The present invention relates generally to semiconductor devices, and more particularly to integrated circuits including non-volatile semiconductor memories and methods of fabricating the same.
Non-volatile semiconductor memories are devices that can be electrically erased and reprogrammed. One type of non-volatile memory that is widely used for general storage and transfer of data in and between computers and other electronic devices is flash memory, such as a split gate flash memory. A split gate flash memory transistor has an architecture similar to that of a conventional logic transistor, such as Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET), in that it also includes a control gate formed over a channel connecting a source and drain in a substrate. However, the memory transistor further includes a memory or charge trapping layer between the control gate and the channel and insulated from both by insulating or dielectric layers. A programming voltage applied to the control gate traps a charge on the charge trapping layer, partially canceling or screening an electric field from the control gate, thereby changing a threshold voltage (VT) of the transistor and programming the memory cell. During read-out, this shift in VT is sensed by the presence or absence of current flow through the channel with application of a predetermined read-out voltage. To erase the memory transistor, an erase voltage is applied to the control gate to restore, or reverse the shift in VT.
An important measure of merit for flash memories is data retention time, which is the time for which the memory transistor can hold charge or remain programmed without the application of power. The charge stored or trapped in the charge trapping layer decreases over time due to leakage current through the insulating layers, thereby reducing the difference between a programmed threshold voltage (VTP) and an erased threshold voltage (VTE) limiting data retention of the memory transistor.
One problem with conventional memory transistors and methods of forming the same is that the charge trapping layer typically has poor or decreasing data retention over time, limiting the useful transistor lifetime. Referring to
Referring to
Another problem is that increasingly semiconductor memories combine logic transistors, such as MOSFET's, with memory transistors in integrated circuits (ICs) fabricated on a common substrate for embedded memory or System-On-Chip (SOC) applications. Many of the current processes for forming performance of memory transistors are incompatible with those used for fabricating logic transistors.
Accordingly, there is a need for memory transistors and methods of forming the same that provides improved data retention and increased transistor lifetime. It is further desirable that the methods of forming the memory device are compatible with those for forming logic elements in the same IC formed on a common substrate.
The present invention provides a solution to these and other problems, and offers further advantages over conventional memory transistors or devices and methods of forming the same.
In a first aspect, the present invention is directed to a non-volatile memory transistor including: (i) an oxide-nitride-oxide (ONO) dielectric stack on a surface of a semiconductor substrate; and (ii) high work function gate electrode formed over a surface of the ONO dielectric stack. Preferably, the high work function gate electrode comprises a doped polycrystalline silicon or polysilicon (poly) layer. More preferably, the doped polysilicon layer comprises a P+ dopant, such as boron or difluoroborane (BF2), and the substrate comprises a silicon surface on which the ONO dielectric stack is formed to form a silicon-oxide-nitride-oxide-silicon (SONOS) gate stack of a NMOS SONOS memory transistor.
In certain embodiments, the ONO dielectric stack comprises a multi-layer charge storage layer including at least a substantially trap free bottom oxynitride layer and a charge trapping top oxynitride layer. In one version of these embodiments, for example, the top oxynitride layer is formed under conditions selected to form a silicon-rich, oxygen-lean oxynitride layer, and the bottom oxynitride layer is formed under conditions selected to form a silicon-rich, oxygen-rich oxynitride layer.
In another aspect, the present invention is directed to a semiconductor device including both a non-volatile memory transistor and a metal oxide semiconductor (MOS) logic transistor and methods of forming the same. The memory transistor includes an ONO dielectric stack including a multi-layer charge storage layer formed on a surface of a semiconductor substrate, and a high work function gate electrode formed over a surface of the ONO dielectric stack. Preferably, the high work function gate electrode of the memory transistor comprises a doped polysilicon layer. More preferably, the MOS logic transistor also includes a high work function gate electrode formed over a gate oxide on the surface of the substrate.
In one embodiment, the high work function gate electrodes of the memory transistor and the MOS logic transistor comprise a P+ doped polysilicon layer deposited over the ONO stack and gate oxide on a silicon substrate to form an NMOS SONOS memory transistor and a P-type (PMOS) logic transistor. The multi-layer charge storing layer can include, for example, a substantially trap free bottom oxynitride layer and a charge trapping top oxynitride layer.
In one embodiment, a method of forming such a semiconductor device comprises steps of: (i) forming an ONO dielectric stack on a surface of a semiconductor substrate in at least a first region in which a non-volatile memory transistor is to be formed, the ONO dielectric stack including a multi-layer charge storage layer; (ii) forming an oxide layer on the surface of the substrate in a second region in which a MOS logic transistor is to be formed; and (iii) forming a high work function gate electrode on a surface of the ONO dielectric stack. Preferably, the step of forming a high work function gate electrode on a surface of the ONO dielectric stack comprises the step of forming a doped polysilicon layer on a surface of the ONO dielectric stack. More preferably, the step of forming a doped polysilicon layer on a surface of the ONO dielectric stack further comprises the step of also forming the doped polysilicon layer on a surface of the oxide layer of the MOS logic transistor form a high work function gate electrode thereon.
In certain embodiments, the semiconductor substrate includes a silicon surface over which the ONO dielectric stack is formed, and the step of forming a doped polysilicon layer comprises the step of forming a P+ doped polysilicon layer to form an NMOS SONOS memory transistor and a PMOS logic transistor. Generally, the polysilicon layer can be doped by ion implantation with boron or BF2, before or after patterning the polysilicon layer, the ONO dielectric stack and the oxide layer to form gate stacks of the memory transistor and the MOS logic transistor.
In other embodiments, the step of forming the ONO dielectric stack comprises the step of forming a multi-layer charge storage layer overlying a lower or tunnel oxide layer on the surface of the substrate, followed depositing or growing an upper or blocking oxide layer over the multi-layer charge storage layer. Preferably, the step of forming the multi-layer charge storage layer comprises the step of forming a substantially trap free bottom oxynitride layer followed by forming a charge trapping top oxynitride layer overlying the trap free bottom oxynitride layer. More preferably, the bottom oxynitride layer is formed under conditions selected to form a silicon-rich, oxygen-rich oxynitride layer, and the top oxynitride layer is formed under conditions selected to form a silicon-rich, oxygen-lean oxynitride layer. Optionally, the charge trapping top oxynitride layer formed, for example, in a chemical vapor deposition (CVD) process using a process gas comprising Bis-TertiaryButylAminoSilane (BTBAS) selected to increase a concentration of carbon and thereby the number of traps therein.
These and various other features and advantages of the present invention will be apparent upon reading of the following detailed description in conjunction with the accompanying drawings and the appended claims provided below, where:
The present invention is directed generally to non-volatile memory transistor including a multi-layer charge storage layer and high work function gate electrode to increase data retention and/or to improve programming time and efficiency. The structure and method are particularly useful for embedded memory or System-On-Chip (SOC) applications in which a semiconductor device includes both a logic transistor and non-volatile memory transistor comprising high work function gate electrodes formed on a common substrate.
In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be evident, however, to one skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known structures, and techniques are not shown in detail or are shown in block diagram form in order to avoid unnecessarily obscuring an understanding of this description.
Reference in the description to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification do not necessarily all refer to the same embodiment. The term “to couple” as used herein may include both to directly connect and to indirectly connect through one or more intervening components.
Briefly, a non-volatile memory transistor according to the present invention includes a high work function gate electrode formed over an oxide-nitride-oxide (ONO) dielectric stack. By high work function gate electrode it is meant that the minimum energy needed to remove an electron from the gate electrode is increased.
In certain preferred embodiments, the high work function gate electrode comprises a doped polycrystalline silicon or polysilicon (poly) layer, the fabrication of which can be can be readily integrated into standard complementary metal-oxide-semiconductor (CMOS) process flows, such as those used fabricate metal-oxide-semiconductor (MOS) logic transistors, to enable fabrication of semiconductor memories or devices including both memory and logic transistors. More preferably, the same doped polysilicon layer can also be patterned to form a high work function gate electrode for the MOS logic transistor, thereby improving the performance of the logic transistor and increasing the efficiency of the fabrication process. Optionally, the ONO dielectric stack includes a multi-layer charge storage or charge trapping layer to further improve performance, and in particular data retention, of the memory transistor.
A semiconductor device including a non-volatile memory transistor comprising a high work function gate electrode and methods of forming the same will now be described in detail with reference to
Referring to
Generally, the substrate 206 may include any known silicon-based semiconductor material including silicon, silicon-germanium, silicon-on-insulator, or silicon-on-sapphire substrate. Alternatively, the substrate 206 may include a silicon layer formed on a non-silicon-based semiconductor material, such as gallium-arsenide, germanium, gallium-nitride, or aluminum-phosphide. Preferably, the substrate 206 is a doped or undoped silicon substrate.
The lower oxide layer or tunneling oxide layer 208 of the ONO dielectric stack 202 generally includes a relatively thin layer of silicon dioxide (SiO2) of from about 15 angstrom (A) to about 22 Å, and more preferably about 18 Å. The tunneling oxide layer 208 can be formed or deposited by any suitable means including, for example, being thermally grown or deposited using chemical vapor deposition (CVD). In a preferred embodiment, the tunnel oxide layer is formed or grown using a steam anneal. Generally, the process includes a wet-oxidizing method in which the substrate 206 is placed in a deposition or processing chamber, heated to a temperature from about 700° C. to about 850° C., and exposed to a wet vapor for a predetermined period of time selected based on a desired thickness of the finished tunneling oxide layer 208. Exemplary process times are from about 5 to about 20 minutes. The oxidation can be performed at atmospheric or at low pressure.
In a preferred embodiment, the oxynitride layers 210A, 210B, of the multi-layer charge storage layer 210 are formed or deposited in separate steps utilizing different processes and process gases or source materials, and have an overall or combined thickness of from about 70 Å to about 150 Å, and more preferably about 100 Å. The lower, trap free oxynitride layer 210B can be formed or deposited by any suitable means including, for example, deposition in a low pressure CVD process using a process gas including a silicon source, such as silane (SiH4), chlorosilane (SiH3Cl), dichlorosilane (SiH2Cl2), tetrachlorosilane (SiCl4), a nitrogen source, such as nitrogen (N2), ammonia (NH3), nitrogen trioxide (NO3) or nitrous oxide (N2O), and an oxygen-containing gas, such as oxygen (O2) or N2O. In one embodiment the trap free oxynitride layer 210B is deposited in a low pressure CVD process using a process gas including dichlorosilane, NH3 and N2O, while maintaining the chamber at a pressure of from about 5 millitorr (mT) to about 500 mT, and maintaining the substrate at a temperature of from about 700° C. to about 850° C. and more preferably at least about 780° C., for a period of from about 2.5 minutes to about 20 minutes. In particular, the process gas can include a first gas mixture of N2O and NH3 mixed in a ratio of from about 8:1 to about 1:8 and a second gas mixture of DCS and NH3 mixed in a ratio of from about 1:7 to about 7:1, and can be introduced at a flow rate of from about 5 to about 200 standard cubic centimeters per minute (sccm).
The top, charge trapping oxynitride layer 210A can be deposited over the bottom oxynitride layer 210B in a CVD process using a process gas including Bis-TertiaryButylAminoSilane (BTBAS). It has been found that the use of BTBAS increases the number of deep traps formed in the oxynitride by increasing the carbon level in the charge trapping oxynitride layer 210A. Moreover, these deep traps reduce charge losses due to thermal emission, thereby further improving data retention. More preferably, the process gas includes BTBAS and ammonia (NH3) mixed at a predetermined ratio to provide a narrow band gap energy level in the oxynitride charge trapping layer. In particular, the process gas can include BTBAS and NH3 mixed in a ratio of from about 7:1 to about 1:7. For example, in one embodiment the charge trapping oxynitride layer 210A is deposited in a low pressure CVD process using BTBAS and ammonia NH3 at a chamber pressure of from about 5 mT to about 500 mT, and at a substrate temperature of from about 700° C. to about 850° C. and more preferably at least about 780° C., for a period of from about 2.5 minutes to about 20 minutes.
It has been found that an oxynitride layer produced or deposited under the above conditions yields a trap-rich oxynitride layer 210A, which improves the program and erase speed and increases of the initial difference (window) between program and erase voltages without compromising a charge loss rate of the memory transistor, thereby extending the operating life (EOL) of the device. Preferably, the charge trapping oxynitride layer 210A has a charge trap density of at least about 1E10/cm2, and more preferably from about 1E12/cm2 to about 1E14/cm2.
Alternatively, the charge trapping oxynitride layer 210A can be deposited over the bottom oxynitride layer 210B in a CVD process using a process gas including BTBAS and substantially not including ammonia (NH3). In this alternative embodiment of the method, the step of depositing the top, charge trapping oxynitride layer 210A is followed by a thermal annealing step in a nitrogen atmosphere including nitrous oxide (N2O), NH3, and/or nitrogen oxide (NO).
Preferably, the top, charge trapping oxynitride layer 210A is deposited sequentially in the same CVD tool used to form the bottom, trap free oxynitride layer 210B, substantially without breaking vacuum on the deposition chamber. More preferably, the charge trapping oxynitride layer 210A is deposited substantially without altering the temperature to which the substrate 206 was heated during deposition of the trap free oxynitride layer 210B.
A suitable thickness for the lower, trap free oxynitride layer 210B has been found to be from about 10 Å to about 80 Å, and a ratio of thicknesses between the bottom layer and the top, charge trapping oxynitride layer has been found to be from about 1:6 to about 6:1, and more preferably at least about 1:4.
The top oxide layer 212 of the ONO dielectric stack 202 includes a relatively thick layer of SiO2 of from about 20 Å to about 70 Å, and more preferably about 45 Å. The top oxide layer 212 can be formed or deposited by any suitable means including, for example, being thermally grown or deposited using CVD. In a preferred embodiment, the top oxide layer 212 is a high-temperature-oxide (HTO) deposited using CVD process. Generally, the deposition process includes exposing the substrate 308 to a silicon source, such as silane, chlorosilane, or dichlorosilane, and an oxygen-containing gas, such as O2 or N2O in a deposition chamber at a pressure of from about 50 mT to about 1000 mT, for a period of from about 10 minutes to about 120 minutes while maintaining the substrate at a temperature of from about 650° C. to about 850° C.
Preferably, the top oxide layer 212 is deposited sequentially in the same tool used to form the oxynitride layers 210A, 210B. More preferably, the oxynitride layers 210A, 210B, and the top oxide layer 212 are formed or deposited in the same tool used to grow the tunneling oxide layer 208. Suitable tools include, for example, an ONO AVP, commercially available from AVIZA technology of Scotts Valley, Calif.
Referring to
Generally, the ONO dielectric stack 202 is removed from the desired region or area of the surface 204 using standard photolithographic and oxide etch techniques. For example, in one embodiment a patterned mask layer (not shown) is formed from a photo-resist deposited on the ONO dielectric stack 202, and the exposed region etched or removed using a low pressure radiofrequency (RF) coupled or generated plasma comprising fluorinated hydrocarbon and/or fluorinated carbon compounds, such as C2H2F4 commonly referred to as Freon®. Generally, the processing gas further includes argon (Ar) and nitrogen (N2) at flow rates selected to maintain a pressure in the etch chamber of from about 50 mT to about 250 mT during processing.
The oxide layer 214 of the logic transistor can include a layer of SiO2 having a thickness of from about 30 to about 70 Å, and can be thermally grown or deposited using CVD. In one embodiment, the oxide layer 214 is thermally grown using a steam oxidation process, for example, by maintaining the substrate 206 in a steam atmosphere at a temperature of from about 650° C. to about 850° C. for a period of from about 10 minutes to about 120 minutes.
Next, a doped polysilicon layer is formed on a surface of the ONO dielectric stack 202 and, preferably, the oxide layer 214 of the logic transistor. More preferably, the substrate 206 is a silicon substrate or has a silicon surface on which the ONO dielectric stack is formed to form a silicon-oxide-nitride-oxide-silicon (SONOS) gate stack of a SONOS memory transistor.
Referring to
In one embodiment, the polysilicon layer 216 is doped following the growth or formation in the LPCVD process using ion implantation process. For example, the polysilicon layer 216 can be doped by implanting boron (B+) or BF2 ions at an energy of from about 5 to about 100 kilo-electron volts (keV), and a dose of from about 1e14 cm−2 to about 1e16 cm−2 to form an N-type (NMOS) SONOS memory transistor and, preferably, a P-type (PMOS) logic transistor having high work function gate electrodes. More preferably, the polysilicon layer 216 is doped to a concentration or dose selected so that the minimum energy needed to remove an electron from the gate electrode is from at least about 4.8 electron volts (eV) to about 5.3 eV.
Alternatively, the polysilicon layer 216 can be doped by ion implantation after patterning or etching the polysilicon layer and the underlying dielectric layers. It will be appreciated that this embodiment includes additional masking steps to protect exposed areas of the substrate 206 surface 204 and/or the dielectric layers from receiving undesired doping. However, generally such a masking step is included in existing process flows regardless of whether the implantation occurs before or after patterning.
Referring to
Finally, the substrate is thermal annealed with a single or multiple annealing steps at a temperature of from about 800° C. to about 1050° C. for a time of from about 1 second to about 5 minutes to drive in ions implanted in the polysilicon layer 216, and to repair damage to the crystal structure of the polysilicon layer caused by ion implantation. Alternatively, advanced annealing techniques, such as flash and laser, can be employed with temperatures as high as 1350° C. and anneal times as low as 1 millisecond.
A partial cross-sectional side view of a semiconductor device 300 including a logic transistor 302 and non-volatile memory transistor 304 comprising high work function gate electrodes according to an embodiment of the present invention is shown in
The logic transistor 302 comprises a gate electrode 324 overlying an oxide layer 326 formed over a channel region 328 separating heavily doped source and drain regions 330, and, optionally, can include one or more sidewall spacers 332 surrounding the gate electrically insulate it from contacts (not shown) to the S/D regions. Preferably, as shown in
Generally, the semiconductor device 300 further includes a number of isolation structures 334, such as a local oxidation of silicon (LOCOS) region or structure, a field oxidation region or structure (FOX), or a shallow trench isolation (STI) structure to electrically isolate individual transistors formed on the substrate 306 from one another.
The foregoing description of specific embodiments and examples of the invention have been presented for the purpose of illustration and description, and although the invention has been described and illustrated by certain of the preceding examples, it is not to be construed as being limited thereby. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and many modifications, improvements and variations within the scope of the invention are possible in light of the above teaching. It is intended that the scope of the invention encompass the generic area as herein disclosed, and by the claims appended hereto and their equivalents. The scope of the present invention is defined by the claims, which includes known equivalents and unforeseeable equivalents at the time of filing of this application.
The present application is a continuation of and claims the benefit of priority under 35 U.S.C. 119(e) to U.S. patent application Ser. No. 15/376,282, filed Dec. 12, 2016, now U.S. Pat. No. 10,446,656, issued Oct. 15, 2019, which is a continuation of U.S. Non-Provisional application Ser. No. 15/335,180, filed on Oct. 26, 2016, now U.S. Pat. No. 9,929,240, issued Mar. 27, 2018, which is a continuation of U.S. patent application Ser. No. 14/811,346, filed Jul. 28, 2015, now U.S. Pat. No. 9,502,543, issued on Nov. 22, 2016, which is a continuation of U.S. patent application Ser. No. 14/159,315, filed on Jan. 20, 2014, now U.S. Pat. No. 9,093,318, issued on Jul. 28, 2015, which is a continuation of U.S. patent application Ser. No. 13/539,466, filed on Jul. 1, 2012, now U.S. Pat. No. 8,633,537, issued on Jan. 21, 2014, which is a continuation-in-part of patent application Ser. No. 13/288,919, filed Nov. 3, 2011, now U.S. Pat. No. 8,859,374, issued on Oct. 14, 2014, which is a divisional of U.S. patent Ser. No. 12/152,518, filed May 13, 2008, now U.S. Pat. No. 8,063,434, issued Nov. 22, 2011, which claims the benefit of priority to U.S. Provisional Patent Application No. 60/940,160, filed May 25, 2007, all of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4257832 | Schwabe et al. | Mar 1981 | A |
4395438 | Chiang | Jul 1983 | A |
4490900 | Chiu | Jan 1985 | A |
4543707 | Ito et al. | Oct 1985 | A |
4667217 | Janning | May 1987 | A |
4843023 | Chiu et al. | Jun 1989 | A |
4870470 | Bass, Jr. et al. | Sep 1989 | A |
5179038 | Kinney | Jan 1993 | A |
5348903 | Pfiester et al. | Sep 1994 | A |
5404791 | Kervagoret | Apr 1995 | A |
5405791 | Ahmad et al. | Apr 1995 | A |
5408115 | Chang | Apr 1995 | A |
5464783 | Kim et al. | Nov 1995 | A |
5500816 | Kobayashi | Mar 1996 | A |
5543336 | Enami et al. | Aug 1996 | A |
5550078 | Sung | Aug 1996 | A |
5573963 | Sung | Nov 1996 | A |
5773343 | Lee et al. | Jun 1998 | A |
5793089 | Fulford, Jr. et al. | Aug 1998 | A |
5817170 | Desu et al. | Oct 1998 | A |
5847411 | Morii | Dec 1998 | A |
5861347 | Maiti et al. | Jan 1999 | A |
5937323 | Orczyk et al. | Aug 1999 | A |
5939333 | Hurley et al. | Aug 1999 | A |
5972765 | Clark et al. | Oct 1999 | A |
5972804 | Tobin et al. | Oct 1999 | A |
6001713 | Ramsbey et al. | Dec 1999 | A |
6015739 | Gardner et al. | Jan 2000 | A |
6020606 | Liao | Feb 2000 | A |
6023093 | Gregor et al. | Feb 2000 | A |
6025267 | Pey et al. | Feb 2000 | A |
6074915 | Chen et al. | Jun 2000 | A |
6114734 | Eklund | Sep 2000 | A |
6127227 | Lin et al. | Oct 2000 | A |
6136654 | Kraft et al. | Oct 2000 | A |
6140187 | DeBusk et al. | Oct 2000 | A |
6147014 | Lyding et al. | Nov 2000 | A |
6150286 | Sun et al. | Nov 2000 | A |
6153543 | Chesire et al. | Nov 2000 | A |
6157426 | Gu | Dec 2000 | A |
6162700 | Hwang et al. | Dec 2000 | A |
6174758 | Nachumovsky | Jan 2001 | B1 |
6174774 | Lee | Jan 2001 | B1 |
6214689 | Lim et al. | Apr 2001 | B1 |
6217658 | Orczyk et al. | Apr 2001 | B1 |
6218700 | Papadas | Apr 2001 | B1 |
6268299 | Jammy et al. | Jul 2001 | B1 |
6277683 | Pradeep et al. | Aug 2001 | B1 |
6287913 | Agnello et al. | Sep 2001 | B1 |
6297096 | Boaz | Oct 2001 | B1 |
6297173 | Tobin et al. | Oct 2001 | B1 |
6321134 | Henley et al. | Nov 2001 | B1 |
6335288 | Kwan et al. | Jan 2002 | B1 |
6348380 | Weimer et al. | Feb 2002 | B1 |
6365518 | Lee et al. | Apr 2002 | B1 |
6399484 | Yamasaki et al. | Jun 2002 | B1 |
6406960 | Hopper et al. | Jun 2002 | B1 |
6429081 | Doong et al. | Aug 2002 | B1 |
6433383 | Ramsbey et al. | Aug 2002 | B1 |
6440797 | Wu et al. | Aug 2002 | B1 |
6444521 | Chang et al. | Sep 2002 | B1 |
6445030 | Wu et al. | Sep 2002 | B1 |
6461899 | Kitakado et al. | Oct 2002 | B1 |
6462370 | Kuwazawa | Oct 2002 | B2 |
6468927 | Zhang et al. | Oct 2002 | B1 |
6469343 | Miura et al. | Oct 2002 | B1 |
6518113 | Buynoski | Feb 2003 | B1 |
6559026 | Rossman et al. | May 2003 | B1 |
6573149 | Kizilyalli et al. | Jun 2003 | B2 |
6586343 | Ho et al. | Jul 2003 | B1 |
6586349 | Jeon et al. | Jul 2003 | B1 |
6596590 | Miura et al. | Jul 2003 | B1 |
6599795 | Ogata | Jul 2003 | B2 |
6602771 | Inoue et al. | Aug 2003 | B2 |
6610614 | Niimi et al. | Aug 2003 | B2 |
6624090 | Yu et al. | Sep 2003 | B1 |
6661065 | Kunikiyo | Dec 2003 | B2 |
6670241 | Kamal et al. | Dec 2003 | B1 |
6677213 | Ramkumar et al. | Jan 2004 | B1 |
6709928 | Jenne et al. | Mar 2004 | B1 |
6713127 | Subramony et al. | Mar 2004 | B2 |
6717860 | Fujiwara | Apr 2004 | B1 |
6730566 | Niimi et al. | May 2004 | B2 |
6746968 | Tseng et al. | Jun 2004 | B1 |
6768160 | Li et al. | Jul 2004 | B1 |
6768856 | Akwani et al. | Jul 2004 | B2 |
6774433 | Lee et al. | Aug 2004 | B2 |
6787419 | Chen et al. | Sep 2004 | B2 |
6818558 | Rathor et al. | Nov 2004 | B1 |
6833582 | Mine et al. | Dec 2004 | B2 |
6835621 | Yoo et al. | Dec 2004 | B2 |
6867118 | Noro | Mar 2005 | B2 |
6884681 | Kamal et al. | Apr 2005 | B1 |
6903422 | Goda et al. | Jun 2005 | B2 |
6906390 | Nomoto et al. | Jun 2005 | B2 |
6912163 | Zheng et al. | Jun 2005 | B2 |
6913961 | Hwang | Jul 2005 | B2 |
6917072 | Noguchi et al. | Jul 2005 | B2 |
6946349 | Lee et al. | Sep 2005 | B1 |
6958511 | Halliyal et al. | Oct 2005 | B1 |
7012299 | Mahajani et al. | Mar 2006 | B2 |
7015100 | Lee et al. | Mar 2006 | B1 |
7018868 | Yang et al. | Mar 2006 | B1 |
7033890 | Shone | Apr 2006 | B2 |
7033957 | Shiraiwa et al. | Apr 2006 | B1 |
7042054 | Ramkumar et al. | May 2006 | B1 |
7045424 | Kim et al. | May 2006 | B2 |
7060594 | Wang | Jun 2006 | B2 |
7084032 | Crivelli et al. | Aug 2006 | B2 |
7098154 | Yoneda | Aug 2006 | B2 |
7112486 | Cho et al. | Sep 2006 | B2 |
7115469 | Halliyal et al. | Oct 2006 | B1 |
7172940 | Chen et al. | Feb 2007 | B1 |
7189606 | Wang et al. | Mar 2007 | B2 |
7230294 | Lee | Jun 2007 | B2 |
7238990 | Burnett et al. | Jul 2007 | B2 |
7250654 | Chen et al. | Jul 2007 | B2 |
7253046 | Higashi et al. | Aug 2007 | B2 |
7262457 | Hsu et al. | Aug 2007 | B2 |
7279740 | Bhattacharyya et al. | Oct 2007 | B2 |
7301185 | Chen et al. | Nov 2007 | B2 |
7312496 | Hazama | Dec 2007 | B2 |
7315474 | Lue | Jan 2008 | B2 |
7323742 | Georgescu | Jan 2008 | B2 |
7338869 | Fukuda et al. | Mar 2008 | B2 |
7365389 | Jeon et al. | Apr 2008 | B1 |
7372113 | Tanaka et al. | May 2008 | B2 |
7390718 | Roizin et al. | Jun 2008 | B2 |
7410857 | Higashi et al. | Aug 2008 | B2 |
7425491 | Forbes | Sep 2008 | B2 |
7450423 | Lai et al. | Nov 2008 | B2 |
7463530 | Lue et al. | Dec 2008 | B2 |
7479425 | Ang et al. | Jan 2009 | B2 |
7482236 | Lee et al. | Jan 2009 | B2 |
7521751 | Fujiwara | Apr 2009 | B2 |
7535053 | Yamazaki | May 2009 | B2 |
7544565 | Kwak et al. | Jun 2009 | B2 |
7576386 | Lue et al. | Aug 2009 | B2 |
7588986 | Jung | Sep 2009 | B2 |
7601576 | Suzuki et al. | Oct 2009 | B2 |
7612403 | Bhattacharyya | Nov 2009 | B2 |
7636257 | Lue | Dec 2009 | B2 |
7642585 | Wang et al. | Jan 2010 | B2 |
7646041 | Chae et al. | Jan 2010 | B2 |
7646637 | Liao | Jan 2010 | B2 |
7670963 | Ramkumar et al. | Mar 2010 | B2 |
7688626 | Lue et al. | Mar 2010 | B2 |
7692246 | Dreeskornfeld et al. | Apr 2010 | B2 |
7713810 | Hagemeyer et al. | May 2010 | B2 |
7714379 | Lee | May 2010 | B2 |
7723789 | Lin et al. | May 2010 | B2 |
7737488 | Lai et al. | Jun 2010 | B2 |
7790516 | Willer et al. | Sep 2010 | B2 |
7811890 | Hsu et al. | Oct 2010 | B2 |
7879738 | Wang | Feb 2011 | B2 |
7910429 | Dong et al. | Mar 2011 | B2 |
7927951 | Kim et al. | Apr 2011 | B2 |
7948799 | Lue et al. | May 2011 | B2 |
7972930 | Jang et al. | Jul 2011 | B2 |
7999295 | Lai et al. | Aug 2011 | B2 |
8008713 | Dobuzinsky et al. | Aug 2011 | B2 |
8063434 | Polishchuk | Nov 2011 | B1 |
8067284 | Levy | Nov 2011 | B1 |
8071453 | Ramkumar et al. | Nov 2011 | B1 |
8093128 | Koutny et al. | Jan 2012 | B2 |
8143129 | Ramkumar et al. | Mar 2012 | B2 |
8163660 | Puchner et al. | Apr 2012 | B2 |
8222688 | Jenne et al. | Jul 2012 | B1 |
8264028 | Lue et al. | Sep 2012 | B2 |
8283261 | Ramkumar | Oct 2012 | B2 |
8315095 | Lue et al. | Nov 2012 | B2 |
8318608 | Ramkumar et al. | Nov 2012 | B2 |
8482052 | Lue et al. | Jul 2013 | B2 |
8633537 | Polishchuk et al. | Jan 2014 | B2 |
8643124 | Levy et al. | Feb 2014 | B2 |
8710578 | Jenne et al. | Apr 2014 | B2 |
8859374 | Polishchuk | Oct 2014 | B1 |
8860122 | Polishchuk et al. | Oct 2014 | B1 |
8940645 | Ramkumar et al. | Jan 2015 | B2 |
8993453 | Ramkumar et al. | Mar 2015 | B1 |
9093318 | Polishchuk et al. | Jul 2015 | B2 |
9306025 | Polishchuk et al. | Apr 2016 | B2 |
9349824 | Levy et al. | May 2016 | B2 |
9355849 | Levy et al. | May 2016 | B1 |
9449831 | Levy et al. | Sep 2016 | B2 |
9502543 | Polishchuk et al. | Nov 2016 | B1 |
9929240 | Polishchuk et al. | Mar 2018 | B2 |
20010052615 | Fujiwara | Dec 2001 | A1 |
20020020890 | Willer | Feb 2002 | A1 |
20020048200 | Kuwazawa | Apr 2002 | A1 |
20020048893 | Kizilyalli | Apr 2002 | A1 |
20020109138 | Forbes | Aug 2002 | A1 |
20020141237 | Goda et al. | Oct 2002 | A1 |
20020154878 | Akwani et al. | Oct 2002 | A1 |
20030030100 | Lee et al. | Feb 2003 | A1 |
20030122204 | Nomoto et al. | Jul 2003 | A1 |
20030123307 | Lee et al. | Jul 2003 | A1 |
20030124873 | Xing et al. | Jul 2003 | A1 |
20030169629 | Goebel et al. | Sep 2003 | A1 |
20030183869 | Crivelli et al. | Oct 2003 | A1 |
20030222293 | Noro | Dec 2003 | A1 |
20030227049 | Sakakibara | Dec 2003 | A1 |
20030227056 | Wang | Dec 2003 | A1 |
20040067619 | Niimi et al. | Apr 2004 | A1 |
20040071030 | Goda et al. | Apr 2004 | A1 |
20040094793 | Noguchi et al. | May 2004 | A1 |
20040104424 | Yamazaki | Jun 2004 | A1 |
20040129986 | Kobayashi et al. | Jul 2004 | A1 |
20040129988 | Rotondaro et al. | Jul 2004 | A1 |
20040173918 | Kamal et al. | Sep 2004 | A1 |
20040183091 | Hibino | Sep 2004 | A1 |
20040183122 | Mine et al. | Sep 2004 | A1 |
20040207002 | Ryu et al. | Oct 2004 | A1 |
20040227196 | Yoneda | Nov 2004 | A1 |
20040227198 | Mitani et al. | Nov 2004 | A1 |
20040251489 | Jeon et al. | Dec 2004 | A1 |
20050026637 | Fischer et al. | Feb 2005 | A1 |
20050056892 | Seliskar | Mar 2005 | A1 |
20050062098 | Mahajani et al. | Mar 2005 | A1 |
20050070126 | Senzaki | Mar 2005 | A1 |
20050079659 | Duan et al. | Apr 2005 | A1 |
20050088889 | Lee | Apr 2005 | A1 |
20050093054 | Jung | May 2005 | A1 |
20050098839 | Lee et al. | May 2005 | A1 |
20050110064 | Duan et al. | May 2005 | A1 |
20050116279 | Koh | Jun 2005 | A1 |
20050141168 | Lee et al. | Jun 2005 | A1 |
20050186741 | Roizin et al. | Aug 2005 | A1 |
20050205920 | Jeon et al. | Sep 2005 | A1 |
20050224866 | Higashi et al. | Oct 2005 | A1 |
20050227501 | Tanabe et al. | Oct 2005 | A1 |
20050230766 | Nomoto et al. | Oct 2005 | A1 |
20050236679 | Hori et al. | Oct 2005 | A1 |
20050245034 | Fukuda et al. | Nov 2005 | A1 |
20050266637 | Wang | Dec 2005 | A1 |
20050275010 | Chen et al. | Dec 2005 | A1 |
20050275012 | Nara et al. | Dec 2005 | A1 |
20060008959 | Hagemeyer et al. | Jan 2006 | A1 |
20060017092 | Dong et al. | Jan 2006 | A1 |
20060022252 | Doh et al. | Feb 2006 | A1 |
20060051880 | Doczy et al. | Mar 2006 | A1 |
20060065919 | Fujiwara | Mar 2006 | A1 |
20060081331 | Campian | Apr 2006 | A1 |
20060111805 | Yokoyama et al. | May 2006 | A1 |
20060113586 | Wang | Jun 2006 | A1 |
20060113627 | Chen et al. | Jun 2006 | A1 |
20060131636 | Jeon et al. | Jun 2006 | A1 |
20060160303 | Ang et al. | Jul 2006 | A1 |
20060192248 | Wang | Aug 2006 | A1 |
20060202261 | Lue et al. | Sep 2006 | A1 |
20060202263 | Lee | Sep 2006 | A1 |
20060220106 | Choi et al. | Oct 2006 | A1 |
20060226490 | Burnett et al. | Oct 2006 | A1 |
20060228841 | Kim et al. | Oct 2006 | A1 |
20060228899 | Nansei et al. | Oct 2006 | A1 |
20060228907 | Cheng et al. | Oct 2006 | A1 |
20060237803 | Zhu et al. | Oct 2006 | A1 |
20060261401 | Bhattacharyya | Nov 2006 | A1 |
20060281331 | Wang | Dec 2006 | A1 |
20060284236 | Bhattacharyya | Dec 2006 | A1 |
20070012988 | Bhattacharyya | Jan 2007 | A1 |
20070022359 | Katoh et al. | Jan 2007 | A1 |
20070029625 | Lue et al. | Feb 2007 | A1 |
20070031999 | Ho et al. | Feb 2007 | A1 |
20070048916 | Suzuki et al. | Mar 2007 | A1 |
20070049048 | Rauf et al. | Mar 2007 | A1 |
20070051306 | Ivanov et al. | Mar 2007 | A1 |
20070066087 | Jung | Mar 2007 | A1 |
20070121380 | Thomas | May 2007 | A1 |
20070200168 | Ozawa et al. | Aug 2007 | A1 |
20070202708 | Luo et al. | Aug 2007 | A1 |
20070210371 | Hisamoto et al. | Aug 2007 | A1 |
20070215940 | Ligon | Sep 2007 | A1 |
20070231991 | Willer et al. | Oct 2007 | A1 |
20070232007 | Forbes | Oct 2007 | A1 |
20070246753 | Chu et al. | Oct 2007 | A1 |
20070262451 | Rachmady et al. | Nov 2007 | A1 |
20070267687 | Lue | Nov 2007 | A1 |
20070268753 | Lue et al. | Nov 2007 | A1 |
20070272916 | Wang et al. | Nov 2007 | A1 |
20070272971 | Lee et al. | Nov 2007 | A1 |
20080009115 | Willer et al. | Jan 2008 | A1 |
20080020853 | Ingebrigtson | Jan 2008 | A1 |
20080029399 | Tomita et al. | Feb 2008 | A1 |
20080048237 | Iwata | Feb 2008 | A1 |
20080054346 | Saitoh et al. | Mar 2008 | A1 |
20080057644 | Kwak et al. | Mar 2008 | A1 |
20080087942 | Hsu et al. | Apr 2008 | A1 |
20080087946 | Hsu et al. | Apr 2008 | A1 |
20080121932 | Ranade | May 2008 | A1 |
20080135946 | Yan | Jun 2008 | A1 |
20080146042 | Kostamo et al. | Jun 2008 | A1 |
20080150003 | Chen et al. | Jun 2008 | A1 |
20080175053 | Lue et al. | Jul 2008 | A1 |
20080230853 | Jang et al. | Sep 2008 | A1 |
20080237684 | Specht et al. | Oct 2008 | A1 |
20080237694 | Specht et al. | Oct 2008 | A1 |
20080258203 | Happ et al. | Oct 2008 | A1 |
20080272424 | Kim et al. | Nov 2008 | A1 |
20080286927 | Kim et al. | Nov 2008 | A1 |
20080290398 | Polishchuk et al. | Nov 2008 | A1 |
20080290399 | Levy et al. | Nov 2008 | A1 |
20080290400 | Jenne et al. | Nov 2008 | A1 |
20080291726 | Lue et al. | Nov 2008 | A1 |
20080293207 | Koutny, Jr. et al. | Nov 2008 | A1 |
20080293254 | Ramkumar et al. | Nov 2008 | A1 |
20080293255 | Ramkumar | Nov 2008 | A1 |
20080296664 | Ramkumar et al. | Dec 2008 | A1 |
20090011609 | Ramkumar et al. | Jan 2009 | A1 |
20090039414 | Lue et al. | Feb 2009 | A1 |
20090039416 | Lai et al. | Feb 2009 | A1 |
20090045452 | Lue et al. | Feb 2009 | A1 |
20090065849 | Noda | Mar 2009 | A1 |
20090152618 | Matsuo et al. | Jun 2009 | A1 |
20090152621 | Polishchuk et al. | Jun 2009 | A1 |
20090179253 | Levy et al. | Jul 2009 | A1 |
20090206385 | Kim et al. | Aug 2009 | A1 |
20090227116 | Joo et al. | Sep 2009 | A1 |
20090242969 | Tanaka | Oct 2009 | A1 |
20090294828 | Ozawa et al. | Dec 2009 | A1 |
20090294836 | Kiyotoshi | Dec 2009 | A1 |
20090294844 | Tanaka et al. | Dec 2009 | A1 |
20090302365 | Bhattacharyya | Dec 2009 | A1 |
20100006922 | Matsuoka et al. | Jan 2010 | A1 |
20100041222 | Puchner et al. | Feb 2010 | A1 |
20100096687 | Balseanu et al. | Apr 2010 | A1 |
20100117138 | Huerta et al. | May 2010 | A1 |
20100117139 | Lue | May 2010 | A1 |
20100155823 | Lue et al. | Jun 2010 | A1 |
20100178759 | Kim et al. | Jul 2010 | A1 |
20100252877 | Nakanishi et al. | Oct 2010 | A1 |
20100270609 | Olsen et al. | Oct 2010 | A1 |
20100283097 | Endoh et al. | Nov 2010 | A1 |
20100295118 | Bhattacharyya | Nov 2010 | A1 |
20110018053 | Lo et al. | Jan 2011 | A1 |
20110163371 | Song et al. | Jul 2011 | A1 |
20110233512 | Yang et al. | Sep 2011 | A1 |
20110237060 | Lee et al. | Sep 2011 | A1 |
20110248332 | Levy et al. | Oct 2011 | A1 |
20120007167 | Hung et al. | Jan 2012 | A1 |
20120061744 | Hwang et al. | Mar 2012 | A1 |
20120068159 | Fujiki et al. | Mar 2012 | A1 |
20120068250 | Ino et al. | Mar 2012 | A1 |
20130048876 | Crawford | Feb 2013 | A1 |
20130175604 | Polishchuk et al. | Jul 2013 | A1 |
20130309826 | Ramkumar et al. | Nov 2013 | A1 |
20140264551 | Polishchuk et al. | Sep 2014 | A1 |
20160300724 | Levy et al. | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
1107254 | Aug 1995 | CN |
1400669 | Mar 2003 | CN |
1801478 | Jul 2006 | CN |
1832201 | Sep 2006 | CN |
101517714 | Aug 2009 | CN |
101558481 | Oct 2009 | CN |
101859702 | Oct 2010 | CN |
102142454 | Aug 2011 | CN |
104254921 | Dec 2014 | CN |
2000173287 | Jun 2000 | JP |
2002261175 | Sep 2002 | JP |
2004172616 | Jun 2004 | JP |
2005183940 | Jul 2005 | JP |
2005347679 | Dec 2005 | JP |
2006277082 | Oct 2006 | JP |
2007515060 | Jun 2007 | JP |
2007318112 | Dec 2007 | JP |
2009027134 | Feb 2009 | JP |
2009535800 | Oct 2009 | JP |
2009260070 | Nov 2009 | JP |
2009272348 | Nov 2009 | JP |
2010140997 | Jun 2010 | JP |
2010182939 | Aug 2010 | JP |
2011507231 | Mar 2011 | JP |
2011527824 | Nov 2011 | JP |
2012004249 | Jan 2012 | JP |
2012019211 | Jan 2012 | JP |
20040070669 | Aug 2004 | KR |
20060100092 | Sep 2006 | KR |
20110093746 | Aug 2011 | KR |
200703671 | Jan 2007 | TW |
200847343 | Dec 2008 | TW |
2007064048 | Jun 2007 | WO |
2008129478 | Oct 2008 | WO |
2007022359 | May 2009 | WO |
2011162725 | Dec 2011 | WO |
2013148112 | Oct 2013 | WO |
2013148343 | Oct 2013 | WO |
Entry |
---|
Lue, Hang-Ting et al., “Reliability Model of Bandgap Engineered SONOS (be-SONOS)”, IEEE, 2006, 4 pgs. |
Ohring, Milton, “The Materials Science of Thin Films: Deposition and Structure,” 2nd Edition, Academic Press, 2002, pp. 336-337; 4 pages. |
Wang, Szu-Yu et al., “Reliability and processing effects of bandgap engineered SONOS flash memory”, 2007 IEEE, International Reliability Symposium, Apr. 18, 2007, 5 pages. |
Wu et al., “SONOS Device with Tapered Bandgap Nitride Layer,” IEEE Transactions on Electron Devices, May 2005, vol. 52, No. 5, pp. 987-992; 6 pages. |
Yang et al., “Reliability considerations in scaled SONOS nonvolatile memory devices, solid state Electronics”, 43(1999) 2025-2032. |
Altera, “Max 9000 Programmable Logic Device Family,” Altera, Jul. 1999, Version 6.01, pp. 1-40; 41 pages. |
Carley, L. Richard, “Trimming Analog Circuits Using Floating-Gate Analog MOS Memory,” IEEE Journal of Solid-State Circuits, vol. 24, No. 6, Dec. 1989, pp. 1569-1575; 7 pages. |
Cypress, “1.8V, 500-MHz, 10-Output JEDEC-Compliant Zero Delay Buffer,” Cypress Advance Information, Feb. 12, 2004; 9 pages. |
10GEA, “10 Gigabit Ethernet Technology Overview White Paper”, Revision 1.0, Retrieved from Internet: URL: http://www.10gea.org, May 2001. |
Cypress, “16K x 8/9 Dual-Port Static RAM with Sem, Int, Busy,” Cypress Semiconductor Data Book, May 1995, CY7C006 and CY7C016, pp. 6:1-17; 10 pages. |
Cypress, “1K x 8 Dual-Port Static RAM,” Cypress Semiconductor Data Book, May 1995, CY7C130/CY7C131 and CY7C140/C7C141, pp. 6:37-49; 8 pages. |
Linear, “1 kHz to 30MHz Resistor Set SOT-23 Oscillator”, Initial Release Final Electrical Specifications LTC1799, Linear Technology Corporation, Jan. 2001, pp. 1-4. |
Cypress, “200-MBaud HOTLink Transceiver,” Cypress Semiconductor Corporation, Revised Feb. 13, 2004, CY7C924ADX, Document #38-02008 Rev. *D; 56 pages. |
Cypress, “2K x 16 Dual-Port Static RAM,” Cypress Semiconductor Data Book, May 1995, CY7C133 and CY7C143, pp. 6:63-73; 7 pages. |
Cypress, “2K x 8 Dual-Port Static RAM,” Cypress Semiconductor Data Book, May 1995, CY7C132/CY7C136 and CY7C142/CY7C146, pp. 6:50-62; 8 pages. |
Cypress, “3.3V 64K x 18 Synchronous QuadPort Static RAM,” Cypress Preliminary CY7C0430BV, Cypress Semiconductor Corporation, Mar. 27, 2001; 36 pages. |
Takebuchi, Masataka et al. “A Novel Integration Technology of EEPROM Embedded CMOS Logic VLSI Suitable for ASIC Applications”, IEEE 1992 Custom Integrated Circuits Conference, pp. 9.6.1-9.6.4. |
Cho, Soon-Jin et al., “A Novel Robust and Low Cost Stack Chips Package and Its Thermal Performance”, IEEE Transaction on Advanced Packaging, vol. 23, No. 2, May 2000, pp. 257-265. |
Ohsaki, Katsuhiko et al., “A Planar Type EEPROM Cell Structure by Standard CMOS Process for Integration with Gate Array, Standard Cell, Microprocessor and for Neural Chips”, bIEEE 1993 Custom Integrated Circuits Conference, pp. 23.6.1-23.6A. |
Anderson, S. et al., “A Single Chip Sensor & Image Processor for Fingerprint Verification”, IEEE Custom Integrated Circuits Conference, May 12-15, 1991. |
Kazerounian, Reza et al., “A Single Poly EPROM for Custom CMOS Logic Applications”, IEEE 1986 Custom Integrated Circuits Conference, pp. 59-62. |
Alvarez, Jose et al., “A Wide-Bandwidth Low-Voltage PLL for PowerPC.TM. Microprocessors”, IEEE Journal of Solid-State Circuits, vol. 30, No. 4, Apr. 1995, pp. 383-391. |
“About SMaL Camera Technologies, Inc.”, SMaL Camera Technologies, 2001, pp. 1-3. |
Duvvuy, Charvaka, et al., “Achieving Uniform nMOS Device Power Distribution for Sub-micron ESD Reliability;” Charvaka Duvvuy, Carlos Diaz, and Tim Haddock; 1992; 92-131 through 92-134, no month. |
Agilent, “ADNS-2030 High Performance, Low Power Optical Mouse Sensor (Optimized for Cordless Mouse Applications),” Agilent Technologies, downloaded Oct. 10, 2005, <http://www.home.agilent.com/USeng/nav/-536893734,536883737/pd.h- tml; 2 pages. |
Agilent, “ADNS-2051 High-Performance Optical Mouse Sensor,” Agilent Technologies, downloaded Oct. 10, 2005, <http://www.home.agilent.com/USeng/nav/-536893734,536883737/pd.html>. |
Agilent, “Agilent ADNK-2030 Solid-State Optical Mouse Sensor,” Agilent Technologies Inc., Sample Kit, 2003; 1 page. |
Agilent, “Agilent ADNS-2030 Low Power Optical Mouse Sensor,” Agilent Technologies Inc., Data Sheet, 2005; 34 pages. |
Agilent, “Agilent ADNS-2051 Optical Mouse Sensor,” Agilent Technologies Inc., Product Overview, 2003; 2 pages. |
Agilent, “Agilent Optical Mouse Sensors,” Agilent Technologies Inc., Selection Guide, 2004; 3 pages. |
IBM, “Algorithm for Managing Multiple First-In, First-Out Queues from a Single Shared Random-Access Memory,” IBM Technical Disclosure Bulletin, Aug. 1989; 5 pages. |
AMD, “Am99C10A 256.times.48 Content Addressable Memory”, Advanced Micro Devices, Dec. 1992. |
Sun, “An Analog PPL-Based Clock and Data Recovery Circuit with High Input Jitter Tolerance;” Sun, Reprinted from IEEE Journal of Solid-State Circuits, 1989; 4 pages. |
Cuppens, Roger et al., “An EEPROM for Microprocessors and Custom Logic”, IEEE Journal of Solid-State Circuits, vol. SC-20, No. 2, Apr. 1985, pp. 603-608. |
Yoshikawa, Kuniyushi et al.,—“An EPROM Cell Structure foe EPLDs Compatible with Single Poly Gate Process”, By Kuniyushi Yoshikawa et al., Extended Abstracts of the 18th (1986 International) Conference on Solid State Devices and Materials, Tokyo, 1986, pp. 323-326. |
Miyamoto, Jun-Ichi et al., “An Experimental 5-V-Only 256-kbit CMOS EEPROM with a High-Performance Single-Polysilicon Cell”, IEEE Journal of Solid State Circuits, vol. SC-21, No. 5, Oct. 1986, pp. 852-860. |
Chien et al., “Performance Improvement of SONOS Memory by Bandgap Engineering of Charge-Trapping Layer,” IEEE Electron Device Letters, Apr. 2004, vol. 25, No. 4, pp. 205-207; 3 pages. |
Chen et al., “Two-bit SONOS type Flash using a band engineering in the nitride layer” Hua-Ching Chien, Chin-Hsing Kao, Jui-Wen Chang and Tzung-Kuen Tsai, Microelectronic Engineering, vol. 80, Jun. 17, 2005_2 pages. |
Hung et al., High-performance gate-all-around polycrystalline silicon nanowire with silicon nanocrystals nonvolatile memory, Appl. Phys. Lett, 98 162108 (2011), pub date: Apr. 22, 2011. |
Ramkumar, Krishnaswamy, “Cypress SONOS Technology”, Cypress Semiconductor White Paper, Jul. 6, 2011, pp. 1-9. |
Lue et al., “BE-SONOS: A Bandgap Engineered SONOS with Excellent Performance and Reliability,” IEEE, 2005; 4 pages. |
Number | Date | Country | |
---|---|---|---|
20200152752 A1 | May 2020 | US |
Number | Date | Country | |
---|---|---|---|
60940160 | May 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12152518 | May 2008 | US |
Child | 13288919 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15376282 | Dec 2016 | US |
Child | 16600768 | US | |
Parent | 15335180 | Oct 2016 | US |
Child | 15376282 | US | |
Parent | 14811346 | Jul 2015 | US |
Child | 15335180 | US | |
Parent | 14159315 | Jan 2014 | US |
Child | 14811346 | US | |
Parent | 13539466 | Jul 2012 | US |
Child | 14159315 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13288919 | Nov 2011 | US |
Child | 13539466 | US |