. The damping element(s) can be printed directly on the carrier body and/or directly on one of the plurality of layer structures. Thereby, an additional fabrication of the damping elements and a subsequent connecting of the damping elements on the carrier body can be avoided. Furthermore, integratable, detachable damping connections (or also plug connections) can be established for the mounting of electronic devices. For example, a damping element can be printed directly on copper platelets of the carrier body by powder-based and/or liquid-based 3D printing methods.
According to an exemplary embodiment, the three-dimensionally printed structure may be formed as a mechanical connection element, in particular a threaded bush, a snap-action connection, a hook and loop connection, a slide fastener connection, a guiding rail, and/or a guiding pin. If the 3D printed structure is formed as a threaded bush, it may represent at least a mechanical depot for screws and serves for screw safeguarding. The mechanical connections by the mechanical connection elements can be formed releasable and/or formed movable. The connections can also function as electrical connections, which can be released as a function of requirements. For example, a slide fastener connection can have and/or assume partially electrical connections. Furthermore, if the mechanical connection element is a hook and loop connection, it may be possible that by the hook and loop connection, which may be formed on the carrier body, the carrier body may be adherable to textile elements or another associated element, such as another carrier body, PCB, modular textile elements, clothing or an envelope. Furthermore, the mechanical connection element can serve as an anchor connection in order to possibly hold the carrier body at a particular position in a larger unit.
According to an exemplary embodiment, the mechanical connection element may be configured to form a releasable connection. The releasable connection can be a releasable mechanical connection and/or a releasable partially electrical connection.
According to an exemplary embodiment, the three-dimensionally printed structure may form a reinforcement structure, in particular a reinforcement structure of the electrically conductive layer structures and/or of the electrically isolating layer structures. The reinforcement structure can be a conducting and/or a non-conducting structure, such that either the conducting layers are reinforced (e.g. thickened copper layers or copper lines for the transmission of high current fluxes) or the non-conducting layers can be reinforced (e.g. in order to form a reinforced layer of the carrier body, which can withstand higher loads). The reinforcement structure may further serve for the protection of components, which may be embedded in the carrier body, wherein the reinforcement structure may be arranged around these components. Furthermore, the reinforcement structure can be arranged around recesses in at least one of the plurality of layer structures, in order to thereby possibly care for stability around these recesses. In particular, the reinforcement structure may include glass fibres, which may form the skeleton structure (or matrix) of the reinforcement structure, i.e. the reinforcement structure may be constructed of glass fibres. Thereby, asymmetrical conductor boards can be formed, which can be adapted to specific requirements, such as for example applications which may require a high power.
According to an exemplary embodiment, the three-dimensionally printed structure may be a heat-conducting structure. In particular, the 3D printed structure may serve for heat dissipation from heat generating elements, such as electronic components on and/or in the carrier body. The heat-conducting structure can be in particular at least one of a heat sink, a heat pipe, a simple copper line for heat dissipation, or a cooling plate. The heat-conducting structure can be printed in and/or on the carrier body. Copper or also heat conducting ceramics can be used as the material for the heat-conducting structure.
According to an exemplary embodiment, the three-dimensionally printed structure may form a surface of the carrier body, wherein regions of the surface may differ in respect of their hardness, roughness and/or elasticity. The three-dimensionally printed structure may form the outermost layer of the carrier body, which can be exposed to the environment of the carrier body. If a part of the carrier body is exposed to a harsh environment, this part can have a three-dimensionally printed surface having a high hardness, in order to thereby possibly protect the part of the carrier body e.g. from abrasive wear and pollutants. Furthermore, a surface having a high hardness can be exposed to higher clamping forces. The three-dimensionally printed surface can have a lower hardness and/or a higher elasticity, if a flexible conductor board is to be formed. Furthermore, the surface can enclose the carrier body completely, in order to possibly form an envelope around the carrier body. The differently formed surfaces may all be formed on a single carrier body.
According to an exemplary embodiment, at least a region of the three-dimensionally printed structure may be formed of steel and/or of titanium. If the three-dimensionally printed structure is formed for example as a surface of the carrier body, then this can form an envelope, wherein the surface can consist of titanium or steel, in order to possibly form a scratch-resistant envelope and/or encapsulation of the carrier body. Thereby, the carrier body may be protected from influences of the environment. The three-dimensionally printed structure can cover the carrier body at least partially or also completely. Furthermore, biocompatible carrier bodies and/or conductor boards can be manufactured by the use of titanium materials.
According to an exemplary embodiment, the three-dimensionally printed structure may form at least a part of a component. The term “component” can be understood herein to refer to a component, which may be arranged on/in the carrier body, in order to possibly fulfil a specific function, such as an electronic component. In particular, the three-dimensionally printed structure can form a surface of the component and/or can be printed on the component as a finishing surface of the component (e.g. as an envelope, a heat-dissipating structure). Furthermore, the three-dimensionally printed structure can form the component completely such that a three-dimensionally printed component is provided.
According to an exemplary embodiment, at least a part of the carrier body may be encapsulated by the three-dimensionally printed structure as an encapsulation at least partially, wherein the encapsulation may be a steel and/or titanium encapsulation. The encapsulation can surround the carrier body completely or partially. If only particular regions of the carrier body are to be protected e.g. from outer influences, then only the regions of the three-dimensionally printed structure, which are to be protected, may be encapsulated. Thus, for example, uppermost copper layers of the carrier body may be encapsulated, such that these copper layers may not be exposed.
According to an exemplary embodiment, the component carrier may further have a component, in particular an electronic component, surface-mounted on and/or embedded in at least one of the plurality of electrically conductive layer structures and/or the electrically isolating layer structures. The component can be an electronic component or device for performing different functions, as a function of the application, in which the component carrier may be embedded. The component can be surface-mounted on and/or embedded in at least one of the plurality of electrically conducting layer structures and/or surface-mounted on and/or embedded in at least one of the plurality of electrically isolating layer structures.
According to an exemplary embodiment, the three-dimensionally printed structure may have at least one material component, which may be selected from the group consisting of copper, aluminum, steel, titanium, metal alloy, plastic material, and photoresist. Furthermore, the material component may comprise soldering material and/or tin-solder. If the three-dimensionally printed structure is a photoresist, this can be printed on prior to the etching (and thus prior to the structuring of the conductor board into its specific design) instead of being laminated thereon. Tin (Sn) can be employed as a metallic photoresist. If the photoresist has environment-resistant properties, the photoresist can also remain on the corresponding layer, on which it may have been printed, in order to thus possibly form a protection layer for surface protection. Materials, which may have environment-resistant properties, may be in particular steel and titanium.
According to an exemplary embodiment, the three-dimensionally printed structure may be formed such that a further three-dimensionally printed structure may be printable thereon. That is, at first a three-dimensionally printed structure may be printed on at least a part of the carrier body. Subsequently, a further three-dimensionally printed structure may be printed on the one three-dimensionally printed structure. Thus, plural three-dimensionally printed structures can be printed on top of each other. Thereby, for example, the layer structure (i.e. the stacks) of the carrier body can be generated.
According to an exemplary embodiment, a further part of the component carrier may be formed as a further three-dimensionally printed structure, wherein the three-dimensionally printed structure and the further three-dimensionally printed structure may consist of different materials. The component carrier thus may consist of one part, which may be formed as a three-dimensionally printed structure, and of a further part, which may be formed of a further three-dimensionally printed structure. The three-dimensionally printed structures can differ in respect of their materials and in respect of their properties, in order to possibly fulfil different functions.
For example, one three-dimensionally printed structure can be electrically conducting, and the further three-dimensionally printed structure can be electrically isolating.
According to an exemplary embodiment, the one three-dimensionally printed structure may have a higher height conductivity and/or current conductivity than the further three-dimensionally printed structure. Materials having different conductivity can be used as an isolation. For example, steel (as a three-dimensionally printed structure) can be printed on copper (as the further three-dimensionally printed structure). Thereby, both the thermal and the electrical resistance may increase (up to 40 times). An electrical signal, which may be conducted through these three-dimensionally printed structures, would be subjected to signal losses, can however still be transmitted. Furthermore, the temperature may be dampened by the insulation. Restoring again a voltage decrease by a factor of 40 may in general be simpler than increasing a temperature by a factor of 40. Applicable technologies for this embodiment may be for example energy generators (so-called energy harvesters), temperature-sensitive devices, which may be attached to a component carrier, such as heat generating components.
According to an exemplary embodiment, the three-dimensionally printed structure and/or the further three-dimensionally printed structure may be formed from an electrically conducting material, in particular aluminum. Since aluminum has turned out to be difficult to be soldered, it may be of advantage to deposit (or apply) the aluminum as a three-dimensionally printed structure directly on a component carrier. On the other hand, it may also be simpler to print a three-dimensionally printed structure on the aluminum than to solder it there onto, in order to thus possibly produce a better adhesion between aluminum and another material (e.g. copper).
According to an exemplary embodiment, the three-dimensionally printed structure and the further three-dimensionally printed structure may be formed on top of each other for forming a bi-metal element. In the formation of the three-dimensionally printed structures as a bi-metal, both the one three-dimensionally printed structure and also the further three-dimensionally printed structure may have different materials. For example, a copper layer can be printed, on which another metal layer may be printed, in order to thus possibly form a bi-metal stripe. A sensor (or a relay, thermometer, energy harvester) can be formed by this construction due to the elongation effects generated thereby.
According to an exemplary embodiment, the three-dimensionally printed structure may be an antenna structure. Present solutions of conductor board antennas may have either micro-stripe antennas, which may be fabricated during a standard manufacturing process for conductor boards, or external antennas, which may be manufactured as a surface-mounted (SMT) antenna, or may be attached with separate connectors. In order to possibly bring together the advantages of both variants and in order to possibly reduce the manufacturing costs, a three-dimensionally printed antenna can be used. Thereby, an antenna having a better antenna characteristics and a higher freedom of design may be manufacturable, which may be depositable (or attachable) directly on the component carrier and/or the conductor board. This three-dimensionally printed antenna can be used in radar, IoT (Internet of Things), or GPS applications.
According to an exemplary embodiment, the antenna structure may be formed, such that the antenna structure may be printable directly on and/or in the carrier body. In particular, the antenna structure can be printed in/on at least one of the plurality of layer structures.
According to an exemplary embodiment, the three-dimensionally printed structure may be formed as at least one of a group, which may consist of an active or passive electronic component, a resistor, a capacitor, an inductor, an electrical contact, a breaking cut-out, an USB contact and a QFN contact. The three-dimensionally printed structure can form the active or passive electronic components mentioned above directly, and thus may also perform their functions. For example, resistors can be integrated in the component carrier in a manner, in which different metals (or also alloys) may be printed with 3D printing methods, such that a resistor may be formed. Tighter tolerances in the resistors can be created by the three-dimensional printing of the materials as compared to conventional manufacturing methods.
An electrical contact can be for example a 3D printed adapter for electronic tests of conductor boards. Furthermore, additional different electrical contacts can be printed on and/or in the carrier body (i.e. USB, QFN, converter switches). Furthermore, two different 3D printed structures can be realized, i.e. on the one hand, a metallic 3D printed structure is realized in order to form the housing or attachment means of a socket of an electrical contact, and on the other hand, an electrically conducting 3D printed structure may be formed, which may represent the very electrical contact.
If the three-dimensionally printed structure is formed as a breaking cut-out, this may comprise a mechanically wearable 3D printed structure having the possibility to break at a defined mechanical load.
According to an exemplary embodiment, the three-dimensionally printed structure may be formed as at least one of the group, which may consist of a sensor, an actuator, a magnetic sensor, an EMV shielding and a micro-electromechanical system.
A three-dimensionally printed EMV shielding can replace a pre-fabricated EMV shielding and can be printed directly on the component carrier. Due to the 3D printing method, there may be a high variability in the design choice of the EMV shielding. For example, a wireless charging mechanism can be realized by a three-dimensionally printed magnetic sensor, wherein magnetic energy may be converted in electrical energy. Coils (or inductors) can be printed on the surface of the component carrier, wherein a Z-axis of the coils may be parallel to the surface of the component carrier. This embodiment can serve as a sensor for detecting a magnetic flux density (and/or fields of magnetic flux density) parallel to the component carrier surface.
According to an exemplary embodiment, the three-dimensionally printed structure may be formed as at least one element, which may be selected from the group, which consists of an optical element, a light detector, a light emitter, a lens, a micro-lens, a waveguide. For example, three-dimensionally printed glass fibres can be used as a waveguide. Furthermore, a reflecting layer can be provided, such as a reflector or e.g. a mirror for further guiding light waves and/or distributing them. This reflecting layer can be formed as a lens. Furthermore, this reflecting layer can form a focus (for example with components, which are arranged on the carrier body or are embedded therein, such as e.g. a piezo crystal). Furthermore, a reflector can be printed on a transparent surface of a light emitting diode (LED), in order to redirect the light of the LED to a horizontal direction. Three-dimensional printed lenses can be used for flash or camera modules. If an integrated micro-lens is used, this can be provided with a three-dimensionally printed optical window (e.g. of glass).
According to an exemplary embodiment, the three-dimensionally printed structure may be formed as at least one element, which may be selected from the group, which consists of a microphone, a loudspeaker and a Helmholtz horn. The Helmholtz horn, also known as a so-called Helmholtz resonator, can be used, for example, in order to generate a bottleneck for undesired frequencies, which may reach the microphone, and which would generate disturbances therein. Complex geometries for corresponding applications (like corresponding Helmholtz resonators for particular frequencies) can be realized by the 3D printing.
According to an exemplary embodiment, the at least one component can be selected from a group, which consists of an electrically non-conducting inlay, an electrically conducting inlay (like a metal inlay, preferably comprising copper or aluminum), a heat dissipation unit (for example a heat pipe), a light guiding element (for example an optical hollow conductor or a light-guiding connection), an electronic component, or combinations thereof. For example, the component can be an active electronic component, a passive electronic component, an electronic chip, a storage device (for example a DRAM or another data storage), a filter device, an integrated circuit, a signal processing component, a power management component, an opto-electric converter, a voltage converter (for example, a DC/DC converter or an AC/DC converter), a cryptographic component, a transmission and/or receiving unit, an electromechanical converter, an actuator, a micro-electromechanical system (MEMS), a micro-processor, a capacitor, a resistor, an inductor, an accumulator, a switch, a camera, an antenna, a magnetic element, a further component carrier, a logic chip, and an energy generation unit. Nevertheless, also other components can be embedded in the component carrier. For example, a magnetic element can be used as a component. Such a magnetic element can be a permanent magnet element (such as a ferromagnetic element), an anti-ferromagnetic element or a ferrimagnetic element (for example a ferrite core), or a paramagnetic element. Nevertheless, the component can also be a further component carrier, for example a board in board configuration. The component can be surface-mounted on the component carrier and/or embedded in an interior thereof. In addition, also other components can be used as a component, in particular those which may generate and transmit electromagnetic radiation and/or may be sensitive in respect of electromagnetic radiation, which may be sent from an environment.
According to an exemplary embodiment, the at least one electrically conducting layer structure may have at least one of the group, which consists of copper, aluminum, nickel, silver, gold, palladium, and wolfram. Even though copper may be generally preferred, also other materials or coated versions thereof may be possible, which may in particular be coated with supra-conducting material, such as graphene.
According to an exemplary embodiment of the invention, at least one of the plurality of the electrically isolating layer structures may have at least one of the group, which consists of resin (such as reinforced or non-reinforced resins, in particular epoxide resin or bismaleimide-triazine resin, further in particular FR-4 or FR-5), cyanate ester, polyphenylene derivatives, glass (in particular glass fibres, multi-layer glass, glass-like (or translucent) materials), prepreg material, polyimide, polyamide, liquid-crystalline polymer (LCP), epoxide-based construction film, polytetrafluoroethylene (Teflon), a ceramics, and a metal oxide. Reinforced materials, such as fabrics (meshes), fibres or spheres, for example fabricated from glass (multi-layer glass) can also be used. Although prepreg or FR4 may generally be preferred, also other materials may be possible. For high-frequency applications, high-frequency materials, such as polytetrafluoroethylene, liquid-crystalline polymer and/or cyanate ester resins, can be implemented in the component carrier as an electrically isolating layer structure.
According to an embodiment of the invention, the component carrier may be formed as a board (or plate, or disk). This may contribute to a compact design, wherein the component carrier nevertheless may provide a large basis for attachment of components. Furthermore, in particular a naked chip as an example for an embedded electronic component, can be embedded in a thin board, such as a conductor board, in a conventional manner due to the low thickness.
According to an embodiment of the invention, the component carrier may be configured as one of the group, which may consist of a conductor board and a substrate (in particular, an IC substrate).
The term “conductor board” (PCB) may be understood to refer in particular to a component carrier (which is plate-shaped (i.e. planar), three-dimensionally bent (for example, if it is manufactured using 3D printing) or which may have any other shape), which may be formed by laminating plural electrically conductive layer structures with plural electrically isolating layer structures, for example by application of pressure, if this is desired accompanied by the supply of thermal energy. The electrically conducting layer structures may be of copper as a preferred material for the PCB technology, wherein the electrically isolating layer structures may comprise a resin and/or glass fibres, a so-called prepreg or FR4 material. The different electrically conducting layer structures can be connected with each other in any desired manner by the forming of through-holes through the lamination, for example by laser drilling or mechanical drilling, or by filling this with electrically conducting material (in particular copper), in order to thereby possibly form vias as through-hole connections. Apart from one or plural components, which can be embedded in a conductor board, a conductor board may generally be configured for receiving one or more components on one or opposite surfaces of the board-shaped conductor board. These can be connected to the respective main surface by soldering. A dielectric part of a conductor board can consist of resin with reinforcement fibres (such as glass fibres).
The term “substrate” may be understood herein to refer in particular to a small component carrier, which may have substantially the same size as a component attached thereon (in particular an electronic component). Especially, a substrate can be understood as a carrier for electronic connections or electric networks, likewise as a component carrier comparable with a conductor board (PCB), however with a significantly higher density of laterally and/or vertically arranged connections. Lateral connections may be, for example, conducting paths, wherein vertical connections can be, for example, drill holes. These lateral and/or vertical connections may be arranged within the substrate and can be used, in order to possibly provide electrical and/or mechanical connections of incorporated components or non-incorporated components (such as exposed chips), in particular of IC chips, with a conductor board or intermediate conductor boards arranged therebetween. Thus, the term “substrate” may comprise also “IC substrates”. A dielectric part of a substrate can be made of resin with reinforced spheres (such as glass spheres).
In an embodiment, the component carrier may be a lamination-type component carrier. In such an embodiment, the component carrier may be a composition of plural layer structures, which may be stacked and may be connected with each other by application of a pressure force and which may be accompanied by heat, if desired.
In the following, further exemplary embodiments of the method for manufacturing a component carrier are described.
In an exemplary embodiment of the method, the three-dimensional printing may have an introducing of printable material into a processing device. Furthermore, the method may have a melting of the printable material in the processing device, and a supplying of the melted printable material on and/or in the carrier body for forming at least one layer of at least a part of the three-dimensionally printed structure. According to this embodiment, meltable material may be used for the 3D printing. The material can be introduced in a 3D printer. The 3D printer can have a printing head, which may function as a processing device. The pressure head can be a heatable extruder, in which the material may be supplied. The material may be melted within the extruder, such that the material can be transferred through the extruder (for example through an extruder nozzle) to a structure, on which the melted material is to be applied and/or introduced (such as e.g. on at least one of the layer structures). The processing device and the carrier body can be moved relatively to each other. After the introduced/applied layer of the part of the carrier body may be solidified (or cured), subsequently, a further layer of the part of the carrier body may be formed by the extruder. The number of the formed layers of the one part of the carrier body may be depending on the size, in particular on the height, of the one part of the carrier body. For example, a formed layer may have a thickness (and/or height) of 50 μm. The part of the carrier body can have a thickness (and/or height) of 200 μm. Therefore, four layers may be printed on top of each other, in order to possibly form the part of the carrier body. For example, the processing device can have a high resolution, such that individual layers may have a thickness of approximately 1 μm to 16 μm. Furthermore, more than one processing device can be used during the manufacturing process, in order to possibly simultaneously apply different materials, and/or in order to possibly form different layers of different parts of the carrier body. According to this embodiment, it can be possible to print simultaneously more than one part of the carrier body. Two parts of the same carrier body can be formed in and/or on different planes of the carrier body or on different layer structures. The used melted material can consist of an electrically conducting material, such as copper, or it can be enriched with electrically conductive material components.
According to a further embodiment of the method, the three-dimensional printing may have an applying of a printable material, in particular a powdery material, on and/or in the carrier body, and a solidifying and/or consolidating of the applied printable material for forming at least one layer of at least a part of the three-dimensionally printed structure. The term “solidifying/consolidating” can refer in particular to a step or an activity, in which the printable material may be brought in a solid state, wherein the solid state may be one state of the at least one layer of the at least one part of the three-dimensional structure. For example, the solidifying/consolidating can be at least one of the following: attaching, adhering, hardening, tempering, solidifying, melting and hardening, or hardening of the printable material. The forming of the at least one layer of the part of the carrier body can be performed by applying an adhesive on the at least one layer of the part of the carrier body. The adhesive may glue the individual particles of the powdery material together, such that a corresponding layer may be formed. The adhesive agent can be applied by a printing head on the powder layer. The adhesive agent (or also binding agent) can be a fluidic adhesive agent. During the 3D printing with powder, the first (lowermost) layer may be applied with the aid of a fluidic adhesive agent on the powder layer. The 3D printer may draw a 3D image of the first layer of the powder bed and may glue the material particles of the powder together. After this step, a further thin powder layer may be applied on the first layer, and the 3D printing procedure may be repeated for generating a second layer. Thus, a 3D model of the one part of the component carrier may be a generated layer by layer by the gluing together of powder layers. The 3D structure may grow from the bottom to the top in this case. For this purpose, the powder bed may be lowered by the height of a powder layer. The powder and the adhesive agent can may consist of different materials. For example, of plastic powder, ceramics powder, glass powder or other metallic powdery materials. Also, it may be possible to use metal as a powdery material, for example copper powder, for 3D printing of conducting parts of the component carrier. The 3D printer can be equipped with at least one printing head or also with plural printing heads. The used adhesive agent can be a conducting adhesive agent, such that layer structures may be formed by conducting metal powder and conducting adhesive agent, in order to possibly be electrically conducting. The adhesive agent can be cured (or hardened) by a thermal treatment, such as a heat lamp or a laser.
According to a further exemplary embodiment of the method, the three-dimensionally printed structure may be formed by at least one of a group, which consists of selective laser melting, selective laser sintering, and electron beam melting.
According to a further exemplary embodiment of the method, prior to the solidifying/consolidating of the printable material, the printable material may be melted by a thermal treatment device, in particular a laser device. Instead of using an adhesive agent, which may glue the material particles with each other, the individual layers can be melted together and namely by a thermal treatment device, such as a laser. This thermal treatment method may be called selective laser sintering (SLS) or selective laser melting (SLM). By the thermal treatment of the materials, metals, ceramics or sand can be used. If SLS or SLM is used as a manufacturing method, the forming of the layer from the powdery material may be performed by a laser, wherein the laser may melt or sinter the powder material, in order to possibly form at least one layer of the one part of the component carrier. In the case of using an SLS or SLM method, a use of an adhesive agent for connecting the powdery material may be obsolete.
Furthermore, the printable material can be melted by a controllable electron beam, which may be referred to as the so-called electron beam melting (EBM). This manufacturing processing may allow the use of materials having a higher melting point, such as the melting of titanium materials.
According to a further exemplary embodiment of the method, the printable material may be applied by a material supply jet nozzle. The printable material, e.g. powder, may be provided by the material supply jet nozzle, such that the printable material to be applied may be sprayed out of the material supply jet nozzle. By the material supply jet nozzle, a precise amount of material can be provided, such that only the part of the component carrier to be printed may have to be covered with a (new) layer of the printable material, instead of the whole component carrier.
According to a further exemplary embodiment, the method may further have moving the material supply jet nozzle for forming a further layer of the at least a part of the three-dimensionally printed structure. The term “moving” can be understood in particular to refer to a movement along at least one spatial direction. Furthermore, an adjusting of the material supply jet nozzle in relation to the carrier body can be understood from this. For example, a distance between the carrier body and the material supply jet nozzle can be adjusted. Furthermore, the material supply jet nozzle can be moved along further spatial directions, in order to adjust a desired alignment between the carrier body and the material supply jet nozzle. As a function of the movement of the material supply jet nozzle, the thickness and the location of the layer to be formed can be adjusted. This step can be repeated so long, until a final thickness of the part of the three-dimensionally printed structure is achieved. Thus, the one part of the three-dimensionally printed structure may be formed layer by layer by spraying on printable material.
According to a further exemplary embodiment, the carrier body may be provided in a material bed, before the printable material is supplied to the carrier body. The carrier body can be placed in the material bed. The component carrier can be covered completely by the printable material, if the component carrier is arranged in the material bed. Furthermore, the carrier body can be arranged in the material bed such that a surface of the carrier body, on which the one part of the three-dimensionally printed structure may be formed, may be arranged with a defined distance to a surface of the material bed. Therefore, a desired thickness of the printable material can be applied between the environment and the surface of the carrier body. Thereafter, the applied printable material may be solidified (or cured) between the surface of the material bed and the carrier body. The solidification and/or consolidation can be performed by a treatment device, which may be configured for applying thermal energy on the surface of the material bed and/or for radiating a pre-defined wavelength of the light for a photo-polymerization of the surface of the material bed.
According to a further exemplary embodiment, the method may further have a moving of the carrier body for forming a further layer of the at least one part of the three-dimensionally printed structure. After the printing of a layer of the one part of the three-dimensionally printed structure on/in the carrier body, the carrier body can be moved. In particular, the carrier body can be lowered by the thickness of the next layer to be printed of the one of the three-dimensionally printed structure.
According to a further exemplary embodiment, the method may further have the arranging of the carrier body in a container. Furthermore, the three-dimensional printing may have a providing of a solidifiable fluid material in the container, and a solidifying (or curing) of the fluid material by a treatment device, in particular a laser device, on and/or in the carrier body for forming at least one layer of at least a part of the three-dimensionally printed structure. In particular, the fluid material may be solidified after the arranging of the carrier body. An ultraviolet laser can be used for solidifying. The laser may be focused on the container, which may contains the fluid material. The laser can be used in order to solidify desired regions of the fluid material, in order to possibly form a defined design of the one part of the three-dimensionally printed structure. The fluid material can be solidified, in particular hardened, and may form an individual layer of the desired one part of the three-dimensionally printed structures. These steps can be repeated for each layer to be printed of the one part. In order to move the carrier body or the surface, on which the one part shall be 3D printed, a lift platform can be used. The lift platform can be moved by a distance, which may correspond to a thickness of an individual layer of the structure to be printed in the container. After the solidifying, an abrading device and/or a knife can be moved over the solidified layer and can scrape off material, in order to possibly provide a homogeneous distribution of the fluid material for the next layer to be 3D printed. Thereafter, the laser may solidify further desired regions of the fluid material for forming the desired design of the one part of the three-dimensionally printed structure. These steps can be repeated until the desired 3D structure is achieved. After the forming of the complete structure of the one part of the three-dimensionally printed structure, the component carrier can be finishingly solidified in an oven (ultraviolet oven). This manufacturing process can also be performed with mixed materials, such as ceramic and photopolymer mixtures. Furthermore, more than one laser can be used during the process.
According to a further exemplary embodiment, the fluid material may be a photo-sensitive material, in particular a fluid material, which may be photo-sensitive under ultraviolet light of the laser. As a further manufacturing process, which may use fluid materials, the so-called multi-jet modelling, or poly-jet modelling can be applied. In these methods, the fluid material may be solidified by a light source directly during the application.
According to a further exemplary embodiment, the method may further have a moving of the carrier body for forming a further layer of the at least a part of the three-dimensionally printed structure.
It is noted that the embodiments described herein represent only a limited selection of possible embodiment variants of the invention. Thus, it is possible to combine the features of individual embodiments with each other in a suitable manner, such that for the skilled person a plurality of different embodiments is to be considered as being obviously disclosed with the embodiment variants explicit herein. In particular, some embodiments of the invention are described by device claims, and other embodiments of the invention are described by method claims. The skilled person, upon reading this application, will however understand clearly that unless it is explicitly indicated differently, in addition to a combination of features, which belong to one type of the subject of the invention, also an arbitrary combination of features, which belong to different types of subjects of the invention, is possible.
In the following, embodiment examples are described with reference to the appended drawings for a further explanation and a better understanding of the present invention.
Same or similar components in different figures are provided with same reference numerals. The representations in the figures are schematically presented.
In the following and with reference to
The component carrier 100 may further have at least one component 105, in particular an electronic component 105, which may be surface-mounted on and/or embedded in at least one of the plurality of electrically conductive layer structures 104 and/or the electrically isolating layer structures 103. The component 105 may be arranged directly on the carrier body 101 or may be fixed on the carrier body 101 by connection elements 106. In
In the following and with reference to
According to
In the following and with reference to
In the following and with reference to
In the following and with reference to
In the following and with reference to
In the following and with reference to
In the following and with reference to
In the following and with reference to
In the following and with reference to
If for example a plastic material is used for the encapsulation 207, this can serve a flexible conductor board as a surface protection, and can simultaneously guarantee the flexibility of the flexible conductor board. In particular, one and the same surface can have different regions, which may have for example different roughnesses. Thereby, a region of the surface of the three-dimensional structure (encapsulation 207), which may be arranged over an electrically conducting layer structure 104, can have a higher roughness than surrounding regions of the surface of the three-dimensional structure (the encapsulation 207), in order to possibly dissipate produced heat from the electrically conducting layer structure 104 by a high roughness. Furthermore, the surface of the three-dimensionally printed structure (the encapsulation 207) can have another material over the electrically conducting layer structure, in order to possibly protect the structures lying thereunder better from outer mechanical influences. For example, at least a region of the three-dimensionally printed structure can be formed of steel and/or titanium.
In the following and with reference to
In the following and with reference to
In the following and with reference to
In the following and with reference to
In the following and with reference to
In the following and with reference to
In the following and with reference to
In the following and with reference to
In the following and with reference to
In the following and with reference to
In the following and with reference to
In the following and with reference to
In the following and with reference to
In the following and with reference to
Furthermore, the three-dimensionally printed structure can be formed as a rigid and/or a flexible structure, such that the breaking cut-out 2470 may be either rigid and thus may be too easy to break, or the breaking cut-out 2470 may have a certain flexibility and may break only at a particular load.
In the following and with reference to
In the following and with reference to
In the following and with reference to
Supplementarily, it is to be noted that “comprising” (or “having”) does not exclude other elements or steps, and that “a” or “an” does not exclude a plurality. Furthermore, it is noted that features or steps, which are described with reference to one of the embodiment examples described above, can also be used in combination with other features or steps of other embodiment examples described above.
Number | Date | Country | Kind |
---|---|---|---|
102017123307.5 | Oct 2017 | DE | national |