This invention relates to control of an end effector on a flexible arm, and in particular to the improved control of the position of the end effector on a flexible arm such as a boom. The invention has particular application where a robot works over a large area and requires high precision.
The following discussion of the background art is intended to facilitate an understanding of the present invention only. It should be appreciated that the discussion is not an acknowledgement or admission that any of the material referred to was part of the common general knowledge as at the priority date of the application.
The following definitions apply to terminology used throughout this patent specification. A robot arm is a programmable mechanical manipulator. In this specification a robot arm includes multi axis jointed arms, parallel kinematic robots (such as Stewart Platform, Delta robots), spherical geometry robots, Cartesian robots (orthogonal axis robots with linear motion) etc.
A boom is an elongate support structure such as a slewing boom, with or without stick or dipper, with or without telescopic elements, telescoping booms, telescoping articulated booms. Examples include crane booms, earthmover booms, truck crane booms, all with or without cable supported or cable braced elements. A boom may also include an overhead gantry structure, or cantilevered gantry, or a controlled tensile truss (the boom may not be a boom but a multi cable supported parallel kinematics crane (see PAR systems, Tensile Truss—Chernobyl Crane)), or other moveable arm that may translate position in space.
An end effector is the device at the end of a robotic arm designed to interact with the environment. An end effector may include a gripper, nozzle, sand blaster, spray gun, wrench, magnet, welding torch, cutting torch, saw, milling cutter, router cutter, hydraulic shears etc.
TCP is an abbreviation of tool centre point. This is the location on the end effector (or tool), whose position and orientation define the coordinates of the controlled object. It is typically located at the distal end of the kinematic chain. Kinematic chain refers to the chain of linkages and their joints between the base of a robot arm and the end effector.
CNC is an abbreviation for computer numerical control, used for automation of machines by computer/processor/microcontroller executed pre-programmed sequences of machine control commands.
The application of coordinate transformations within a CNC control system is usually performed to allow programming in a convenient coordinate system. It is also performed to allow correction of workpiece position errors when clamped in a vice or fixture on a CNC machining centre.
These coordinate transformations are usually applied in a static sense to account for static coordinate shifts or to correct static errors.
Robots and CNC machines are programmed in a convenient Cartesian coordinate system, and kinematic transformations are used to convert the Cartesian coordinates to joint positions to move the pose of the robot or CNC machine.
Measuring the position of a robot arm end effector close to the TCP in real time increases the accuracy of a robot. This is performed on static end effectors on robots used for probing and drilling. This is achieved by a multi-step process of moving to the programmed position, taking a position measurement, calculating a correction vector, adding the compensation vector to the programmed position and then moving the TCP to the new position. This process is not done in hard real time and relies on a static robot arm pose.
WO 2007/076581 describes a control system that moves a boom and end effector to a desired location or along a desired path. The boom was located on a base, which was in used fixed to the ground. A robot arm having a base was fixed to the end of the boom. A scanner-target measuring system measured the actual position and orientation of a target located on the end of the boom. The measuring system measured the actual position and orientation of the target with six degrees of freedom (x,y,z axes, and pitch, roll, and yaw) hereafter “6 DOF”. The target located on the end of the boom is fixed relative to the base of the robotic arm. The control system then calculated a 6 DOF offset between the programmed position of the base of the robot arm (where it was expected to be) and the actual measured position of the base of the robot arm, and then applied a correction to the kinematic chain of the robot arm so that the end effector was translated to the correct position. The robot arm was programmed in a coordinate system relative to its base, not the ground. Thus, to program the TCP of the end effector it was necessary to transform its 6 DOF position in ground coordinates to the base coordinates of the robot arm mounted on the tip of the boom. Effectively what was done was to program the robot arm with a sub program that was always used to control the end effector to lay a brick in the same relative position to the robot arm base coordinate system. The tip of the boom was programmed to be in the required location for robot arm to be in the desired location for the brick to be laid in the desired location.
A problem with this methodology is that the working coordinate system cannot be shifted after the program has been written. Common CNC coordinate shifts (eg G54) cannot be used for set up because the end effector is not programed in the ground or working coordinate system (it is programmed in the base coordinate system of the end effector which moves on the tip of the boom). The disadvantage with this arrangement was that the actual position of the end effector (or laid brick) in ground coordinates was not obvious in the program that controlled the entire machine (because it is programmed in a different coordinate system, ie the robot arm base coordinate system).
The arrangement described in WO 2007/076581 went a long way toward solving the problem of long booms deflecting due to gravity, wind, movement of the end effector, and movement of the boom, whether mounted on a stationary base, but especially also if the boom is mounted on a moving vehicle; however the inventor found that even with the arrangement described in WO 2007/076581, errors in positioning of the end effector could still occur, particularly as the distance from the base of the robot and the end effector increased.
It is an object of the invention to provide an arrangement that can provide improvements in stabilising an end effector to compensate for structural deflection and structural dynamics, and external interference such as wind, throughout a very large work space.
Throughout the specification unless the context requires otherwise, the word “comprise” or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.
The present invention uses a cascading system of positioning devices, measurement systems and control channels. In one embodiment, a wide ranging inaccurate gross motion system guides a vehicle which supports a large area coarse positioning boom which then supports a small dynamic compensation and fine positioning robot which then in turn supports an even finer dynamic compensation and positioning mechanism.
The present invention describes dynamic coordinate systems and methods of moving machines and stabilising end effectors. In preferred embodiments, methods of transitioning compensation on and off, or damping transitioning are provided, so that the robot arm moving the end effector may work alternately in a head coordinate system and a ground or work coordinate system.
It is advantageous to code a kinematic transformation as a stand-alone piece of software. This means that the CNC kernel does not have to be modified to accommodate different kinematic chains. By using a dynamic coordinate system as the base of the end effector robot kinematic chain, the end effector can be programmed in a work coordinate system and all of the normal CNC coordinate shifts and transformations work, such as offsets for work coordinates and coordinate system rotation.
With a dynamic coordinate system for the base of the kinematic chain of the robot arm the concept of a compensation amount is abstract. If the base of the kinematic chain of the robot arm was at its programmed location there would be no compensation amount and the robot arm would be in a first pose. If the base is at its actual location and the robot arm was in the first pose, the end effector would be at the wrong location (and in the wrong orientation), the difference being the compensation amount.
In accordance with one aspect of the invention there is provided a control system for an arm supported from an arm base, said arm having an end effector mounted therefrom, said end effector having a further arm supported by a further arm base and said further arm having a further end effector mounted thereon, said arm being moveable relative to said arm base by an arm controller interfaced with an arm actuator to position said end effector to a programmed location, said further arm being movable by a further arm controller interfaced with a further arm actuator to position said further end effector at a programmed position; said control system having a tracker system to track the position of a first target located by an offset proximal to said further arm base or end effector, and to track the position and orientation of a second target located with a TCP offset from said further end effector; wherein said tracker system tracks the position of said first target and feeds data to said arm controller to operate said arm actuator with a slow dynamic response to dynamically position said first target close to said offset to position said further arm base close to said programmed location, and said tracker system tracks the position and orientation of said second target and feeds data to said further arm controller to operate said further arm actuator with a fast dynamic response to dynamically position and optionally orientate said second target to said TCP offset from said programmed position and optionally orientation. The TCP offset may be defined by position and optionally orientation data. The difference between the slow dynamic response and the fast dynamic response is inversely proportional to the potential inertia of the arm and the further arm. Where the further arm is much smaller than the arm, the further arm will possess less potential inertia and may be moved with a relatively fast dynamic response.
Preferably said second target is located with said TCP offset from said further end effector so as to move with movement and pose of said further end effector. In this case the TCP offset is defined by position and orientation data, and said tracker system measures the position and orientation of said second target.
By “close to” said programmed location, the further arm base is moved sufficiently close that the further end effector is within range of its programmed task, i.e. the further arm can move the further end effector to a position in order that the task the further end effector is to perform can be completed. By dynamically position and dynamically position and orientate, it is to be understood that as the position of the further arm base varies due to deflection, its position (and orientation if applicable, see hereinafter) is constantly under review and adjusted by the arm actuator with slow dynamic response, and the position and orientation of the further end effector is also constantly under review and adjusted by the further arm actuator with fast dynamic response.
Preferably said further arm base is mounted proximal to a remote end of said arm, away from said arm base.
Preferably said further arm base and said first target is mounted on a head, mounted to the remote end of the arm.
Preferably said head is pivotally mounted to the remote end of the arm.
Preferably said head is pivotally mounted about a horizontal axis to the remote end of the arm.
Preferably said tracker system tracks the position and orientation of said first target, and feeds data to said arm controller to operate said arm actuator with a slow dynamic response to position and orientate said first target close to said offset to position said further arm base close to said programmed location.
Where the head is pivotally mounted to the remote end of the arm, the poise of the head may be controlled by a separate controller to the arm controller, in which case the arm controller need only operate the arm actuator to position the first target along three orthogonal axes. However, control of the poise of the head may be integrated into the arm controller, in which case the position and orientation of the first target must be tracked.
Where the head is pivotally mounted to the remote end of the arm about a multi axis mechanism, the position and orientation of the first target must be tracked with six degrees of freedom. The position and orientation of the second target must be tracked with six degrees of freedom.
Preferably said tracker system includes separate target tracking devices for said first target and said second target.
Preferably said further arm controller may be controllably switched between a first state wherein said further arm controller is responsive to positioning feedback data derived from said tracker system, to a second state where pre-calibrated positioning data referenced to the further arm base (and hence the remote end of the arm) is relied on, and when switched between said first state and said second state, said further arm controller controls movement of said further arm to dampen movement of the further arm, to avoid sudden movement of said further arm and said further end effector. Such sudden movement could feed back to the arm, causing the arm to undergo reactive movement.
Preferably said arm base is provided with movement apparatus to move said arm base relative to the ground. The movement apparatus may be selected from a wheeled conveyance, incorporating locomotion or not, or self powered endless tracks. The movement apparatus may incorporate self levelling to level the arm base.
Preferably said arm base is mounted on an active suspension system, and said arm base incorporates a third target for said tracker system, said active suspension system having a suspension controller interfaced with a suspension actuator to control the position and orientation of said arm base in response to data from said tracker system reading the position and orientation of said third target.
Alternatively, said arm base is mounted to an object having larger inertia than said arm on an active suspension system, and said arm base incorporates a third target for said tracker system; said active suspension system having a suspension controller interfaced with a suspension actuator to control the position and orientation of said arm base relative to said object in response to data from said tracker system reading the position and orientation of said third target, said suspension actuator to control the position of said arm base with a slower dynamic response than said arm controller operates said arm actuator.
In accordance with a second aspect of the invention there is provided a control system for a boom supported from a boom base, said boom having a robot arm mounted by a robot base therefrom, said robot arm having an end effector, said boom being moveable relative to said boom base by a boom controller interfaced with a boom actuator to position said robot base to a programmed location, said robot arm being movable by a robot arm controller interfaced with a robot arm actuator to position said end effector at a programmed position and orientation; said control system having a tracker system to track the position of a first target located by an offset proximal to said robot base, and to track the position and orientation of a second target located with a TCP offset from said end effector TCP; wherein said tracker system tracks the position of said first target and feeds data to said boom controller to operate said boom actuator with a slow dynamic response to dynamically position said first target close to said offset to position said robot base close to said programmed location, and said tracker system tracks the position and orientation of said second target and feeds data derived from the second target, or derived from the second target and the first target to said robot arm controller to operate said robot arm actuator with a fast dynamic response to dynamically position and orientate said end effector TCP to said programmed position and orientation. The TCP offset may be defined by position and orientation data.
Preferably said second target is located with said TCP offset from said end effector TCP so as to move with movement and pose of said end effector.
By “close to” said programmed location, the robot base is moved sufficiently close that the end effector is within range of its programmed task, i.e. the robot arm can move the end effector to a position in order that the task the end effector is to perform can be completed. By dynamically position and dynamically position and orientate, it is to be understood that as the position of the robot base varies due to deflection, its position (and orientation if applicable, see hereinafter) is constantly under review and adjusted by the boom actuator with slow dynamic response, and the position and orientation of the end effector is also constantly under review and adjusted by the robot arm actuator with fast dynamic response.
Preferably said robot base is mounted proximal to a remote end of said boom, away from said boom base.
Preferably said robot base and said first target is mounted on a head, mounted to the remote end of the boom.
Preferably said head is pivotally mounted to the remote end of the boom.
Preferably said head is pivotally mounted about a horizontal axis to the remote end of the boom.
Preferably said tracker system tracks the position and orientation of said first target, and feeds data to said boom controller to operate said boom actuator with a slow dynamic response to position and orientate said first target close to said offset to position said robot base close to said programmed location.
Where the head is pivotally mounted to the remote end of the boom, the poise of the head may be controlled by a separate controller to the boom controller, in which case the boom controller need only operate the boom actuator to position the first target along three orthogonal axes. However, control of the poise of the head may be integrated into the boom controller, in which case the position and orientation of the first target must be tracked.
Where the head is pivotally mounted to the remote end of the boom about a multi axis mechanism, the position and orientation of the first target must be tracked with six degrees of freedom. The position and orientation of the second target must be tracked with six degrees of freedom.
Preferably said tracker system includes separate target tracking devices for said first target and said second target.
Preferably said robot arm controller may be controllably switched between a first state wherein said robot arm controller is responsive to positioning feedback data derived from said tracker system, to a second state where pre-calibrated positioning data referenced to the robot base (and hence the remote end of the boom) is relied on, and when switched between said first state and said second state, said robot arm controller controls movement of said robot arm to dampen movement of the robot arm, to avoid sudden movement of said robot arm and said end effector. Such sudden movement could feed back to the boom, causing the boom to undergo reactive movement.
Preferably said boom base is provided with movement apparatus to move said boom base relative to the ground. The movement apparatus may be a vehicle selected from a wheeled conveyance, incorporating locomotion or not, or self powered endless tracks. The movement apparatus may incorporate self levelling to level the boom base. Such self levelling should move the boom base to stabilise the boom base and hence the boom, against changes of position and orientation of the boom base, brought about by undulations in the ground over which the vehicle traverses.
Preferably said boom base is mounted on an active suspension system, and said boom base incorporates a third target for said tracker system, said active suspension system having a suspension controller interfaced with a suspension actuator to control the position and orientation of said boom base in response to data from said tracker system reading the position and orientation of said third target.
Alternatively, said boom base is mounted to an object having larger inertia than said boom on an active suspension system, and said boom base incorporates a third target for said tracker system; said active suspension system having a suspension controller interfaced with a suspension actuator to control the position and orientation of said boom base relative to said object in response to data from said tracker system reading the position and orientation of said third target, said suspension actuator to control the position of said boom base with a faster dynamic response than said boom controller operates said boom actuator.
The control system may include multiple tracker components at various positions on the machine so that a tracker (or multiple trackers) has or have line(s) of sight to one or more tracker components supported by the machine.
Preferably the control system of the machine includes algorithms to evaluate line of sight so that the best line of sight, between tracker and tracker component, in a particular pose can be chosen. The criteria for the best line of sight include, most accurate position and orientation solution (which may depend on the pose of the tracker or its sensor), field of view of the tracker or the sensor, distance to the end effector (closer is better), maintaining line of sight at all times during a programmed path or a critical operation.
Preferably said machine includes a further tracker component supported on said robotic arm, or on said end effector, and said machine uses a further tracker system to measure the position of the further tracker component and applies further compensating movement to the robotic arm assembly to correct for variance between programmed further tracker component position and measured further tracker component position.
The boom base may be a vehicle which may include a tracker component at a position on the vehicle or a plurality of tracker components at various positions on the vehicle. The tracker component(s) may be used to determine the position and orientation of the vehicle relative to a workspace coordinate system. The tracker component(s) may be used to determine the position and orientation of a vehicle for a moving vehicle. The tracker system may include multiple ground references to track the tracker targets as the vehicle progresses along a path.
The arrangements of the invention may achieve a high degree of dynamic motion quality and position tolerance over a large size of workspace. This results in smoother motion for end effectors located at the end of long booms or towers or supported on long cable trusses. The arrangements of the invention can smooth motion for an end effector supported by a long boom or tower supported by a moving vehicle.
Several embodiments of the invention will now be described with reference to the drawings in which:
The control systems and methods of the invention have been developed by the inventor in connection with an automated brick laying machine 11. For a more detailed description of the brick laying machine, reference is made to the patent specification titled “Brick/Block Laying Machine Incorporated in a Vehicle” which is the subject of international patent application PCT/AU2017/050731, the contents of which are incorporated herein by cross-reference.
The automated brick laying machine 11 is built around a vehicle in the form of a truck 13 and has a base supporting a telescoping articulated boom assembly indicated generally at 15, comprising long telescopic boom 17 and telescopic stick 19. Mounted to the remote end 21 of the stick 19 is an end effector in the form of a laying head 23 that supports a 6 axis robot arm 25 that moves a further end effector 27 to manipulate the bricks 29. The robot arm 25 has a robot base 31, and mounted above the robot base 31 is a first target in the form of a 6 degree of freedom (6 DOF) high data rate position sensor 33, that provides 6 DOF position coordinates, relative to a fixed ground reference 35, to a control system. Mounted on the end of the robot arm 25 immediately above the end effector 27 is a second target in the form of a 6 degree of freedom (6 DOF) high data rate position sensor 37, that provides 6 DOF position coordinates, relative to the fixed ground reference 35, to the control system.
The head 23 is supported at the remote end of the stick assembly 19 (remote end of the boom 15) about a pivoting horizontal axis 38 (horizontal with reference to the state of the vehicle 13, assuming the vehicle is stabilised level, absent any torsion).
In a general embodiment, the vehicle 13 supports a boom 15 which supports a robotic arm 25 that supports an end effector 27. The head 23 may optionally be omitted between the boom 15 and the robot arm 25, but given the tasks to be performed by the end effector 27, particularly the application of adhesive in a brick laying application, it is more practical to include the head 23.
The vehicle 13 may be parked stationary or jacked up on support legs 39. As an alternative, the vehicle 13 may be programmed with a first CNC channel to move, or may be manually driven, along a path. In this case a further third target in the form of a 6 degree of freedom (6 DOF) high data rate position sensor 41 is provided, that also provides 6 DOF position coordinates, relative to the fixed ground reference 35, to the control system. Where the vehicle traverses a path in this manner, there will need to be multiple fixed ground references of the same type of the fixed ground reference 35. Alternatively, in another embodiment, a low data rate and low accuracy position sensor such as GPS could be utilised, but high data rate is preferred.
For faster data handling it may be desirable to have multiple ground references 35a, 35b, 35c, each dedicated to their respective sensor 33, 37 and 41, as illustrated in
The boom 15 is programmed with a second CNC channel to move the TCP of its end effector (located at the tip) of the boom to the required coordinates.
The robot arm 25 is programmed with a third CNC channel to move the TCP of its end effector 27 to conduct tasks.
Optionally the end effector 27 may include a fine dynamic compensation mechanism for very accurate work. Such a system may include a galvo mirror to be used with a high power laser for laser cutting, engraving or 3D additive laser melting manufacture. The end effector is programmed with a fourth CNC channel to move the TCP of the fine dynamic compensation mechanism.
Referring to
The control system may controllably switch control of the robot arm controller between a first state where the robot arm controller is responsive to positioning feedback data derived from the tracker system, and a second state where pre-calibrated positioning data referenced to the robot base (and hence the remote end of the boom) is relied on. The movement at the end effector 27 relative to the robot base 31 is represented by trace 51 in
The switching between first and second states deals with applications that require the end effector to alternately be controlled relative to the machine structure and then the ground, for example to pick up a brick from part of the machine and then to lay a brick on a wall relative to the ground.
Dynamic compensation transitioning works by, incrementing if compensation is turning on, or decrementing if compensation is turning off, a transition factor between a value of 0 and 1, so that it S curve ramps over the desired period of time, then, for each control cycle:
Preferably said machine includes a tracker component mounted to said head, wherein said head has said robotic arm assembly with said end effector and said machine uses a tracker system to measure the position and orientation of the tracker component and uses said measurement to calculate the position and orientation of a base coordinate system for said robotic arm assembly. The robot arm end effector TCP is programmed to do tasks in either a coordinate system fixed to the head, or in a coordinate system fixed to a workpiece (fixed to the ground). The programming can shift between the head coordinate system or the workpiece coordinate system. The switching is done by transitioning. Transitioning is explained below.
Transitioning to the dynamic base coordinate system involves moving the dynamic base coordinate system from a theoretical perfect position and orientation to an actual position and orientation (obtained by a measurement of the position and orientation of a tracker component fixed to the head), in a gradual and controlled way.
Transitioning from the dynamic base coordinate system involves moving the dynamic base coordinate system from an actual position and orientation (obtained by a measurement of the position and orientation of a tracker component fixed to the head), to the programmed (ie a theoretical) perfect position and orientation in a gradual and controlled way.
The most elegant mathematical approach to the arrangement is to have the boom TCP, tip tracker centre point and the dynamic coordinate system of the base of the robot arm coincident and aligned. In this way the kinematic transform set up in the boom CNC channel has its TCP coincident with the tip tracker centre point. The kinematic transform of the robot arm CNC channel has its dynamic base coordinate system coincident with the tip tracker.
Those skilled in the art will appreciate that the boom TCP could be at position different to the head base dynamic coordinate system and different to the tip tracker centre point and mathematical transforms can be used to calculate the theoretical perfect position of the robot arm base dynamic coordinate system. This is a more complicated and less elegant solution than that outlined above with coincident boom TCP, tip tracker CP and robot arm base dynamic coordinate system.
The control system uses a dynamic coordinate system offset or a plurality of dynamic coordinate system offsets to shift the base coordinate system of the robot arm in real time in the ground coordinate system. The control system then uses a kinematic transformation to calculate the required joint positions (angular or linear joints) to position the end effector at the programmed position in the ground coordinate system, rather than in the robot base co-ordinate system.
For large area tasks it may be necessary to move the vehicle relative to the ground. The vehicle movement relative to the ground may be automatically controlled or may be manually controlled within pre-calculated guidelines. In any case the location of the machine base is guided by either wheels or tracks, chains or rails or legs and feet and may not be very accurate. In this case, a multi stage control system is used, the first stage approximately positions the vehicle, the second stage positions a boom to a desired tip location and corrects at a slow rate any errors due to vehicle position and orientation and boom deflection and a third stage measures the position and orientation of a third stage robot arm base coordinate system and then precisely positions and compensates to stabilise and guide an end effector relative to the ground coordinate system. The number of stages of measurement and control may be extended to any plurality of control systems, dynamic coordinate systems and measurement systems. It is important for stability that the bandwidth of the control and the mechanical response speed of the motion systems increases from vehicle to end effector.
In some situations, it is necessary to stabilise the end effector relative to a moving object rather than the ground. Provided the relative position of the vehicle coordinate system and the tip tracker coordinate system is measured relative to the moving object coordinate system (or vis versa), compared to the vehicle, the moving object may be regarded as analogous to the ground, except that it is not an inertially fixed coordinate system. In this case, preferably a measurement to an inertially fixed coordinate system (eg earth or an INS, albeit a slowly rotating coordinate system) is also made to enable motion dynamic limits to be observed.
The control system can be used for tasks such as automated brick laying, precision mining, machining, robot assembly, painting and 3D printing. It has particular application for automated trenching for infrastructure pipelines, railway and road construction, automated pipe laying and for building long walls such as freeway sound wall.
The invention can be applied to airborne or seaborne equipment for applications such as dredging, seawall construction, oilfield and wind turbine maintenance, crew transfer, ship to ship transfer or air to air transfer or refuelling or helicopter powerline maintenance or helicopter logging.
The invention applies to multiple kinematic chains and multiple dynamic coordinate systems. The invention is particularly useful to stabilise, relative to the ground, an end effector, attached to a boom that is on a moving machine. When a machine moves, the acceleration of the machine imparts a dynamic force to the boom and the boom starts to oscillate at its natural frequency. Provided the compensating robot at the end of the boom has an amplitude larger than the amplitude of the boom motion, and a response much faster than the natural frequency of the boom (and vehicle), the compensating robot can correct for the boom motion due to bounce from the vehicle travel. The compensating robot does not have much range of motion so it is necessary to also correct the pose of the boom to keep the compensating robot within its available range of motion.
The actuation of the compensating robot imparts dynamic forces to the boom, which in turn further excite the boom. To minimise jerky motion of the boom, it is desirable for the boom to be rigid and free of mechanical play and backlash.
It is desirable for the (optional) moving vehicle to travel smoothly, so it is desirable for the ground it moves over to be graded and it is desirable for the vehicle to have suspension. Ideally the suspension is self-levelling. Optionally the vehicle may be fitted with a controllable blade so that it levels the ground before it drives over it. Optionally the end effector may be a blade or bucket and the machine may grade and level its own path prior to moving on to it.
To minimise jerky motion of the machine and the boom the control system of the vehicle of the machine is used to carefully control the motion. Preferably a mode of operation can be set when stabilised end effector operation is desired. The vehicle and boom motion is preferably jerk, acceleration and velocity limited. In an electro hydraulic control system, the electrical pilot system is controlled to limit the available control input. In a servo electric system, the servo dynamics are limited, preferably by the CNC channel and axis configuration. Preferably full CNC path planning is utilised rather than set point or point to point motion control. A full CNC path planner calculates path points for every control cycle (typically every ms). Preferably it calculates a path to optimise position, velocity, acceleration and jerk. A point to point control simply changes the set point to the desired end point, so that a large control feedback error value is created and the feedback control loop commands the motion to close the error.
The measurement of the vehicle position and orientation may be back calculated from the measurement of the 6 DOF tip tracker (using the inverse kinematic chain of the boom, which of course will not take into account deflection or vibration of the boom, unless it was measured for example by accelerometers, but would typically have the tip tracker motion heavily filtered to smooth the vibration component of the motion). Preferably the vehicle position and orientation is provided by a position tracking device fitted to the vehicle of the machine, or a part of the machine near the vehicle, such as the cab on an excavator. The vehicle tracking device may have a relatively low data rate and low accuracy such as GPS or total station target but the best performance would be achieved with an accurate sensor system such as a laser tracker and smart track sensor.
The motion of the boom is controlled at a bandwidth significantly less than its natural frequency (1% to 10% or 10% to 20% or 30% to 50% or 50% to 99%) so as to slowly compensate for boom motion errors and deflection and base motion errors or movement. The controlled motion of the boom aims to correct the position of the tip of the boom, but not necessarily the boom tip orientation. The boom control and response may have a bandwidth of 0.1 to 1 Hz, or 1 Hz to 10 Hz or 10 Hz to 30 Hz. The end effector compensating robot must have a high natural frequency (relative to the boom and base) and a fast dynamic response. The compensating robot compensates and stabilises in 6 DOF. The measurement system of the tip tracker must have a high data rate, preferably at the same servo loop control rate as the end effector control system, a minimum of 250 Hz and preferably 1000 Hz or greater (perhaps 10 kHz). If the data rate is significantly lower, the dynamic coordinate system position and orientation (ultimately resulting in a compensation input) has step changes that may induce structural vibration as the system responds to the actuator force inputs. If the step changes are filtered to provide a smooth change, a delay and motion lag is introduced and the end effector position is not accurate and may oscillate relative to the ground.
A chain of dynamic coordinate systems and a machine with a chain of compensating booms and robotic compensating end effectors is useful in many applications requiring fine position and motion control over a large working volume.
Some example applications are given below:
Ship Transfer
Ship to ship, or ship to oil rig, or ship to gas rig, or ship to wind turbine, transfer of goods, liquids or personnel, is a potential application for the control system of the invention. It is known to stabilise a vessel for position holding. It is also known to roll stabilise a vessel with gyros or thrusters. It is known to yaw stabilise a vessel with thrusters. It is also known to provide heave, pitch, roll and yaw compensation to working devices such as booms. However, it is known that for long booms in heavy sea states the existing methods of compensation have limitations. A coarse boom positioning and fine end effector positioning, or even additional stages of fine positioning would enable safer transfer, hook up, disconnection and operations in larger sea states and rougher weather. For example
Referring to
This could have great benefit for petrochemical, renewable energy and military operators (and others) who require or desire to transfer things from vessel to vessel or vessel to fixed objects in all weather conditions.
Long Building
Long structures such as road freeway sound walls 61 can be built by the brick laying machine, however with the arrangements described to date in the patent application 20169 it is necessary to build from one location, then reposition periodically and build from the next stationary location. It would be advantageous to be able to build from a creeping machine. This would reduce lost time to reposition and would enable a smaller more compact machine with a shorter boom. A track mounted machine with a short boom would be ideal. Multiple fixed ground references 35 are provided to facilitate this, as shown in
Long Trenching
Long trenches for infrastructure such as underground pipe lines and underground cables can be dug with known continuous trenching machines (such as made by Ditch Witch or Vermeer) or for larger cross section trenches with excavators (such as made by Caterpillar, Volvo, John Deere, Komatsu and others). For many applications the precise grade and location of the trench and pipe is important, such as for sewerage pipe. For many applications knowing the precise position is important, such as in cities to avoid damaging existing infrastructure such as pipes, cables, foundations and underground train and road tunnels. Current systems allow some control of the digging and provide feedback to the operator of dig depth or bucket position. In current system the base of the machine (the tracks) must be stationary.
The dynamic control system described allows precision digging to a tolerance that cannot be currently achieved by other methods. Further-more it allows pre-programmed digging for completely autonomous operation. Further-more it allows precision digging from a continuously moving machine such as a tracked excavator creeping along the path of the proposed trench.
Ground Contouring
It is known to use graders, bulldozers, loaders, gradall or automated screeding machines to smooth earth or concrete surfaces with blades or buckets. The inherent design of the machine will achieve a flatter surface than it moves over because the geometry of the machine provides a smoothing action. It is known that a more accurate and faster result can be achieved with automatic control to maintain the bucket or blade on a predefined level, grade or contour. The blade or bucket is moved up or down or tilted about a roll axis automatically to maintain a laser plane level or grade or to match a contour referenced by GPS or total station measurements. These known control systems have a low bandwidth and the machine achieves an accurate result because the inherent design of the machine will achieve a flatter surface than it drives over, even without machine guidance.
The present invention allows more complex machine arrangements such as a (modified) excavator, to be fitted with a multi axis controlled blade or bucket to achieve very complex earthmoving tasks in a completely programmable way.
Mining
It is known to use autonomous trucks for mining.
Excavators and face shovels are currently operated by machine operators. This technology enables autonomous control of excavators and face shovels by pre-programming the base movement (track base) and the dig program in mine coordinates.
Dredging
Excavators mounted on barges are used for dredging. Dredged channel depth, width, profile and location is extremely important for shipping safety. Dredging is expensive so it is advantageous to minimise the amount of spoil moved. The more accurate the dredging, the less spoil needs to be removed.
The barges are floating so as the excavator moves, the barge pitches and rolls and moves. Measuring the barge position and orientation in 6 dof in real time enables the bucket position to be precisely calculated (via known sensors that measure the pose of the excavator), or even controlled to a set of pre-programmed dig locations.
Elevated Work Platforms
It is known to use various kinds of elevated work platforms (EWP) such as boom lifts or scissor lifts or vertical telescoping lifts made by manufacturers such as JLG, Snorkel and Genie. It is known that very tall boom lifts sway with a large amplitude and make work difficult, dangerous or impossible. The sway is the limiting factor for the height that boom lifts can work at. It is known that driving the boom lift or EWP with the platform up excites sway and makes the platform uncomfortable or dangerous. The present invention provides means to make a stabilised platform so that the platform is stabilised relative to the ground, or to a desired trajectory when the platform or EWP is moved.
Cable Suspended Robots
It is known to support a robot on a platform suspended by cables in tension supported by an overhead gantry or towers (see PAR Systems—Tensile Truss and Chernobyl Crane and demolition robot). The cables can support high loads but the structure has low stiffness. The lateral stiffness is very low. The accuracy of the positioning of the robot and end effector would be greatly improved by adding a tracking component to the suspended platform to provide a 6 DOF position of the base of the robot arm. This would enable such a system to do accurate work, rather than the relatively inaccurate demolition work it is presently employed to do.
Very Accurate Applications
Such a system may include a galvo mirror to be used with a high power laser for laser cutting, laser engraving or 3D additive laser melting manufacture.
It should be appreciated that the scope of the invention is not limited to the specific embodiments described herein.
Number | Date | Country | Kind |
---|---|---|---|
2016902787 | Jul 2016 | AU | national |
PCT/AU2017/050731 | Jul 2017 | WO | international |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/AU2017/050739 | 7/17/2017 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/009986 | 1/18/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1633192 | Reagan | Jun 1927 | A |
1829435 | Barnhart | Oct 1931 | A |
3438171 | Demarest | Apr 1969 | A |
3757484 | Williamson et al. | Sep 1973 | A |
3790428 | Lingl | Feb 1974 | A |
RE28305 | Williamson et al. | Jan 1975 | E |
3930929 | Lingl | Jan 1976 | A |
3950914 | Lowen | Apr 1976 | A |
4033463 | Cervin | Jul 1977 | A |
4106259 | Taylor-smith | Aug 1978 | A |
4221258 | Richard | Sep 1980 | A |
4245451 | Taylor-smith | Jan 1981 | A |
4303363 | Cervin | Dec 1981 | A |
4523100 | Payne | Jun 1985 | A |
4708562 | Melan et al. | Nov 1987 | A |
4714339 | Lau | Dec 1987 | A |
4758036 | Legille et al. | Jul 1988 | A |
4765789 | Lonardi et al. | Aug 1988 | A |
4790651 | Brown et al. | Dec 1988 | A |
4827689 | Lonardi et al. | May 1989 | A |
4852237 | Tradt et al. | Aug 1989 | A |
4911595 | Kirchen et al. | Mar 1990 | A |
4945493 | Huang et al. | Jul 1990 | A |
4952772 | Zana | Aug 1990 | A |
4954762 | Miyake et al. | Sep 1990 | A |
4969789 | Searle | Nov 1990 | A |
5004844 | Van et al. | Apr 1991 | A |
5013986 | Gauggel | May 1991 | A |
5018923 | Melan et al. | May 1991 | A |
5049797 | Phillips | Sep 1991 | A |
5080415 | Bjornson | Jan 1992 | A |
5196900 | Pettersen | Mar 1993 | A |
5284000 | Milne et al. | Feb 1994 | A |
5321353 | Furness | Jun 1994 | A |
5403140 | Carmichael et al. | Apr 1995 | A |
5413454 | Movsesian | May 1995 | A |
5419669 | Kremer et al. | May 1995 | A |
5420489 | Hansen et al. | May 1995 | A |
5469531 | Faure et al. | Nov 1995 | A |
5497061 | Nonaka et al. | Mar 1996 | A |
5523663 | Tsuge et al. | Jun 1996 | A |
5527145 | Duncan | Jun 1996 | A |
5557397 | Hyde et al. | Sep 1996 | A |
5737500 | Seraji et al. | Apr 1998 | A |
5838882 | Gan et al. | Nov 1998 | A |
6018923 | Wendt | Feb 2000 | A |
6049377 | Lau et al. | Apr 2000 | A |
6101455 | Davis | Aug 2000 | A |
6134507 | Markey, Jr. et al. | Oct 2000 | A |
6166809 | Pettersen et al. | Dec 2000 | A |
6166811 | Long et al. | Dec 2000 | A |
6172754 | Niebuhr | Jan 2001 | B1 |
6213309 | Dadisho | Apr 2001 | B1 |
6285959 | Greer | Sep 2001 | B1 |
6310644 | Keightley | Oct 2001 | B1 |
6330503 | Sharp et al. | Dec 2001 | B1 |
6370837 | Mcmahon et al. | Apr 2002 | B1 |
6427122 | Lin | Jul 2002 | B1 |
6429016 | Mcneil | Aug 2002 | B1 |
6512993 | Kacyra et al. | Jan 2003 | B2 |
6516272 | Lin | Feb 2003 | B2 |
6584378 | Anfindsen | Jun 2003 | B1 |
6611141 | Schulz | Aug 2003 | B1 |
6618496 | Tassakos et al. | Sep 2003 | B1 |
6628322 | Cerruti | Sep 2003 | B1 |
6643002 | Drake, Jr. | Nov 2003 | B2 |
6664529 | Pack et al. | Dec 2003 | B2 |
6681145 | Greenwood et al. | Jan 2004 | B1 |
6683694 | Cornil | Jan 2004 | B2 |
6704619 | Coleman et al. | Mar 2004 | B1 |
6741364 | Lange et al. | May 2004 | B2 |
6825937 | Gebauer et al. | Nov 2004 | B1 |
6850946 | Rappaport et al. | Feb 2005 | B1 |
6859729 | Breakfield et al. | Feb 2005 | B2 |
6864966 | Giger | Mar 2005 | B2 |
6868847 | Ainedter et al. | Mar 2005 | B2 |
6873880 | Hooke et al. | Mar 2005 | B2 |
6917893 | Dietsch et al. | Jul 2005 | B2 |
6935036 | Barber et al. | Aug 2005 | B2 |
6957496 | Raab et al. | Oct 2005 | B2 |
6965843 | Hobden et al. | Nov 2005 | B2 |
6970802 | Ban et al. | Nov 2005 | B2 |
6996912 | Raab et al. | Feb 2006 | B2 |
7044314 | Nayfeh | May 2006 | B2 |
7050930 | Hobden et al. | May 2006 | B2 |
7051450 | Barber et al. | May 2006 | B2 |
7069664 | Barber et al. | Jul 2006 | B2 |
7107144 | Capozzi et al. | Sep 2006 | B2 |
7111437 | Ainedter | Sep 2006 | B2 |
7130034 | Barvosa-carter et al. | Oct 2006 | B2 |
7142981 | Hablani | Nov 2006 | B2 |
7145647 | Suphellen et al. | Dec 2006 | B2 |
7153454 | Khoshnevis | Dec 2006 | B2 |
7174651 | Barber et al. | Feb 2007 | B2 |
7230689 | Lau | Jun 2007 | B2 |
7246030 | Raab et al. | Jul 2007 | B2 |
7269910 | Raab et al. | Sep 2007 | B2 |
7305094 | Kashani | Dec 2007 | B2 |
7347311 | Rudge | Mar 2008 | B2 |
7519493 | Atwell et al. | Apr 2009 | B2 |
7551121 | Oconnell et al. | Jun 2009 | B1 |
7564538 | Sakimura et al. | Jul 2009 | B2 |
7570371 | Storm | Aug 2009 | B1 |
7576836 | Bridges | Aug 2009 | B2 |
7576847 | Bridges | Aug 2009 | B2 |
7591078 | Crampton | Sep 2009 | B2 |
7639347 | Eaton | Dec 2009 | B2 |
7693325 | Pulla et al. | Apr 2010 | B2 |
7701587 | Shioda et al. | Apr 2010 | B2 |
7774159 | Cheng et al. | Aug 2010 | B2 |
7800758 | Bridges et al. | Sep 2010 | B1 |
7804602 | Raab | Sep 2010 | B2 |
RE42055 | Raab et al. | Jan 2011 | E |
RE42082 | Raab et al. | Feb 2011 | E |
7881896 | Atwell et al. | Feb 2011 | B2 |
7967549 | Geist et al. | Jun 2011 | B2 |
7993289 | Quistgaard et al. | Aug 2011 | B2 |
8036452 | Pettersson et al. | Oct 2011 | B2 |
8054451 | Karazi et al. | Nov 2011 | B2 |
8060344 | Stathis | Nov 2011 | B2 |
8145446 | Atwell et al. | Mar 2012 | B2 |
8166727 | Pivac et al. | May 2012 | B2 |
8169604 | Braghiroli et al. | May 2012 | B2 |
8185240 | Williams et al. | May 2012 | B2 |
8195368 | Leban et al. | Jun 2012 | B1 |
8229208 | Pulla et al. | Jul 2012 | B2 |
8233153 | Knuettel | Jul 2012 | B2 |
8244030 | Pettersson et al. | Aug 2012 | B2 |
8248620 | Wicks et al. | Aug 2012 | B2 |
8269984 | Hinderling et al. | Sep 2012 | B2 |
8287522 | Moses | Oct 2012 | B2 |
8322468 | Nagasaka | Dec 2012 | B2 |
8327555 | Champ | Dec 2012 | B2 |
8337407 | Quistgaard et al. | Dec 2012 | B2 |
8345926 | Clark et al. | Jan 2013 | B2 |
8346392 | Walser et al. | Jan 2013 | B2 |
8352129 | Yuan et al. | Jan 2013 | B2 |
8401698 | Kamrani | Mar 2013 | B2 |
8405716 | Yu et al. | Mar 2013 | B2 |
8467072 | Cramer et al. | Jun 2013 | B2 |
8467888 | Gahinet | Jun 2013 | B2 |
8537372 | Siercks et al. | Sep 2013 | B2 |
8537376 | Day et al. | Sep 2013 | B2 |
8558992 | Steffey | Oct 2013 | B2 |
8588974 | Aoba | Nov 2013 | B2 |
8593648 | Cramer et al. | Nov 2013 | B2 |
8595948 | Raab et al. | Dec 2013 | B2 |
8606399 | Williams et al. | Dec 2013 | B2 |
8634950 | Simonetti et al. | Jan 2014 | B2 |
8644964 | Hendron et al. | Feb 2014 | B2 |
8670114 | Bridges et al. | Mar 2014 | B2 |
8677643 | Bridges et al. | Mar 2014 | B2 |
8792709 | Pulla et al. | Jul 2014 | B2 |
8803055 | Lau et al. | Aug 2014 | B2 |
8812155 | Brethe | Aug 2014 | B2 |
8825208 | Benson | Sep 2014 | B1 |
8832954 | Atwell et al. | Sep 2014 | B2 |
8848203 | Bridges et al. | Sep 2014 | B2 |
8875409 | Kretschmer et al. | Nov 2014 | B2 |
8898919 | Bridges et al. | Dec 2014 | B2 |
8902408 | Bridges | Dec 2014 | B2 |
8913814 | Gandyra | Dec 2014 | B2 |
8931182 | Raab et al. | Jan 2015 | B2 |
8942940 | York | Jan 2015 | B2 |
8965571 | Peters et al. | Feb 2015 | B2 |
8996244 | Summer et al. | Mar 2015 | B2 |
8997362 | Briggs et al. | Apr 2015 | B2 |
9020240 | Pettersson et al. | Apr 2015 | B2 |
9033998 | Schaible et al. | May 2015 | B1 |
RE45565 | Bridges et al. | Jun 2015 | E |
9046360 | Atwell et al. | Jun 2015 | B2 |
9074381 | Drew | Jul 2015 | B1 |
9109877 | Thierman | Aug 2015 | B2 |
9146315 | Bosse et al. | Sep 2015 | B2 |
9151830 | Bridges | Oct 2015 | B2 |
9163922 | Bridges et al. | Oct 2015 | B2 |
9170096 | Fowler et al. | Oct 2015 | B2 |
9188430 | Atwell et al. | Nov 2015 | B2 |
9207309 | Bridges | Dec 2015 | B2 |
9223025 | Debrunner et al. | Dec 2015 | B2 |
9229108 | Debrunner et al. | Jan 2016 | B2 |
9266238 | Huettenhofer | Feb 2016 | B2 |
9267784 | Atwell et al. | Feb 2016 | B2 |
9278448 | Freeman | Mar 2016 | B2 |
9279661 | Tateno et al. | Mar 2016 | B2 |
9303988 | Tani | Apr 2016 | B2 |
9353519 | Williams | May 2016 | B2 |
9354051 | Dunne et al. | May 2016 | B2 |
9358688 | Drew | Jun 2016 | B2 |
9367741 | Le Marec | Jun 2016 | B2 |
9377301 | Neier et al. | Jun 2016 | B2 |
9383200 | Hulm et al. | Jul 2016 | B2 |
9395174 | Bridges | Jul 2016 | B2 |
9405293 | Meuleau | Aug 2016 | B2 |
9423282 | Moy | Aug 2016 | B2 |
9437005 | Tateno et al. | Sep 2016 | B2 |
9443308 | Pettersson et al. | Sep 2016 | B2 |
9452533 | Calkins et al. | Sep 2016 | B2 |
9454818 | Cramer | Sep 2016 | B2 |
9476695 | Becker et al. | Oct 2016 | B2 |
9482524 | Metzler et al. | Nov 2016 | B2 |
9482525 | Bridges | Nov 2016 | B2 |
9482746 | Bridges | Nov 2016 | B2 |
9494686 | Maryfield et al. | Nov 2016 | B2 |
9513100 | Raab et al. | Dec 2016 | B2 |
9536163 | Veeser et al. | Jan 2017 | B2 |
9541371 | Pettersson et al. | Jan 2017 | B2 |
9561019 | Mihailescu et al. | Feb 2017 | B2 |
9593046 | Bastelberger | Mar 2017 | B2 |
9607239 | Bridges et al. | Mar 2017 | B2 |
9618620 | Zweigle et al. | Apr 2017 | B2 |
9658061 | Wilson et al. | May 2017 | B2 |
9671221 | Ruhland et al. | Jun 2017 | B2 |
9679385 | Suzuki et al. | Jun 2017 | B2 |
9686532 | Tohme | Jun 2017 | B2 |
9708079 | Desjardien et al. | Jul 2017 | B2 |
9715730 | Suzuki | Jul 2017 | B2 |
9720087 | Christen et al. | Aug 2017 | B2 |
9734609 | Pulla et al. | Aug 2017 | B2 |
9739595 | Lau | Aug 2017 | B2 |
9746308 | Gong | Aug 2017 | B2 |
9757859 | Kolb et al. | Sep 2017 | B1 |
9768837 | Charvat et al. | Sep 2017 | B2 |
9772173 | Atwell et al. | Sep 2017 | B2 |
9803969 | Gong | Oct 2017 | B2 |
9816813 | Lettau et al. | Nov 2017 | B2 |
9829305 | Gong | Nov 2017 | B2 |
9835717 | Bosse et al. | Dec 2017 | B2 |
9844792 | Pettersson et al. | Dec 2017 | B2 |
9879976 | Bridges et al. | Jan 2018 | B2 |
9897442 | Pettersson et al. | Feb 2018 | B2 |
9903939 | Charvat et al. | Feb 2018 | B2 |
9909855 | Becker et al. | Mar 2018 | B2 |
9915733 | Fried et al. | Mar 2018 | B2 |
9921046 | Gong | Mar 2018 | B2 |
9958268 | Ohtomo et al. | May 2018 | B2 |
9958545 | Eichenholz et al. | May 2018 | B2 |
9964398 | Becker et al. | May 2018 | B2 |
9964402 | Tohme et al. | May 2018 | B2 |
9967545 | Tohme | May 2018 | B2 |
9987746 | Bradski | Jun 2018 | B2 |
9989353 | Bartmann et al. | Jun 2018 | B2 |
10012732 | Eichenholz et al. | Jul 2018 | B2 |
10030972 | Iseli et al. | Jul 2018 | B2 |
10041793 | Metzler et al. | Aug 2018 | B2 |
10054422 | Böckem et al. | Aug 2018 | B2 |
10058394 | Johnson et al. | Aug 2018 | B2 |
10059003 | Linnell et al. | Aug 2018 | B1 |
10073162 | Charvat et al. | Sep 2018 | B2 |
10074889 | Charvat et al. | Sep 2018 | B2 |
10082521 | Atlas et al. | Sep 2018 | B2 |
10089586 | Vestal | Oct 2018 | B2 |
10090944 | Charvat et al. | Oct 2018 | B1 |
10094909 | Charvat et al. | Oct 2018 | B2 |
10126415 | Becker et al. | Nov 2018 | B2 |
10150653 | Kyllingstad | Dec 2018 | B2 |
10189176 | Williams | Jan 2019 | B2 |
10220511 | Linnell et al. | Mar 2019 | B2 |
10240949 | Peters et al. | Mar 2019 | B2 |
10627211 | Luthi | Apr 2020 | B2 |
10635758 | Pivac et al. | Apr 2020 | B2 |
10865578 | Pivac et al. | Dec 2020 | B2 |
10876308 | Pivac et al. | Dec 2020 | B2 |
11106836 | Pivac et al. | Aug 2021 | B2 |
11364630 | Henriksson | Jun 2022 | B2 |
20020126852 | Kashani | Sep 2002 | A1 |
20020175594 | Kornbluh et al. | Nov 2002 | A1 |
20020176603 | Bauer et al. | Nov 2002 | A1 |
20030048459 | Gooch | Mar 2003 | A1 |
20030090682 | Gooch et al. | May 2003 | A1 |
20030120377 | Hooke et al. | Jun 2003 | A1 |
20030206285 | Lau | Nov 2003 | A1 |
20030208302 | Lemelson | Nov 2003 | A1 |
20040073343 | Nayfeh | Apr 2004 | A1 |
20040078137 | Breakfield et al. | Apr 2004 | A1 |
20040093119 | Gunnarsson et al. | May 2004 | A1 |
20040200947 | Lau | Oct 2004 | A1 |
20050007450 | Hill et al. | Jan 2005 | A1 |
20050057745 | Bontje | Mar 2005 | A1 |
20050060092 | Hablani | Mar 2005 | A1 |
20050086901 | Chisholm | Apr 2005 | A1 |
20050131619 | Rappaport et al. | Jun 2005 | A1 |
20050196484 | Khoshnevis | Sep 2005 | A1 |
20050252118 | Matsufuji | Nov 2005 | A1 |
20060167587 | Read | Jul 2006 | A1 |
20060215179 | Mcmurtry et al. | Sep 2006 | A1 |
20070024870 | Girard et al. | Feb 2007 | A1 |
20070106421 | Kamrani | May 2007 | A1 |
20070229802 | Lau | Oct 2007 | A1 |
20070284215 | Rudge | Dec 2007 | A1 |
20080030855 | Lau | Feb 2008 | A1 |
20080189046 | Eliasson et al. | Aug 2008 | A1 |
20080235970 | Crampton | Oct 2008 | A1 |
20090038258 | Pivac et al. | Feb 2009 | A1 |
20090074979 | Krogedal et al. | Mar 2009 | A1 |
20090240372 | Bordyn | Sep 2009 | A1 |
20100025349 | Khoshnevis | Feb 2010 | A1 |
20100095835 | Yuan et al. | Apr 2010 | A1 |
20100103431 | Demopoulos | Apr 2010 | A1 |
20100138185 | Kang | Jun 2010 | A1 |
20100143089 | Hvass | Jun 2010 | A1 |
20100152899 | Chang et al. | Jun 2010 | A1 |
20100206651 | Nagasaka | Aug 2010 | A1 |
20100274390 | Walser et al. | Oct 2010 | A1 |
20100281822 | Murray | Nov 2010 | A1 |
20100312364 | Eryilmaz et al. | Dec 2010 | A1 |
20110043515 | Stathis | Feb 2011 | A1 |
20110066393 | Groll et al. | Mar 2011 | A1 |
20110153524 | Schnackel | Jun 2011 | A1 |
20110208347 | Otake et al. | Aug 2011 | A1 |
20120038074 | Khoshnevis | Feb 2012 | A1 |
20120053726 | Peters | Mar 2012 | A1 |
20120099096 | Bridges et al. | Apr 2012 | A1 |
20120136524 | Everett et al. | May 2012 | A1 |
20120185089 | Schreiber | Jul 2012 | A1 |
20120265391 | Letsky | Oct 2012 | A1 |
20120277898 | Kawai et al. | Nov 2012 | A1 |
20130028478 | St-pierre et al. | Jan 2013 | A1 |
20130068061 | Yoon | Mar 2013 | A1 |
20130103192 | Huettenhofer | Apr 2013 | A1 |
20130104407 | Lee | May 2013 | A1 |
20130222816 | Briggs et al. | Aug 2013 | A1 |
20130250285 | Bridges et al. | Sep 2013 | A1 |
20130286196 | Atwell | Oct 2013 | A1 |
20130297046 | Hendron | Nov 2013 | A1 |
20130310982 | Scheurer | Nov 2013 | A1 |
20140002608 | Atwell et al. | Jan 2014 | A1 |
20140067121 | Brooks et al. | Mar 2014 | A1 |
20140176677 | Valkenburg et al. | Jun 2014 | A1 |
20140192187 | Atwell et al. | Jul 2014 | A1 |
20140309960 | Vennegeerts et al. | Oct 2014 | A1 |
20140343727 | Calkins et al. | Nov 2014 | A1 |
20140348388 | Metzler et al. | Nov 2014 | A1 |
20140365258 | Vestal | Dec 2014 | A1 |
20140366481 | Benson | Dec 2014 | A1 |
20140376768 | Troy | Dec 2014 | A1 |
20150082740 | Peters et al. | Mar 2015 | A1 |
20150100066 | Kostrzewski et al. | Apr 2015 | A1 |
20150134303 | Chang et al. | May 2015 | A1 |
20150153720 | Pettersson et al. | Jun 2015 | A1 |
20150158181 | Kawamura | Jun 2015 | A1 |
20150165620 | Osaka | Jun 2015 | A1 |
20150166413 | Crampton | Jun 2015 | A1 |
20150241203 | Jordil et al. | Aug 2015 | A1 |
20150258694 | Hand et al. | Sep 2015 | A1 |
20150276402 | Grsser et al. | Oct 2015 | A1 |
20150280829 | Breuer | Oct 2015 | A1 |
20150293596 | Krausen et al. | Oct 2015 | A1 |
20150309175 | Hinderling et al. | Oct 2015 | A1 |
20150314890 | Desjardien et al. | Nov 2015 | A1 |
20150345959 | Meuleau | Dec 2015 | A1 |
20150352721 | Wicks et al. | Dec 2015 | A1 |
20150355310 | Gong et al. | Dec 2015 | A1 |
20150367509 | Georgeson | Dec 2015 | A1 |
20150371082 | Csaszar et al. | Dec 2015 | A1 |
20150377606 | Thielemans | Dec 2015 | A1 |
20160005185 | Geissler | Jan 2016 | A1 |
20160093099 | Bridges | Mar 2016 | A1 |
20160153786 | Liu et al. | Jun 2016 | A1 |
20160187130 | Metzler et al. | Jun 2016 | A1 |
20160187470 | Becker et al. | Jun 2016 | A1 |
20160194183 | Kyllingstad | Jul 2016 | A1 |
20160221187 | Bradski | Aug 2016 | A1 |
20160223364 | Peters et al. | Aug 2016 | A1 |
20160239013 | Troy | Aug 2016 | A1 |
20160242744 | Mihailescu et al. | Aug 2016 | A1 |
20160263767 | Williams | Sep 2016 | A1 |
20160274237 | Stutz | Sep 2016 | A1 |
20160282107 | Roland et al. | Sep 2016 | A1 |
20160282110 | Vagman et al. | Sep 2016 | A1 |
20160282179 | Nazemi et al. | Sep 2016 | A1 |
20160288331 | Sivich et al. | Oct 2016 | A1 |
20160313114 | Tohme et al. | Oct 2016 | A1 |
20160318187 | Tani | Nov 2016 | A1 |
20160327383 | Becker et al. | Nov 2016 | A1 |
20160340873 | Eidenberger et al. | Nov 2016 | A1 |
20160341041 | Puura et al. | Nov 2016 | A1 |
20160349746 | Grau | Dec 2016 | A1 |
20160363436 | Clark et al. | Dec 2016 | A1 |
20160363659 | Mindell et al. | Dec 2016 | A1 |
20160363663 | Mindell et al. | Dec 2016 | A1 |
20160363664 | Mindell et al. | Dec 2016 | A1 |
20160364869 | Siercks et al. | Dec 2016 | A1 |
20160364874 | Tohme et al. | Dec 2016 | A1 |
20170028550 | Terada | Feb 2017 | A1 |
20170066157 | Peters et al. | Mar 2017 | A1 |
20170067739 | Siercks et al. | Mar 2017 | A1 |
20170071680 | Swarup | Mar 2017 | A1 |
20170082436 | Siercks et al. | Mar 2017 | A1 |
20170091922 | Siercks et al. | Mar 2017 | A1 |
20170091923 | Siercks et al. | Mar 2017 | A1 |
20170108528 | Atlas et al. | Apr 2017 | A1 |
20170122733 | Brown | May 2017 | A1 |
20170122736 | Dold et al. | May 2017 | A1 |
20170166399 | Stubbs | Jun 2017 | A1 |
20170173795 | Tan et al. | Jun 2017 | A1 |
20170173796 | Kim et al. | Jun 2017 | A1 |
20170176572 | Charvat et al. | Jun 2017 | A1 |
20170179570 | Charvat | Jun 2017 | A1 |
20170179603 | Charvat et al. | Jun 2017 | A1 |
20170191822 | Becker et al. | Jul 2017 | A1 |
20170227355 | Pettersson et al. | Aug 2017 | A1 |
20170236299 | Valkenburg et al. | Aug 2017 | A1 |
20170254102 | Peters et al. | Sep 2017 | A1 |
20170269203 | Trishaun | Sep 2017 | A1 |
20170291805 | Hao | Oct 2017 | A1 |
20170307757 | Hinderling et al. | Oct 2017 | A1 |
20170314909 | Dang | Nov 2017 | A1 |
20170314918 | Shah | Nov 2017 | A1 |
20170333137 | Roessler | Nov 2017 | A1 |
20170343336 | Lettau | Nov 2017 | A1 |
20170371342 | Hashimoto | Dec 2017 | A1 |
20180001479 | Li et al. | Jan 2018 | A1 |
20180003493 | Bernhard et al. | Jan 2018 | A1 |
20180017384 | Siercks et al. | Jan 2018 | A1 |
20180023935 | Atwell et al. | Jan 2018 | A1 |
20180038684 | Fröhlich et al. | Feb 2018 | A1 |
20180043838 | Ellerman et al. | Feb 2018 | A1 |
20180046096 | Shibazaki | Feb 2018 | A1 |
20180052233 | Frank et al. | Feb 2018 | A1 |
20180093380 | Yoshida | Apr 2018 | A1 |
20180108178 | Murugappan et al. | Apr 2018 | A1 |
20180121571 | Tiwari et al. | May 2018 | A1 |
20180149469 | Becker et al. | May 2018 | A1 |
20180156601 | Pontai | Jun 2018 | A1 |
20180168749 | Dozeman | Jun 2018 | A1 |
20180170719 | Tasch et al. | Jun 2018 | A1 |
20180180416 | Edelman et al. | Jun 2018 | A1 |
20180180740 | Shaffer | Jun 2018 | A1 |
20180202796 | Ziegenbein | Jul 2018 | A1 |
20180209156 | Pettersson | Jul 2018 | A1 |
20180239010 | Mindell et al. | Aug 2018 | A1 |
20180283017 | Telleria et al. | Oct 2018 | A1 |
20180300433 | Maxam et al. | Oct 2018 | A1 |
20190026401 | Benjamin et al. | Jan 2019 | A1 |
20190032348 | Parkes | Jan 2019 | A1 |
20190184555 | Linnell et al. | Jun 2019 | A1 |
20190251210 | Pivac et al. | Aug 2019 | A1 |
20200009723 | Eisenwinter | Jan 2020 | A1 |
20200009730 | Henriksson | Jan 2020 | A1 |
20200173777 | Pivac et al. | Jun 2020 | A1 |
20200206923 | Pivac et al. | Jul 2020 | A1 |
20200206924 | Pivac et al. | Jul 2020 | A1 |
20200215688 | Pivac et al. | Jul 2020 | A1 |
20200215692 | Pivac et al. | Jul 2020 | A1 |
20200215693 | Pivac et al. | Jul 2020 | A1 |
20200324981 | Pivac et al. | Oct 2020 | A1 |
20210016437 | Pivac et al. | Jan 2021 | A1 |
20210016438 | Pivac et al. | Jan 2021 | A1 |
20210080582 | Pivac et al. | Mar 2021 | A1 |
20210291362 | Pivac et al. | Sep 2021 | A1 |
20210370509 | Pivac et al. | Dec 2021 | A1 |
20210379775 | Pivac et al. | Dec 2021 | A1 |
Number | Date | Country |
---|---|---|
645640 | Jan 1994 | AU |
673498 | Mar 1990 | CH |
2730976 | Oct 2005 | CN |
2902981 | May 2007 | CN |
2923903 | Jul 2007 | CN |
101100903 | Jan 2008 | CN |
201184054 | Jan 2009 | CN |
101360873 | Feb 2009 | CN |
101476883 | Jul 2009 | CN |
100557169 | Nov 2009 | CN |
101694130 | Apr 2010 | CN |
201972413 | Sep 2011 | CN |
102359282 | Feb 2012 | CN |
202248944 | May 2012 | CN |
202292752 | Jul 2012 | CN |
102995911 | Mar 2013 | CN |
202925913 | May 2013 | CN |
103363902 | Oct 2013 | CN |
103698769 | Apr 2014 | CN |
203701626 | Jul 2014 | CN |
104141391 | Nov 2014 | CN |
104153591 | Nov 2014 | CN |
104493810 | Apr 2015 | CN |
204295678 | Apr 2015 | CN |
104612411 | May 2015 | CN |
204311767 | May 2015 | CN |
103774859 | Nov 2015 | CN |
103753586 | Dec 2015 | CN |
105113373 | Dec 2015 | CN |
105178616 | Dec 2015 | CN |
105257008 | Jan 2016 | CN |
105544998 | May 2016 | CN |
104806028 | Nov 2016 | CN |
205668271 | Nov 2016 | CN |
205840368 | Dec 2016 | CN |
205990775 | Mar 2017 | CN |
206185879 | May 2017 | CN |
206189878 | May 2017 | CN |
105089274 | Jun 2017 | CN |
105064699 | Jul 2017 | CN |
107217859 | Sep 2017 | CN |
107237483 | Oct 2017 | CN |
107357294 | Nov 2017 | CN |
107605167 | Jan 2018 | CN |
206844687 | Jan 2018 | CN |
107654077 | Feb 2018 | CN |
107675891 | Feb 2018 | CN |
107740591 | Feb 2018 | CN |
106088632 | Mar 2018 | CN |
107762165 | Mar 2018 | CN |
207063553 | Mar 2018 | CN |
106088631 | May 2018 | CN |
107975245 | May 2018 | CN |
108061551 | May 2018 | CN |
108222527 | Jun 2018 | CN |
108301628 | Jul 2018 | CN |
108331362 | Jul 2018 | CN |
106150109 | Aug 2018 | CN |
108457479 | Aug 2018 | CN |
108708560 | Oct 2018 | CN |
208023979 | Oct 2018 | CN |
106881711 | Apr 2019 | CN |
107083845 | Jun 2019 | CN |
108016585 | Jul 2019 | CN |
3430915 | Mar 1986 | DE |
4038260 | Jun 1991 | DE |
4207384 | Sep 1993 | DE |
19509809 | Oct 1995 | DE |
4417928 | Nov 1995 | DE |
29601535 | May 1997 | DE |
19600006 | Jul 1997 | DE |
19603234 | Sep 1997 | DE |
19743717 | Apr 1999 | DE |
19849720 | May 2000 | DE |
10230021 | Jul 2003 | DE |
102006030130 | Sep 2007 | DE |
102009018070 | Oct 2010 | DE |
102009042014 | Mar 2011 | DE |
202012100646 | Jun 2013 | DE |
102013019869 | May 2015 | DE |
190076 | Aug 1986 | EP |
370682 | May 1990 | EP |
456020 | Jan 1995 | EP |
493020 | Apr 1995 | EP |
495525 | Apr 1995 | EP |
836664 | Jan 1999 | EP |
674069 | Dec 1999 | EP |
1375083 | Jan 2004 | EP |
1918478 | May 2008 | EP |
2112291 | Oct 2009 | EP |
2219528 | Aug 2010 | EP |
2249997 | Nov 2010 | EP |
2353801 | Aug 2011 | EP |
2631040 | Aug 2013 | EP |
2199719 | Oct 2014 | EP |
3084719 | Oct 2016 | EP |
2296556 | Apr 2008 | ES |
2230825 | Dec 1974 | FR |
2524522 | Oct 1983 | FR |
119331 | Oct 1918 | GB |
2198105 | May 1923 | GB |
673472 | Jun 1952 | GB |
682010 | Nov 1952 | GB |
839253 | Jun 1960 | GB |
1067604 | May 1967 | GB |
1465068 | Feb 1977 | GB |
125079 D | Dec 2001 | GB |
2422400 | Jul 2006 | GB |
64006719 | Jan 1989 | JP |
H07101509 | Nov 1999 | JP |
2005283600 | Oct 2005 | JP |
4294990 | Apr 2009 | JP |
2009521630 | Jun 2009 | JP |
5508895 | Mar 2014 | JP |
87054 | Jun 1989 | LU |
87381 | Jun 1990 | LU |
88144 | Apr 1994 | LU |
85392 | Aug 2009 | RU |
9702397 | Jan 1997 | WO |
2001076830 | Oct 2001 | WO |
2004020760 | Mar 2004 | WO |
2004083540 | Feb 2005 | WO |
2005014240 | Feb 2005 | WO |
2005017550 | Feb 2005 | WO |
2005070657 | Aug 2005 | WO |
2004011734 | Nov 2005 | WO |
2006111827 | Oct 2006 | WO |
2007076581 | Jul 2007 | WO |
2008110559 | Sep 2008 | WO |
2008124713 | Oct 2008 | WO |
2009026641 | Mar 2009 | WO |
2009026642 | Mar 2009 | WO |
WO-2009026641 | Mar 2009 | WO |
2010020457 | Feb 2010 | WO |
2011077006 | Jun 2011 | WO |
2013088154 | Jun 2013 | WO |
2013134559 | Sep 2013 | WO |
2018009978 | Jan 2018 | WO |
2018009980 | Jan 2018 | WO |
2018009981 | Jan 2018 | WO |
2018009985 | Jan 2018 | WO |
2018009986 | Jan 2018 | WO |
2018052469 | Apr 2018 | WO |
201899323 | Jun 2018 | WO |
2018149502 | Aug 2018 | WO |
2019006511 | Jan 2019 | WO |
2019014701 | Jan 2019 | WO |
2019014702 | Jan 2019 | WO |
2019014705 | Jan 2019 | WO |
2019014706 | Jan 2019 | WO |
2019014707 | Jan 2019 | WO |
2019033165 | Feb 2019 | WO |
2019033166 | Feb 2019 | WO |
2019033170 | Feb 2019 | WO |
2019068128 | Apr 2019 | WO |
2019071313 | Apr 2019 | WO |
Entry |
---|
Delgado, R. et al.: “Development and Control of an Omnidirectional Mobile Robot on an EtherCAT Network”, International Journal of Applied Engineering Research, vol. 11, No. 21, 2016, pp. 10586-10592, XP055574484 *. |
Dorfler, K. et al.: “Mobile Robotic Brickwork ', Automation of a Discrete Robotic Fabrication Process Using an Autonomous Mobile Robot Robotic Fabrication in Architecture”, Art and Design 2016, Feb. 4, 2016 (Feb. 4, 2016), pp. 204-217, XP055567451 *. |
Egerstedt, M. et al.: “Control of Mobile Platforms using a Virtual Vehicle Approach”, IEEE Transactions on Automatic Control, vol. 46, No. 11, Nov. 2001 (Nov. 1, 2001), XP055567515 *. |
Fastbrick Robotics, Fastbrick Robotics: Hadrian 105 First Look Revealed, Nov. 16, 2015 (Nov. 16, 2015), XP054978174, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=7Zw7qHxMtrY> [retrieved on Nov. 16, 2015] *. |
Fastbrick Robotics: Hadrian 105 Demonstrative Model Animation, Jun. 29, 2015 (Jun. 29, 2015), XP054979424, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=Rebqcsb61gY> [retrieved on Mar. 7, 2018] *. |
Fastbrick Robotics: Hadrian 105 Time Lapse, Fastbrick Robotics Time Lapse, May 22, 2016 (May 22, 2016), XP054978173, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=4YcrO8ONcfY> [retrieved on May 22, 2016] *. |
Feng, C. et al.: “Vision Guided Autonomous Robotic Assembly and as-built Scanning on Unstructured Construction Sites”, Automation in Construction, vol. 59, Nov. 2015 (Nov. 1, 2015), pp. 128-138, XP055567454 *. |
Gao, X. et al.: “Complete Solution Classification for the Perspective-Three-Point Problem”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, No. 8, Aug. 2003 (Aug. 1, 2003), pp. 930-943, XP011099374 *. |
Giftthaler, M. et al., “Efficient Kinematic Planning for Mobile Manipulators with Non-holonomic Constraints Using Optimal Control”, 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, May 29-Jun. 3, 2017. |
Heintze, H., “Design and Control of a Hydraulically Actuated Industrial Brick Laying Robot,” 264 pages. |
Heintze, J. et al., “Controlled hydraulics for a direct drive brick laying robot,” Automation in Construction 5 (1996), pp. 23-29. |
Helm, V. et al.: “Mobile Robotic Fabrication on Construction Sites: dimRob”, IEEE /RSJ International Conference on Intelligent Robots and Systems, Oct. 7, 2012 (Oct. 7, 2012), Vilamoura, Portugal, pp. 4335-4341, XP032287463 *. |
http://www.new-technologies.org/ECT/Other/brickrob.htm. “Emerging Construction Technologies.” Dec. 1, 2006. |
Huang, S. et al., “Applying High-Speed Vision Sensing to an Industrial Robot for High-Performance Position Regulation under Uncertainties,” Sensors, 2016, 16, 1195, 15 pages. |
International Preliminary Report on Patentability for International Application No. PCT/AU2017/050738; dated Jan. 15, 2019; 13 pages. |
International Preliminary Report on Patentability for International Application No. PCT/AU2017/050731; dated Jan. 15, 2019; 5 pages. |
International Search Report and Written Opinion for International Application No. PCT/AU2017/050730; dated Aug. 23, 2017; 17 pages. |
International Search Report and Written Opinion for International Application No. PCT/AU2017/050731; dated Aug. 31, 2017; 8 pages. |
International Search Report and Written Opinion for International Application No. PCT/AU2017/050738; dated Oct. 17, 2017; 19 pages. |
International Search Report and Written Opinion for International Application No. PCT/AU2017/050739; dated Sep. 28, 2017; 9 pages. |
Kazemi, M. et al.: “Path Planning for Image-based Control of Wheeled Mobile Manipulators”, 2012 IEEE /RSJ International Conference on Intelligent Robots and Systems, Oct. 7, 2012 (Oct. 7, 2012), Vilamoura, Portugal, XP055567470 *. |
Kleinkes, M. et al.: “Laser Tracker and 6DoF measurement strategies in industrial robot applications”, CMSC 2011: Coordinate Metrology System Conference, Jul. 25, 2011 (Jul. 25, 2011), XP055456272 *. |
Koren et al.: “End-effector guidance of robot arms”, Cirp Annals-Manufacturing Technology, vol. 36, No. 1, 1987, pp. 289-292, XP055456270 *. |
Kwon, S. et al., “On the Coarse/Fine Dual-Stage Manipulators with Robust Perturbation Compensator,” IEEE, May 21-26, 2001, pp. 121-126. |
Kyle in CMSC: Charlotte-Concord, Jul. 21-25, 2008. |
Latteur, et al., “Drone-Based Additive Manufacturing of Architectural Structures,” IASS Symposium 2015, Amsterdam, The Netherlands; Aug. 17-20, 2015; 12 pages. |
Lippiello, V. et al.: “Position-Based Visual Servoing in Industrial Multirobot Cells Using a Hybrid Camera Configuration”, IEEE Transactions On Robotics, vol. 23, No. 1, Feb. 2007 (Feb. 1, 2007), XP011163518 *. |
Liu, Z. et al.: “EtherCAT Based Robot Modular Joint Controller”, Proceeding of the 2015 IEEE International Conference on Information and Automation, Aug. 2015 (Aug. 1, 2015), Lijiang, China, pp. 1708-1713, XP033222650 *. |
Notice of Acceptance of Patent Application received for priority Australian Patent Application No. 2017294796, dated May 15, 2019 (158 pages). |
Pless, R .: “Using Many Cameras as One”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Jun. 18, 2003 (Jun. 18, 2003), Madison , WI, USA, pp. 1-7, XP055564465 *. |
Posada et al.: “High accurate robotic drilling with external sensor and compliance model-based compensation”, Robotics and Automation (ICRA), 2016 IEEE International Conference, May 16, 2016 (May 16, 2016), pp. 3901-3907, XP032908649 *. |
Pritschow, G. et al., “A Mobile Robot for On-Site Construction of Masonry,” Inst. of Control Tech. for Machine Tools and Manuf. Units, pp. 1701-1707. |
Pritschow, G. et al., “Application Specific Realisation of a Mobile Robot for On-Site Construction of Masonry,” Automation and Robotics in Construction XI, 1994, pp. 95-102. |
Pritschow, G. et al., “Configurable Control System of a Mobile Robot for ON-Site Construction of Masonry,” Inst. of Control Technology for Machine Tools and Manuf. Units, pp. 85-92. |
Pritschow, G. et al., “Technological aspects in the development of a mobile bricklaying robot,” Automation in Construction 5 (1996), pp. 3-13. |
Riegl Laser Measurement Systems. “Long Range & High Accuracy 3D Terrestrial Laser Scanner System—LMS-Z420i.” pp. 1-4. |
Salcudean, S. et al., “On the Control of Redundant Coarse-Fine Manipulators,” IEEE, pp. 1834-1840. |
Sandy, T. et al.: “Autonomous Repositioning and Localization of an In Situ Fabricator”, 2016 IEEE International Conference on Robotics and Automation (ICRA), May 16, 2016 (May 16, 2016), pp. 2852-2858, XP055567467 *. |
Skibniewski, M.J., “Current Status of Construction Automation and Robotics in the United States of America,” The 9th International Symposium on Automation and Robotics in Construction, Jun. 3-5, 1992, 8 pages. |
Trimble ATS. “Advanced Tracking Sensor (ATS) with target recognition capability for stakeless machine control survey applications.” pp. 1-4. |
Vincze, M. et al., “A Laser Tracking System to Measure Position and Orientation of Robot End Effectors Under Motion,” The International Journal of Robotics Research, vol. 13, No. 4, Aug. 1994, pp. 305-314. |
Warszawski, A. et al., “Implementation of Robotics in Building: Current Status and Future Prospects,” Journal of Construction Engineering and Management, Jan./Feb. 1998, 124(1), pp. 31-41. |
Willmann, J. et al.: “Robotic Timber Construction—Expanding Additive Fabrication to New Dimensions”, Automation in Construction, vol. 61, 2016, pp. 16-23, XP029310896 *. |
Xu, H. et al.: “Uncalibrated Visual Servoing of Mobile Manipulators with an Eye-to-hand Camera”, Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics, Dec. 3, 2016 (Dec. 3, 2016), Qingdao, China, pp. 2145-2150, XP033071767 *. |
Yu, S.N. et al., “Feasibility verification of brick-laying robot using manipulation trajectory and the laying pattern optimization,” Dept. of Mech. Eng., Automation in Construction (2009), pp. 644-655. |
International Preliminary Report on Patentability for International Application No. PCT/AU2018/050733; dated Jan. 21, 2020; 6 pages. |
International Preliminary Report on Patentability for International Application No. PCT/AU2018/050734; dated Jan. 21, 2020; 9 pages. |
International Preliminary Report on Patentability for International Application No. PCT/AU2018/050737; dated Jan. 21, 2020; 6 pages. |
International Preliminary Report on Patentability for International Application No. PCT/AU2018/050739; dated Jan. 21, 2020; 6 pages. |
International Preliminary Report on Patentability for International Application No. PCT/AU2018/050740; dated Jan. 21, 2020; 6 pages. |
Partial Supplementary European Search Report dated Apr. 14, 2020 in European Patent Application No. 17826696.1, 10 pages. |
Zaki, T., “Parametric modeling of Blackwall assemblies for automated generation of shop drawings and detailed estimates using BIM”, Master's Thesis, May 23, 2016, pp. 1-151. |
Boston Dynamics: “Introducing Spot (previously SpotMini)”, Jun. 28, 2016, YouTube video, 1 page (screenshot of video); video retrieved at <https://www.youtube.com/watch?v=tf7IEVTDjng>. |
Examination Report dated Apr. 18, 2021 in GCC Patent Application No. 2018-35644, 5 pages. |
Examination Report dated Apr. 30, 2021 in GCC Patent Application No. 2018-35643, 3 pages. |
Examination Report dated Jun. 29, 2021 for India Patent Application No. 201927004006, 6 pages. |
Examination Report dated Sep. 30, 2021 for Australian Patent Application No. 2017295316, 3 pages. |
Extended European Search Report dated Jun. 4, 2021 for European Patent Application No. 18865644.1, 7 pages. |
Extended European Search Report dated Mar. 16, 2021 for European Patent Application No. 18834565.6, 19 pages. |
Extended European Search Report dated Mar. 17, 2021 for European Patent Application No. 18835861.8, 12 pages. |
Extended European Search Report dated Mar. 18, 2021 for European Patent Application No. 18834673.8, 14 pages. |
Extended European Search Report dated Mar. 18, 2021 for European Patent Application No. 18834893.2, 12 pages. |
Extended European Search Report dated Mar. 18, 2021 for European Patent Application No. 18835737.0, 10 pages. |
Extended European Search Report dated Mar. 30, 2021 for European Patent Application No. 18845794.9, 13 pages. |
Extended European Search Report dated Mar. 5, 2021 for European Patent Application No. 18828425.1, 7 pages. |
Fastbrick Robotics: Hadrian X Digital Construction System, published on Sep. 21, 2016 <URL: https://www.youtube.com/watch?v=5bW1vuCgEaA >. |
Gander H et al: “Application of a floating point digital signal processor to a dynamic robot measurement system”, Instrumentation and Measurement Technology Conference, 1994. IMTC/94. Conference Proceedings. 10th Anniversary. Advanced Technologies in I & M., 1994 IEEE Hamamatsu, Japan May 10-12, 1994, New York, NY, USA, IEEE, May 10, 1994 (May 10, 1994), pp. 372-375, XP010121924, DOI: 10.1109/IMTC.1994.352046, ISBN: 978-0-7803-1880-9, *whole document*. |
Garrido, S. et al., “FM2: A real-time fast marching sensor based motion planner”, Advanced Intelligent Mechatronics, 2007 IEEE/ASME International Conference on, IEEE, PI, Sep. 1, 2007 (Sep. 1, 2007), pp. 1-6. |
International Search Report and Written Opinion for International Patent Application No. PCT/AU19/50742; dated Sep. 23, 2019; 5 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/AU19/50743; dated Oct. 1, 2019; 10 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/AU20/50367; dated Jun. 29, 2020; 15 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/AU20/50368; dated Jun. 25, 2020; 11 pages. |
Kleinigger, M. et al: “Application of 6-DOF sensing for robotic disturbance compensation”, Automation Science and Engineering (Case), 2010 IEEE Conference on, IEEE, Piscataway, NJ, USA, Aug. 21, 2010 (Aug. 21, 2010, pp. 344-349, XP031762876, ISBN: 978-1-4244-5477-1, *abstract*, *sections 1 to 3*. |
Mercedes-Benz: “Mercedes-Benz “Chicken” Magic Body Control TV commercial”, YouTube, Sep. 23, 2013, 1 page. Retrieved from the internet: <https://www.youtube.com/watch?v+nLwML2PagbY>. |
Office Action dated Apr. 21, 2021 in Japanese Patent Application No. 2019-523148, 4 pages. |
Office Action dated Aug. 20, 2021 for Japanese Patent Application No. 2019-523147, 3 pages. |
Office Action dated Jul. 5, 2021 for Japanese Patent Application No. 2019-523145, 4 pages. |
Office Action dated May 24, 2021 for Chinese Patent Application No. 201880067520.0, 8 pages. |
Office Action dated Sep. 3, 2021 for Chinese Patent Application No. 201780056460.8, 9 pages. |
Siciliano, B. et al., “Robotics—chapters 2-4” Robotics, Dec. 31, 2009 (Dec. 31, 2009), Springer London, London, pp. 39-189. |
International Preliminary Report on Patentability for International Application No. PCT/AU2017/050739; dated Jan. 15, 2019; 6 pages. |
European search report dated Mar. 28, 2022 in European Patent Application No. 19837417.5, 10 pages. |
European search report dated Mar. 7, 2022 in European Patent Application No. 198384307, 9 pages. |
Examination report dated Feb. 24, 2022 in Australian Patent Application No. 2017295317, 3 pages. |
Examination report dated Dec. 26, 2021 in Saudi Arabian Patent Application No. 519400899, 8 pages. |
Examination report dated Feb. 9, 2022 in Chinese Patent Application No. 201880067520.0, with English translation, 14 pages. |
“Critical Damping Ratio Explained.” EngineerExcel. 2022. 16 pages. |
Fastbrick Robotics. “Fastbrick Robotics Building a revolution.” Jun. 2015. 14 pages. |
HandWiki. Damping ratio. Cited by U.S. Patent and Trademark Office in Nov. 21, 2022 Final Office Action for U.S. Appl. No. 16/631,404. 7 pages. |
European search report dated Jul. 12, 2022 on European Patent Application No. 19885448.1. |
Examination report dated Aug. 3, 2022 on European Patent Application No. 18835861.8. |
Examination report dated Oct. 17, 2022 on European Patent Application No. 18834893.2. |
Examination report dated Nov. 3, 2022 on European Patent Application No. 18835737.0. |
Examination report dated Jan. 25, 2023 on European Patent Application No. 18834673.8. |
Examination report dated Mar. 29, 2023 on European Patent Application No. 18834565.6. |
Examination report dated May 2, 2022 on Australian Patent Application No. 2018295572. |
Examination report dated Oct. 20, 2022 on Australian Patent Application No. 2018303330. |
Examination report dated Nov. 14, 2022 on Australian Patent Application No. 2018317937. |
Examination report dated Mar. 2, 2023 on Australian Patent Application No. 2018303330. |
Examination report dated May 30, 2022 on Chinese Patent Application No. 201880067520.0. |
Examination report dated Sep. 19, 2022 on Chinese Patent Application No. 201880057400.2. |
Examination report dated Sep. 22, 2022 on Chinese Patent Application No. 2018800574110. |
Examination report dated Sep. 29, 2022 on Chinese Patent Application No. 201880067283.8. |
Examination report dated Oct. 21, 2022 on Chinese Patent Application No. 201880057441.1. |
Examination report dated Oct. 24, 2022 on Chinese Patent Application No. 2018800573813. |
Examination report dated Sep. 22, 2022 on Chinese Patent Application No. 201880057383.2. |
Examination report dated Oct. 28, 2022 on Chinese Patent Application No. 201880067520.0. |
Examination report dated Feb. 11, 2023 on Chinese Patent Application No. 2018800554140. |
Examination report dated Jul. 13, 2022 on Chinese Patent Application No. 201780056460.8. |
Examination report dated Feb. 2, 2023 on Chinese Patent Application No. 201780056460.8. |
Examination report dated Sep. 27, 2022 on Saudi Arabian Patent Application No. 520411375. |
Examination report dated Feb. 27, 2023 on Saudi Arabian Patent Application No. 520410931. |
Number | Date | Country | |
---|---|---|---|
20190224846 A1 | Jul 2019 | US |